

Opportunities & Challenges for Research Collaboration Between Academia and Industry

Christodoulos A. Floudas Department of Chemical Engineering Princeton University

FOCAPO 2003 January 12-15, Coral Springs, Florida **Princeton** University

Princeton University – ATOFINA Chemicals, Inc. Collaboration Roadmap Time

- - Novel continuous-time formulations for short-term scheduling lerapetritou and Floudas, 1998a,b; lerapetritou, Hené and Floudas, 1999.
 - Spring 1999 Short-term scheduling: "Proof of Concept"
 - Professor Christodoulos A. Floudas, Xiaoxia Lin
 - Dr. Nikola Juhasz
 - Early success: project presented to the Board of Directors
 - January 2000 Medium-term scheduling
 - Theoretical framework
 - Computational studies
 - Implementation \rightarrow PlantScheduling
 - January 2001 Beta-testing of PlantScheduling
 - Sweta Modi
 - **Fall 2001 On-site application of PlantScheduling**
 - **Ronald Sanders**
 - **Reactive scheduling** Fall 2002

ATOFINA Plant

- Five categories, near 60 different products
- Basic operations: Operation 1, Operation 2, and Operation 3
- Units: four Type 1 units (batch), three Type 2 units (continuous) and three Type 3 units (batch)
- Scheduling horizon: ~ one month
- Unlimited storage capacity
- Given:
 - processing sequences
 - unit capacities, suitabilities, processing times/rates
 - inventory of products and intermediate materials
 - demands: amount, due date and customer priority
- **Objective:** generate optimal schedules

Process Alternatives

State-Task Network (STN) representation (Kondili et al., 1993)

$$(F) \rightarrow Operation 1 \rightarrow (1) \rightarrow Operation 2 \rightarrow (2) \rightarrow Operation 3 \rightarrow (P)$$

$$(F) \rightarrow Operation 1 \rightarrow (1) \rightarrow Pre-Operation 3 \rightarrow (2) \rightarrow Operation 2 \rightarrow (13)$$

$$(F) \rightarrow Operation 1 \rightarrow (1) \rightarrow Operation 3 \rightarrow (P)$$

$$(F) \rightarrow Operation 1 \rightarrow (1) \rightarrow Operation 2 \rightarrow (12) \rightarrow Operation 3 \rightarrow (P)$$

$$(F) \rightarrow Operation 1 \rightarrow (1) \rightarrow Operation 2 \rightarrow (12) \rightarrow Operation 3 \rightarrow (P)$$

$$(F) \rightarrow Operation 1 \rightarrow (1) \rightarrow Operation 2 \rightarrow (P)$$

0.5

12)

... ...

Operation1→(

Novel Continuous-Time Mathematical Formulations for Process Scheduling

Ierapetritou and Floudas (1998a,b); Ierapetritou, Hené and Floudas (1999) Lin and Floudas (2001); Lin, Floudas, Modi, and Juhasz (2002) Lin, Chajakis and Floudas (2003)

- Continuous-time representation
- Original concept of event points (beginning of a task or utilization of a unit) and formulation of special timing constraints
- Variable (batch-size dependent) processing times
- General batch, continuous and semi-continuous processes
- Demands with intermediate due dates
- Mixed-Integer Linear Programming (MILP)
- Lead to smaller size models in terms of the number of binary variables; require less computational effort; give better solutions compared to previous approaches

Initial Study: Proof of Concept

- Short-term scheduling on weekly basis
- Case study I
- Collect data on process operations
- Model formulation
- Interactions between Princeton University and ATOFINA Chemicals, Inc.
 - Visits to plant (many times), discussions with plant personnel (plant manager, demand manager, scheduler, etc.)
 - Collaborator: Dr. Nikola Juhasz
- Early success
 - Effective modeling and optimization
 - Increase of unit utilization and demand satisfaction level
- Leads to further full-scale collaboration

Spring 1999

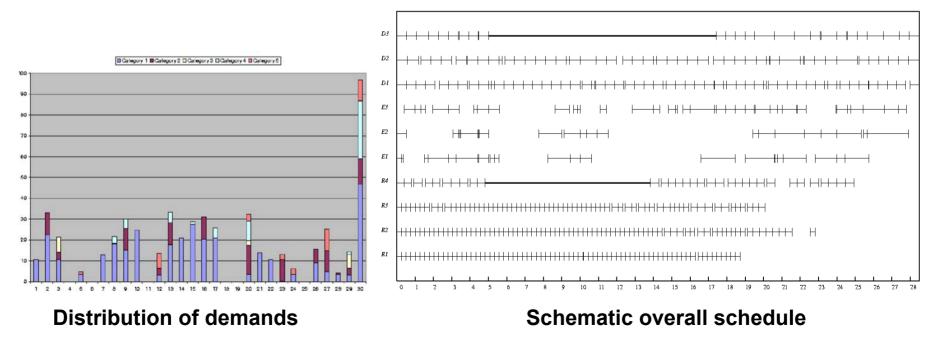
Development of Theoretical Framework

- Medium-Term Scheduling on monthly basis
- **Decomposition framework** rolling time horizon approach

January 2000

- Two-level decomposition model
- Effective short-term scheduling model
- Validation of data and model

Princeton University


- Incorporation of additional considerations
 - Campaign mode production
 - Grouping of black/non-black products
- Interactions between Princeton University and ATOFINA Chemicals, Inc.
 - Explain methodology and computational study results
 - Obtain feedback

Computational Studies

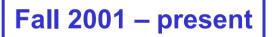
January 2000

- Case Study 2: 36 products, 30 days
- Effectiveness of overall methodology demonstrated
 - Increased overall production and demand fulfillment
 - Efficient unit utilization
 - Identification of production bottleneck

Implementation: Integrated Software System

- Six main functional modules
 - Data manipulation
 - Campaign-mode production scheduling
 - Decomposition
 - Short-term scheduling
 - Results output
 - Reactive scheduling

- Graphical user interface implementation
 - Developed in extensive Visual Basic
 - Database support Microsoft Access
 - MILP model formulation MINOPT (Schweiger and Floudas, 1998)
 - MILP model solution CPLEX


May 2000

- Extensive beta-testing: 9 months
 - Sweta Modi

Princeton University

- Close interactions
- Constructive feedback and suggestions
- Used by actual scheduler
 - Ronald Sanders
 - Requires intensive tutorials
 - Model generated schedules used to guide actual production
- Reactive scheduling
 - Unit shut-downs
 - Demand changes

January 2001

Fall 2002 – present

Challenges

- Understand the real operational problem
 - Collection of data
 - Model the process and remodel (many times)
 - Establish good interactions
 - Dr. Nikola Juhasz; Sweta Modi
 - Support from the schedulers and the plant management
 - work together
- Help scheduler understand the methodology
 - ⇒ Short-term scheduling
 - ⇒ Medium-term scheduling
 - \Rightarrow Reactive scheduling

Challenges (cont'd)

- Incorporate special types of constraints
 - Consecutive batches in reactor
 - Black/natural products grouping
 - Campaign-mode production
- Develop fully customized graphical user interface
 - User friendly
- Validation: 18 months of beta-testing
 - Sweta Modi (9 months)
 - Ronald Sanders (15 months)
- Changes in industrial personell in the middle of the project
 Sweta Modi ⇒ Ronald Sanders

Opportunities

- New approach for short-term scheduling (Academic)
- Opportunities for Princeton University :
 - Real industrial applications \Rightarrow Further new developments
 - Medium-term scheduling
 - Reactive scheduling
 - Funding to Princeton University
 - Potential impact

Opportunities for ATOFINA Chemicals, Inc. :

- Introduce new state of the art technology
- Increase productivity
- Experience gained for development: general processes

COSMOS

(COntinuous-time Scheduling of Manufacturing OperationS)

Conclusions

Collaboration between

Princeton University and ATOFINA Chemicals, Inc

- Production scheduling of a multiproduct polymer plant
- Initial study ("proof of concept") \rightarrow theoretical developments and computational studies \rightarrow software development
 - \rightarrow beta-testing and on-site application
- Challenges during the collaboration process
 - Understanding and collection of data
 - Development of customized software
 - Validation of data, model and overall methodology
- Opportunities
 - Benefits for Princeton University
 - Benefits for ATOFINA Chemicals, Inc.
 - General processes development: COSMOS