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Outline

• Modeling, Simulation and Sensitivity Analysis of Process

Operations as Hybrid Systems

• Global Dynamic Optimization of Hybrid Systems

• Examples



Hybrid Systems

• Hybrid systems exhibit both discrete state and continuous

state dynamics
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• Accurate dynamic models of process operations, e.g., start-ups

and shut-downs are best analyzed using hybrid systems



Modeling Process Operations

• Increasing need for efficient, safe and environmentally friendly

process operations

• How will these improvements in process operations be

achieved?

• Detailed physical models, and rigorous analysis and

optimization frameworks

• Continuous process dynamics familiar, but as perturbation

from steady-state becomes larger, discrete aspects become

more and more important too

• Hybrid Systems is the rigorous modeling paradigm for

process operations



Tank-Changeover Example
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• Objective: Minimize the time needed to change from a tank

full of methane to one full of oxygen



Tank-Changeover Example
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Tank-Changeover Example

• Controls: on/off signals to valves as a function of time

– infinite dimensional optimal control problem

• Control parameterization leads to the following:

– Initial positions of valves known

– Allow position to switch at finite number of switching times

– Continuous switching times decision variables in NLP

– Embeds optimal control if sufficient number of switches

allowed



Control parameterization
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Parametric Sensitivities of Dynamic Systems

Given a dynamic system expressed in terms of a vector of time

invariant parameters p:

ẋ(p, t) = f(x(p, t), p, t)

• then there exists a nx by np matrix of partial derivatives ∂x
∂p

determined by the related matrix differential equations:

∂ẋ

∂p
=
∂f

∂x

∂x

∂p
+
∂f

∂p

• extension to DAEs straightforward



Parametric Sensitivities of Hybrid Systems

• [Galán et al. (1999)]

• Existence and uniqueness for sensitivities of hybrid systems

embedded with:

– nonlinear ODEs

– linear time invariant DAEs

• In general, sensitivities of hybrid systems exist almost

everywhere

• Critical parameter values at which (for example) sequence of

events changes qualitatively

– theorems break down

– typically associated with discontinuity or

nondifferentiability in the objective function



Direct Stochastic Search
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Results from Stochastic Search
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Results from Stochastic search

Pressures
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Verification Problems
The direct stochastic search approach

• can deal with nonsmoothness in the master problem

• cannot guarantee the global minimum, can be computationally

expensive and can encounter difficulties with constraints

These methods cannot be used for problems where location of the global

minimum is crucial, e.g., formal verification of logic based controllers.

LSH
3

ZSH
1

HS
1

HV
1

ZSL
1

Tank A

LSH
4

ZSH
2

HS
2

HV
2

ZSL
2

Tank B

Feed Pump
HS
7

PSL
5

PSL
5

HS
7

LSH
3

HS
1

HS
1

HS
2

HS
2

LSH
4

HS
7

pump
on

Tank A
level high

start filling
Tank A

stop filling
Tank A

start filling
Tank B

stop filling
Tank B

Tank B
level high

pump
off

pump suct.
press. low

ZSH
1

ZSL
1

HV
1

HV
2

HV
1

HV
2

ZSH
2

ZSL
1

open
valve

valve
open

open
valve

valve
open

close
valve

valve
closed

close
valve

valve
closed

S

R

S

R

S

R

A

A

A

OR

OR

DI
5s

operate
pump

pump
stop



Other Approaches

• Discrete time horizon [Bemporad, Borrelli and Morari (2000)]

• Total discretization [Avraam, Shah and Pantelides (1998)]

• Partial discretization

– Solve directly as an NLP with hybrid system embedded

∗ Stochastic methods [Barton, Banga and Galán (2000)]

∗ Nonsmooth optimization methods

– Reformulation of problem as a global Mixed-Integer

Dynamic Optimization problem

• Two stage decomposition of switched systems [Xu and

Antsaklis (2001)]

• Reachability analysis of hybrid automata [Alur et al. (1995)],

[Shakernia, Pappas and Sastry (2000)]



DAEPACK and ABACUSS II

Software packages are available that can robustly handle simulation

and sensitivity analysis of hybrid systems:

• ABACUSS II / ABACUSS 3

– Advanced equation based modeling environment

– Features include robust sensitivity analysis, sparsity pattern

generation, interface to NLP solvers, etc.

• DAEPACK

– All structural symbolic and numerical information required

by modern algorithms for hybrid systems can be generated

automatically from a FORTRAN source file

– Works with very general code: functions, subroutines,

common blocks, iterative procedures, etc.

• Very easy to get qualitatively wrong sensitivities using

standard codes - must use our symbolic tools



Outline

• Modeling, Simulation and Sensitivity Analysis of Process

Operations as Hybrid Systems

– Hybrid systems framework is modeling paradigm for process
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Motivation

Problems that require the global minimum to be located motivate

the development of tools for the deterministic global optimization

of hybrid systems. A key tool is the ability to

• construct convex relaxations for general, nonlinear Bolza type

functions [Singer and Barton (2001)]:

F (p) = φ
(

ẋ(p, tf ),x(p, tf ),p
)

+

∫ tf

t0

f
(

ẋ(p, t),x(p, t),p, t
)

dt

where x(p, t) is given by the solution of an embedded dynamic

system described by linear time varying ODEs:

ẋ(p, t) = A(t)x(p, t) + B(t)p + q(t)

x(p, t0) = Ep + k

• this has recently been extended to nonlinear ODEs embedded



Hybrid Trajectories

The time horizon is split into contiguous intervals called epochs:

• Tµ, the sequence of modes, is called the hybrid mode trajectory

• Tτ , the sequence of epochs, is called the hybrid time trajectory

Epoch 1 Epoch 2 Epoch 3
t0 t1 t2 tf

t

ẋ = −2x + p ẋ = −2x + p

ẋ = x− 2p

Tµ = 1, 2, 1 Tτ = I1, I2, I3

I1 = [t0, t1] I2 = [t′1, t2] I3 = [t′2, tf ]

Mode 1 Mode 1

Mode 2



Classes of Hybrid Optimization Problems

• Tµ unchanged and vector field does not jump at events:

– parametric sensitivities continuous (no jumps)

– smooth Master NLP

• Tµ unchanged:

– parametric sensitivities discontinuous functions of time

– smooth Master NLP

• Tµ to be determined:

– nonsmooth nonconvex Master NLP

– decomposition approach - MIDO: Master problem searches

over different sequences



Convexity theory for fixed Tµ and Tτ

• With Tµ and Tτ fixed, convexity theory holds and convex

relaxations can be constructed.

• Well-known methods for obtaining convex relaxations on

Euclidean spaces can be employed, e.g., McCormick’s method,

αBB. For example:

F (p) =

∫ 1

0

−x2(p, t) dt

U(p) =

∫ 1

0

(xL(t) + xU (t))(xL(t)− x(p, t))− xL(t)2 dt

• This enables standard global optimization algorithms, such as

Branch and Bound, nonconvex Outer Approximation, etc., to

be applied.



Example

min
p∈[−4,4]

F (p) =

∫ 3

0

−x
2(p, t) dt,

where x(p, t) is given by the solution to the following hybrid system,

Mode 1 : ẋ(p, t) = −2tx(p, t) + p,

Mode 2 : ẋ(p, t) =
x(p, t) + p

t+ 10
,

x(p, 0) = 1, Tµ = {1, 2, 1}, and state continuity is enforced at t1 = 1,

t2 = 2.
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Varying Sequence of Modes

• Binary decision variables are introduced to represent the

sequence of modes:

min
p,y

F (p,y) =

∫ 5

0

−x2(p,y, t) dt,

s.t. y11 + y21 = 1, y12 + y22 = 1, y13 + y23 = 1,

where x(p,y, t) is given by the solution to the following hybrid system,

Mode 1 : ẋ(p,y, t) = y11(−2tx+ p) + y21

(

x+ p

t+ 10

)

,

Mode 2 : ẋ(p,y, t) = y12(−2tx+ p) + y23

(

x+ p

t+ 10

)

,

Mode 3 : ẋ(p,y, t) = y13(−2tx+ p) + y23

(

x+ p

t+ 10

)

,

x(p, 0) = 1,

p ∈ P = [−4, 4], y ∈ Y binary,

Tµ = 1, 2, 3 and state continuity is enforced at t1 = 1 and t2 = 2.



Hybrid Superstructure
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MIDO Reformulation

• Bilinear terms destroy LTV structure of hybrid system

• Introduce nm × ne dynamic LTV systems:

ẋmi(p,Z, t) = A(m)(t)xmi(p,Z, t) + B(m)(t)p + q(m)(t),

∀ m ∈M, i = 1, . . . , ne,

M is the set of nm modes, and ne is the total number of epochs

• Introduce nx × ne additional parameters to represent initial

conditions for each epoch:

z1 = E0p + k0,

zi = xmi(p,Z, t
′

i), ∀ m ∈M, i = 1, . . . , ne.

• Bilinearities shifted to constraints:

zi+1 = Di

(

nm
∑

m=1

ymixmi(p,Z, ti)

)

+Eip+ki, ∀ i = 1, . . . , ne−1.



MIDO Reformulation

• Reformulated problem is a MIDO with a set of LTV ODE

systems

• Using nonconvex OA, MIDO is solved as a nonconvex MINLP

• Ability to construct convex lower bounding MINLP is key,

resulting in the following subproblems in OA:

– Primal: noncovex NLP, provides upper bound

– Primal Bounding: convex NLP, potentially reduces number

of primal problems to solve

– Relaxed Master: MILP, provides lower bound



Nonconvex Outer Approximation

[Kesavan and Barton (1999)]
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Solving the MIDO

• Exact linearizations can be obtained for bilinear/trilinear

constraints introduced in the reformulation

• Additional linearizations in the relaxed Master problem only

have to be constructed for nonlinear terms in the objective

function and constraints

• Mode assignment constraints constitute S0S1 sets and can be

exploited when solving the relaxed Master problem

• It suffices to add only linearizations of the active constraints in

the primal bounding problem to the relaxed Master problem -

not all nm × ne sets of dynamic systems have to be solved
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Operations as Hybrid Systems

– Hybrid systems framework is modeling paradigm for process
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optimization methods

• Global Dynamic Optimization of Hybrid Systems

– Construct convex relaxations for LTV ODE hybrid system
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Catalyst Loading Problem

• Given

– an isothermal PFR at steady state,

– 2 loading bays,

– 3 possible kinds of catalyst on support,

l = 0 l = 1

Isothermal, steady state PFR

Section 1 Section 2

determine the optimal catalyst loading profile for the PFR that

will maximize the profit.

• This can be viewed as an optimization problem with a hybrid

system embedded.

• Optimal Tµ corresponds to the optimal choice of catalyst

loading.



Catalyst Loading Problem

Reaction scheme Kinetics

A + B I P

W1 W2

1 3

2 4

ẋA = −(k1 + k2)xA

ẋW1
= k2xA

ẋI = k1xA − (k3 + k4)xI

ẋW2
= k4xI

ẋP = k3xI

ẋB = −(k1 + k2)xB

l = 0 l = 1
Isothermal, steady state PFR

Section 1 Section 2



Catalyst Loading Problem

Catalyst

1

2

3

2.098 1.317 0.021 0.033

29.53 110.2 0.295 0.079

182.6 2325 1.826 0.143

k1 k2 k3 k4

1

2

3

1.594 0.627

0.268 3.728

0.079 12.729

k1/k2 k3/k4

xA(0) = 1000 xP(1)− 0.01xW1
(1)− 0.1xW2

(1)

max xP(1)− 0.01xW1
(1)− 0.1xW2

(1)

Tµ = 1, 3 F = 290.4

Tµ

Section 1 Section 2

• For 10 catalyst sections, we get Tµ = 1, 1, 1, 1, 3, 3, 3, 3, 3, 3 with

F = 296.5



Batch Reaction and Distillation

• Building on the previous example, we consider a batch reaction

and distillation problem:

R1 R2

F1 F2 D2D1

Raw Material
Product and By-Product

• The objective is to minimize raw material and waste treatment

costs while maintaining a desired level of production of product.

• Amount of raw material, recycle flows, and choice of catalyst

are optimization variables. Each reactor’s run is for 1.5h.



Batch Reaction and Distillation

• Components B, W1 and P form a ternary and 2 binary

azeotropes:

Azeotrope Composition
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1 : { A, W1-P, W1, I, B-W1, W2 } 4 : { B, A, B-W1-P, I, P, W2 }

5 : { A, W1-P, B-W1-P, I, P, W2 }2 : { A, W1-P, B-W1-P, I, B-W1, W2 }

3 : { B, A, B-W1-P, I, B-W1, W2 }



Batch Reaction and Distillation

• Process constraints:

– molar solvent to reactant ratio (B, W1, W2 : A, I) ≥ 15

– at least 2 times B in excess of A

– 99% pure P

• Optimal solution: (Cost of $5.061M to produce 300 kmol P)

R1 R2

F1 F2 D2D1

894.2 A 1680.0 B

5.4 A8107.2 B-W1

540.5 I 1458.3 B-W1-P

445.2 B-W1

59.9 W2

20.0 W1-P

875.0 B-W1-P

280.0 P

R1: Catalyst 3

R2: Catalyst 1

D1: Region 1

D1: Region 4

4634.3 W1



Batch Reaction and Distillation

• Postulating a superstructure with 4 trains:

R1
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Product
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Fixed Points



Batch Reaction and Distillation

• Optimal solution: (Cost of $1.905M to produce 300 kmol P)

R1

R2

F1

F2
D2

D1

1565.0 B-W1

3.2 A

205.7 W1

12.9 W2

280.0P

20.0 W1-P

22.6 W2

6061.1 W1

311.4 I

17.1 I
8.8 P
4928.2 W2

Catalyst 3

Catalyst 1 Region 1
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541.2 A

541.2 B



Conclusion

• Modeling, Simulation and Sensitivity Analysis of Process

Operations as Hybrid Systems

– Hybrid systems framework is modeling paradigm for process

operations

– Interesting problems motivate development of global

optimization methods

• Global Dynamic Optimization of Hybrid Systems

– Construct convex relaxations for LTV ODE hybrid system

with Tµ and Tτ fixed

– Reformulation into MIDO when Tµ is optimization

parameter

• Examples

– Catalyst loading problem

– Batch reaction and distillation problem



Future Work

• Varying Tτ

• Development of convexity theory for nonlinear dynamic

systems (done)

• Extension of results for nonlinear hybrid systems
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