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OUTLINE

A LARGE NUMBER OF PEOPLE FROM ACADEMIA
AND INDUSTRY HAVE CONTRIBUTED TO THE AREA
. OF DATA RECONCILIATION,

.+ HUNDREDS OF ARTICLES AND THREE BOOKS HAVE
. BEEN WRITTEN.

.+ MORE THAN 5 COMMERCIAL SOFTWARE EXIST.

« ALTHOUGH A LITTLE YOUNGER, THE AREA OF

INSTRUMENATION UPGRADE IS EQUALLY MATURE
: « ONE BOOK HAS BEEN WRITTEN
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OUTLINE

OBSERVABILITY AND REDUNDANCY
DIFFERENT TYPES OF DATA RECONCILIATION
- Steady State vs. Dynamic
- Linear vs. Nonlinear

GROSS ERRORS :
- Biased instrumentation, model mismatch and outllers
- Detection, identification and size estimation

INSTRUMENTATION UPGRADE
SOME EXISTING CHALLENGES
INDUSTRIAL PRACTICE
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Simple Process Model of Mass
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Variable Classification
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Variable Classification
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Conflict among Redundant
Variables
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Conflict Resolution
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Data reconciliation 1n

its simplest form

Analytical Solution  f = {I ~Q.E}(E 0EL) ' E, ‘ fx
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Precision of Estimates

If z=1%, and the variance of x 1s O, then the variance
of z is given by: 0 =T0r”’
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Some Practical Difficulties

 Variance-Covariance matrix 1s not Known

* Process plants have a usually a large number of Tanks
* Plants are not usually at Steady State

 How many measurements 1s enough?
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Estimation of the Variance-
Covariance Matrix.

k
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*Direct Approach — Cov(fR’i,fR’j):— n (NRJ.

1
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Indirect Approach E, ff=r

Almasy and Mah (1984),
: Darouach et al., (1989) and 1) Obtain r
i Keller et al (1992)

Cov(r) = ERQREg

2) Maximum likelihood estimate Qg

However, this procedure is not good if outliers are present.
obust estimators have been proposed (Chen et al, 1997)
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Pseudo-Stream

Steady State formulations are used
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The procedure 1s based on the following
assumptions:

Min [ fo~fo 1" Qi [ fo=fal
i a) A normal distribution of measurement errors. ,
i b) A single value per variable. ~
: 194 29 E f == O
c) A “‘steady-state” system. R JR )
i a) Substantiated by the central limit theorem. 110
i b) Also valid for means. 105

c) No plant is truly at “steady-state”. » 100
Process oscillations occur. Therefore, it 1s said o

that it is valid for a “pseudo-steady state” ”, 250
Time
system” \.
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Reconciliation of averages 1s equal to the average of reconciled
values using dynamic data reconciliation (Bagajewicz and
Jiang, 2000; Bagajewicz and Gonzales,2001).

That 1s, there 1s no need to adjust the variance-covariance
matrix for process variations.
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Dynamic Data Reconciliation

Linear Case(after cooptation):
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Dynamic Data Reconciliation

MinY, o= fil O~ 131+ 7= VaV Qa7 Vi)
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Difference Approach: Darouach, M. and M. Zasadzinski, 1991, Rollins, D. K.

and S. Devanathan, 1993.
B(VRJ - I7R,i)= AﬁR,i CﬁR,i =0

An algebraic system of equations follows.
Integral Approach: Jiang and Bagajewicz, 1997.
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The technique estimates the coefficients of polynomials.
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Nonlinear Data Reconciliation

Min D" (X, () =2y 1 O [Xy (1) = 2404 ]

dx,

— =g (X,,X
Jt g,(x;,x,)

gz(%p%z) =0

Applied in practice to steady state models with material, component
and energy balances. In the dynamic case, orthogonal collocation |
was used (Liebmann et al, 1992) or linearization (Ramamurthi et
al.,1993) or use of DAE (Albuquerque and Biegler, 1996).
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Types of Gross Errors

 .
0 Biases

0 Leaks (Model departures)
@ True outliers
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Hypothesis Testing

Global Test (Detection) : .
{Ho g (ERORrEp )1ty =0

H, @ gty (EyQpEx) ity # 0
Distribution : Chi — Squared
Nodal Test (Detection and Identification)

H,:nu =0
H :u #0
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v,

1

2
J(E:OED),
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Distribution : Normal

Maximum Power versions of this test were also developed. Rollins et al (1996)
proposed an intelligent combination of nodes technique
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Hypothesis Testing

Principal Component (Tong and Crowe, 1995)

W. :matrix of eigenvectors of (E,O,E})
A_:matrix of eigenvalues of (E,QE})

{HO W' =0

p =W'r p, ~N(0,1) H W' u #0

Distribution : Normal
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Hypothesis Testing

Measurement Test

~ H,:¢0. — 1. =0

ZLCT :fi _f;-+ { 0 ¢l fl

T o, Hy ¢ =J;#0
Distribution : Normal

This test 1s inadmissible. Under deterministic
conditions 1t may point to the wrong location.

RIS



Hypothesis Testing

Generalized Likelihood ratio

H,:u =0
{H | L i, =bAe,
Distribution : Chi — Squared
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[Leaks can also be tested.




Gross Error Detection 1n

Nonlinear Systems

+ Linearization

+ Estimates from solving the Nonlinear problem and the
usual tests.

+ Nonlinear GLR (Renganathan and Narasimhan, 1999)

OF'(no gross error assumed)

A =sup
i OF (ith gross error assumed)
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Multiple Error Detection

Serial Elimination
Apply recursively the test and eliminate the measurement

Serial Compensation

Apply recursively the test, determine the size of the gross
error and adjust the measurement

Serial Collective Compensation

Apply recursively the test, determine the sizes of all gross
error and adjust the measurements
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Multiple Error Detection

Unbiased Estimation
One shot collective information of all possible errors

followed by hypothesis testing. Bagajewicz and Jiang,
2000, proposed an MILP strategy based on this.

Two distributions approach

Assume that gross error have a distribution with larger

variance and use maximum likelthood methods
(Romagnoli et al., 1981) (Tjoa and Biegler, 1991) (Ragot
et al., 1992)

Multiscale Bayesian approach. Bakshi et al (2001).
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EQUIVALENCY THEORY

¢ EXACT LOCATION DETERMINATION IS NOT
ALWAYS POSSIBLE, REGARDLESS OF THE
METHOD USED.

¢ MANY SETS OF GROSS ERRORS ARE EQUIVALENT,
THAT IS, THEY HAVE THE SAME EFFECT IN DATA
RECONCILIATION WHEN THEY ARE COMPENSATED.
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BASIC EQUIVALENCIES

In a single unit a bias 1n an inlet stream 1s
equivalent to a bias 1n an output stream.

S1 S2

Case 2 |Reconciled data
Estimated bias

oA




BASIC EQUIVALENCIES

In a single unit a bias 1n a stream is equivalent to
a leak

S2

Reconciled data
Estimated bias/leak
Reconciled data
Estimated bias/leak
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EQUIVALENCY THEORY

S
S S, T s

T T

A

For the set A={S;, S,} a gross error in one of them can be alternatively
placed 1n the other without change in the result of the reconciliation. We
say that this set has Gross Error Cardinality 7{A4)=1. ONE GROSS
ERROR CAN REPRESENT ALL POSSIBLE GROSS ERRORS IN THE
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GROSS ERROR DETECTION

TWO SUCCESFUL IDENTIFICATIONS:

& Exact location

¢ Equivalent location

THIS MEANS THAT THE CONCEPT OF

POWER IN LINEAR DATA
RECONCILIATION SHOULD BE REVISITED
TO INCLUDE EQUIVALENCIES
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COMMERCIAL CODES

Package Nature Offered by
100 (Interactive Academic Louisiana State University
On-Line Opt.) (USA)
DATACON Commercial Simulation Sciences
(USA)
SIGMAFINE Commercial OSI
(USA)
VALI Commercial Belsim
(Belgium)
ADVISOR Commercial Aspentech
(USA)
MASSBAL Commercial Hyprotech
(Canada)
RECONCILER Commercial Resolution Integration
Solutions (USA)
PRODUCTION Commercial Honeywell
BALANCE (USA)
RECON Commercial Chemplant Technologies
(Czech Republic)

While the data
reconciliation in all these
packages is good, gross
error detection has not
caught with developments
in the last 10 years.

Global test and Serial
Elimination using the
measurement test seem to
be the gross error detection
and identification of
choice.



 INSTRUMENTATION UPGRADE |
 (The inverse engineering problem)

Given

Data Reconciliation (or other)
monitoring Objectives womee Wiguel ), Bagajemicz

Obtain:
Sensor Locations

(number and type)

e |




INSTRUMENTATION DESIGN

Minimize Cost (Investment + Maintenance)
S.t.
-Desired precision of estimates
-Desired gross error robustness
Detectability, Residual Precision, Resilience.

-Desired reliability/availability
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Design of Repairable Networks

EXAMPLE: Ammonia Plant

Table 3: Optimization results for the simplified ammonia process flowsheet

Repair | Measured | Instrument | Cost | Precision(%) Precision Availability
Rate Variables | Precision (S2) Availability(7) (S1)
(%) (S5) (52 (57)
(S5)
1| S1S4S5 [ 311132 |20402| 0.8067 0.9841 0.9021
S6 8758 1.2893 1.2937 0.9021
2 | S4S5S6 | 33131 |1699.8 | 0.9283 1.9712 0.9222
S7S8 1.9928 2.0086 0.9062
4 | S4sS5S6 | 33133 |16837| 12313 1.9712 0.9636
S7S8 1.9963 2.0086 0.9511
20 | S4S5S6 | 33133 |17752| 12313 1.9712 0.9983
S7S8 1.9963 2.0086 0.9969

m There is a minimum in cost as a function of the repair rate.
This allows the design of maintenance policies.




Upgrade consists of any combination of :

¢ Adding instrumentation.

¢ Replacing instruments.

¢ Relocating instruments (thermocouples,
' sampling places, etc).
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Upgrade

Example *Flowmeters 3%

* Thermocouples 2°F
T S6 Ss 7

g s g ¢ Reallocation and/or addition of
: : — et L > thermocouples as well as a

purchase of a new flowmeter
5 S9 S8 ° o o
f improve the precision of heat

transfer coefficients

Case | o} o oy o, o, o, ¢ | Reallocations New
1 ’ ’ l ’ ’ Instruments
1 |4.00] 4.00 | 4.00 | 3.2826 | 1.9254 | 2.2168 | 100 Ur 1, -
2 [2.00] 2.00 | 2.00 - - - - - -
3 1200 2.00 | 2.20 | 1.3891 | 1.5148 | 2.1935 | 3000 - T, Ts
4 1.50 | 1.50 | 2.20 | 1.3492 | 1.3664 | 2.1125 | 5250 - Fy, 1o Ts
5 1240 2.30 | 2.20 | 2.0587 | 1.8174 | 2.1938 | 1500 - Ts
6 [220] 1.80 | 2.40 | 1.7890 | 1.6827 | 2.2014 | 1600 Ur oo, Ts




[.atest Trends

+ Multiobjective Optimization (Narasimhan and Sen, 2001, Sanchez
i etal, 2000): Pareto optimal solutions (cost vs. precision of :
estimates are build)

+ Unconstrained Optimization (Bagajewicz 2002, Bagajewicz and
Markowski 2003): Reduce everything to cost, that is find the
economic value of precision and accuracy.
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FAULT DETECTION

Given the possible faults, design a sensor
network that will detect and differentiate the
faults.

¢ Bhushan and Rengaswami (2000, 2001)
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CHALLENGES

¢ Academic: Multiple Gross Error Identification
. Gross Errors for Nonlinear Systems.

Multiobjective Methods. Unconstrained Methods

& Industrial: Dynamic data reconciliation.

Gross Error Handling.

Sensor Upgrades
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CONCLUSIONS

Data Reconciliation 1s an academically mature field.

It 1s a must when parameter estimation (mainly for on-line

optimization) 1s desired.

Commercial codes are robust but lack of up to date gross

error detection/location techniques.

Instrumentation Upgrade methodologies have reach maturity

Industry understands the need for upgrading, but academic

efforts have not yet reached commercial status. They will, soon.
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