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Mathematical Programming

Some material courtesy of Bob Bixby
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Linear Programming

Minimize   cTx
Subject to Ax = b

l ≤≤≤≤ x ≤≤≤≤ u

Objective 
Function

Constraints

Decision 
Variables

Lower 
Bounds

Upper 
Bounds

Mathematical Programs



5

Linear Programming

Minimize   cTx
Subject to Ax = b

l ≤≤≤≤ x ≤≤≤≤ u

(LP)

Maximize
x1 + 2 x2 + 3 x3

Subject To
- x1 +   x2 + x3 ≤≤≤≤ 20
x1 - 3 x2 + x3 ≤≤≤≤ 30

0 ≤≤≤≤ x1 ≤≤≤≤ 40
x2, x3 ≥≥≥≥ 0

Mathematical Programs
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Linear Programming

! George Dantzig, 1947
! Introduces LP and recognized it as more than a 

conceptual tool:  Computing answer important.
! Invented “primal” simplex algorithm.
! First LP solved:  Laderman, 9 cons., 77 vars., 120 

MAN-DAYS.
! What is the single most important event in LP 

since Dantzig?  
! We have (since ~1990) 3 algorithms to solve LPs

" Primal Simplex Algorithm (Dantzig, 1947)
" Dual Simplex Algorithm (Lemke, 1954)
" Barrier Algorithm (Karmarkar, 1984 and others)

Mathematical Programs
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PDS Models
“Patient Distribution System”:  Carolan, Hill, Kennington, Niemi, Wichmann, An 

empirical evaluation of the KORBX algorithms for military airlift applications, 
Operations Research 38 (1990), pp. 240-248

MODEL   ROWS
pds02 2953
pds06 9881
pds10 16558
pds20 33874
pds30  49944
pds40  66844   
pds50  83060
pds60  99431
pds70 114944

CPLEX1.0
1988
0.4      
26.4      
208.9     
5268.8    
15891.9   
58920.3   
122195.9   
205798.3   
335292.1 

CPLEX5.0 
1997
0.1      
2.4    
13.0      
232.6     
1154.9     
2816.8     
8510.9    
7442.6    
21120.4

CPLEX8.0  
2002
0.1      
0.9     
2.6     
20.9    
39.1    
79.3    
114.6   
160.5   
197.8 

SPEEDUP
1.0####8.0

4.0
29.3
80.3   
247.3
406.4
743.0
1066.3
1282.2
1695.1 

Primal
Simplex

Dual
Simplex

Dual
Simplex

Linear Programming
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Not just faster -- Growth with size:
Quadratic then  & Linear now !
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The same methodology was applied throughout.

Linear Programming

BIG TEST: The testing methodology

! Not possible for one test to cover 10+ years:  
Combined several tests.

! The biggest single test:
! Assembled 680 real LPs (up to 7 million consts.)
! Test runs:  Using a time limit (4 days per LP), two 

chosen methods would be compared as follows:
" Run method 1:  Generate 680 solve times
" Run method 2:  Generate 680 solve times
" Compute 680 ratios and form GEOMETRIC MEAN (not 

arithmetic mean!)
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Progress: 1988 – Present
! Algorithms

! Best simplex 960x
! Best simplex + barrier 2360x

! Machines
! Simplex algorithms 800x
! Barrier algorithms 13000x

Linear Programming



11

Algorithm comparison:  Extracted 
from the previous results …

! Dual simplex vs. primal: Dual 2x faster
! Best simplex vs. barrier: About even
! Best of three vs. primal:  Best 7.5x faster

Linear Programming
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Maximize  x1 + 2 x2 + 3 x3 + x4
Subject To

- x1 +   x2 + x3 + 10 x4  ≤≤≤≤ 20
x1 - 3 x2 + x3          ≤≤≤≤ 30

x2      - 3.5 x4 = 0

0 ≤≤≤≤ x1 ≤≤≤≤ 40   x2, x3 ≥≥≥≥ 0
2 ≤≤≤≤ x4 ≤≤≤≤ 3
x4  integer

(MIP)

Mixed Integer Programming

Minimize   cTx
Subject to Ax = b

l ≤≤≤≤ x ≤≤≤≤ u
Some x are integer

Mixed Integer Programming
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Computational History: 1950 –1998
! 1954 Dantzig, Fulkerson, S. 

Johnson:  42 city TSP
! Solved to optimality using 

cutting planes and LP
! 1957 Gomory

! Cutting plane algorithm:  A 
complete solution

! 1960 Land, Doig, 1965 
Dakin
! Branch-and-bound (B&B)

! 1971 MPSX/370, Benichou 
et al.

! 1972 UMPIRE, Forrest, 
Hirst, Tomlin (Beale)

! 1972 – 1998  Good B&B 
remained the state-of-the-
art in commercial codes, in 
spite of
! 1973 Padberg
! 1974 Balas (disjunctive 

programming)
! 1983 Crowder, Johnson,

Padberg: PIPX, pure 0/1 
MIP

! 1987 Van Roy and Wolsey: 
MPSARX, mixed 0/1 MIP

! Grötschel, Padberg, Rinaldi
…TSP (120, 666, 2392 city 
models solved)

Mixed Integer Programming
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Mixed Integer Programming

1998…  A new generation of MIP codes

! Linear programming
! Stable, robust dual simplex

! Variable/node selection
! Influenced by traveling 

salesman problem

! Primal heuristics 
! 8 different tried at root 
! Retried based upon success

! Node presolve
! Fast, incremental bound 

strengthening (very similar 
to Constraint Programming)

! Presolve – numerous 
small ideas
! Probing in constraints:  
! ∑ xj  ≤ (∑ uj) y,  y = 0/1
! $ xj ≤ ujy (for all j)

! Cutting planes
! Gomory, knapsack 

covers, flow covers, mix-
integer rounding, cliques, 
GUB covers, implied 
bounds, path cuts, 
disjunctive cuts

! Various extensions
" Aggregation 
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Computational Results I:  964 models
(30 hour time limit)
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8%
5%

0%

20%

40%

60%

80%

100%

CPLEX 8.0
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Mixed Integer Programming
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Computational Results II:  651 models 
(all solvable to optimality)

! Ran for 30 hours using defaults
! Relative speedups:

! All models (651): 12x
! CPLEX 5.0 > 1 second (447): 41x
! CPLEX 5.0 > 10 seconds   (362): 87x
! CPLEX 5.0 > 100 seconds (281): 171x

Mixed Integer Programming
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Mathematical Programming

Summary of Progress

! Through a combination of advances in algorithms and 
computing machines, combined with developments in 
data availability and modern modeling languages, what 
is possible today could only have been dreamed of 
even 10 years ago.

! The result is that whole new application domains have 
been enabled
! Larger, more accurate models and multiple scenarios
! Tactical and day-of-operations are possible, not just planning
! Disparate components of the extended enterprise can now be 

“optimized” in concert. 
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Constraint Programming



19

Problem Definition

! Minimize (or maximize) an Objective Function
! Subject to Constraints
! Over a set of values of Decision Variables

! Usual Requirements
! Objective function and constraints have closed 

mathematical forms (linear, quadratic, nonlinear, 
etc.)

! Decision variables are real or integer-valued
" Each variable takes values over an interval

Mathematical Programming
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Mathematical Programming

Problem Types

! Linear Program
! (Mixed) Integer Program
! Quadratic Program
! Nonlinear Program
! ...

A program is a problem



21

Constraint Programming

Computer Programming

! Knuth, 1968, The Art of Computer 
Programming
! “An expression of a computational method in a 

computer language is called a program.”
! Programming Paradigms

! Procedural Programming
! Object-oriented Programming
! Functional Programming
! Logic Programming
! ....
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Definition

! A computer programming methodology
! Solves

! Constraint satisfaction problems
! Combinatorial optimization problems

! Methodology
! Represent a model of a problem in a computer 

programming language
! Describe a search strategy for solving the problem 

Constraint Programming
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Constraint Satisfaction Problems

! Find a Feasible Solution
! Subject to Constraints
! Over a set of values of Decision Variables

! Usual Requirements
! Constraints are easy to evaluate

" Closed mathematical forms or table lookups

! Decision variables are values over a discrete set

Constraint Programming
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Combinatorial Optimization Problems

! Minimize (or maximize) an Objective Function
! Subject to Constraints
! Over a set of values of Decision Variables

! Usual Requirements
! Objective Function and Constraints are easy to 

evaluate
" Closed mathematical forms or table lookups

! Decision variables are values over a discrete set

Constraint Programming
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What is a potential representation?

! Let x1, x2 ,..., xn be the decision variables

! Each xj (j = 1, 2, ..., n) has a domain Dj of allowable 
values
! Note that a domain may be finite or infinite

! A domain may have “holes” (e.g., even numbers between 0 
and 100)

! The allowable values could be elements of a particular set

! A constraint is a function f
f (x1, x2 ,..., xn ) ∈ {0, 1}

! The function may just be a table of values!

Constraint Programming



26

Constraint Satisfaction Problem

! A constraint satisfaction problem is 
Find values of x1, x2 ,..., xn such that

xj ∈ Dj (j = 1, 2,..., n)
fk (x1, x2 ,..., xn ) = 1  (k=1,...,m)

! A solution of this problem is any set of values 
satisfying the above conditions

(CSP)

Constraint Programming
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Constraint Programming

Optimization Problem

! Suppose you have an objective function
g (x1, x2 , ..., xn )

that you wish to minimize.
! Optimization Problem is then

minimize g (x1, x2 , ..., xn )
subject to

xj ∈ Dj (j = 1, 2,..., n)
fk (x1, x2 ,..., xn ) = 1  (k=1,...,m)
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Constraint Programming

Examples of Constraints

! Logical constraints
! If x is equal to 4, then y is equal to 5
! Either "Activity a" precedes "Activity B" OR "Activity B" precedes 

"Activity A"

! Global constraints
! All of the values in the array x are different
! Element i of the array card is the number of times that the ith

element of the array value appears in the array base

! Meta constraints
! The number of times that the array x has the value 5 is exactly 3

! Element constraint
! The cost of assigning person i to job j is cost[job[i]], when 

job[i] is j
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Constraint Programming Provides:

! A modeling methodology for stating decision 
variables, constraints, and objective functions

! A programming language for stating a search 
algorithm for finding values of the variables 
that satisfy the constraints and optimize the 
objective

! A programming system that includes
! Predefined constraints with powerful filtering 

algorithms for reducing the size of the search 
space

! Functionality to allow definitions of new constraints 
and filtering algorithms

Constraint Programming
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Examples of Constraints

! Logical constraints
! (x = 4) => (y = 5)

! (a.end <= b.start) \/ (b.end <= a.start)

! Global constraints
! alldifferent(x)

! distribute(card,value,base)

" card[i] is the number of times value[i] appears in base

! Meta constraints
! sum (i in S) (x[i] < 5) = 3;

! Element constraint
! z = y[x[i]]

Constraint Programming
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! Have a list of countries

! Have a set of colors to use on a map to color 
the countries

! Want to decide how to assign the colors to the 
countries so that no two bordering countries 
have the same color

enum Country {Belgium,Denmark,France,Germany,
Netherlands,Luxembourg};

enum Colors {blue,red,yellow,gray};

var Colors color[Country];

The decision variables 
are values from a set

Map Coloring Example

Example
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enum Country {Belgium,Denmark,France,Germany,
Netherlands,Luxembourg};

enum Colors {blue,red,yellow,gray};

var Colors color[Country];

solve {

color[France] <> color[Belgium];
color[France] <> color[Luxembourg];
color[France] <> color[Germany];
color[Luxembourg] <> color[Germany];
color[Luxembourg] <> color[Belgium];
color[Belgium] <> color[Netherlands];
color[Belgium] <> color[Germany];
color[Germany] <> color[Netherlands];
color[Germany] <> color[Denmark];

};

Find all Solutions

Constraints

Data

Decision
Variables

Constraint Programming Model

Example
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Constraint Satisfaction
enum Country {Belgium,Denmark,France,Germany,

Netherlands,Luxembourg};
enum Colors {blue,red,yellow,gray};

var Colors color[Country];

solve {

color[France] <> color[Belgium];
color[France] <> color[Luxembourg];
color[France] <> color[Germany];
color[Luxembourg] <> color[Germany];
color[Luxembourg] <> color[Belgium];
color[Belgium] <> color[Netherlands];
color[Belgium] <> color[Germany];
color[Germany] <> color[Netherlands];
color[Germany] <> color[Denmark];

};

Example
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Constraint Satisfaction
enum Country {Belgium,Denmark,France,Germany,

Netherlands,Luxembourg};
enum Colors {blue,red,yellow,gray};
var Colors color[Country];

solve {
color[France] <> color[Belgium];
color[France] <> color[Luxembourg];
color[France] <> color[Germany];
color[Luxembourg] <> color[Germany];
color[Luxembourg] <> color[Belgium];
color[Belgium] <> color[Netherlands];
color[Belgium] <> color[Germany];
color[Germany] <> color[Netherlands];
color[Germany] <> color[Denmark];

};

Example
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Optimization
enum Country {Belgium,Denmark,France,Germany,

Netherlands,Luxembourg};
enum Colors {blue,red,yellow,gray};
var Colors color[Country];

solve {
color[France] <> color[Belgium];
color[France] <> color[Luxembourg];
color[France] <> color[Germany];
color[Luxembourg] <> color[Germany];
color[Luxembourg] <> color[Belgium];
color[Belgium] <> color[Netherlands];
color[Belgium] <> color[Germany];
color[Germany] <> color[Netherlands];
color[Germany] <> color[Denmark];

};

var int colorcount[Colors] in 0..card(Country);
maximize colorcount[yellow]
subject to {

forall (i in Colors) 
colorcount[i] = sum(j in Country) (color[j] = i);  

Example
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Problem Description

! From Bradley, Hax, Magnanti, Applied 
Mathematical Programming, Chapter 9, 
Exercise 24
! Custom Pilot Chemical Company is a chemical manufacturer that produces 

batches of specialty chemicals to order.  Principal equipment consists of 
eight interchangable reactor vessels, five interchangeable distillation 
columns, four large interchangeable centrifuges, and a network of switchable 
piping and storage tanks.  Customer demand comes in the form of orders for 
batches of one or more specialty chemicals, normally to be delivered 
simultaneously for further use by the customer.

! An order consists of a set of jobs.  Each job has an optional precedence 
requirement, arrival week of the job, duration of the job in weeks, the week 
that the job is due, the number of reactors required, distillation columns 
required, and centrifuges required.

! Find a schedule of the orders and jobs to minimize the completion time of all 
orders

Production Scheduling
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Problem Data

Order 
Number

Job 
number

Precedence 
relations

Arrival 
Week

Duration 
in weeks

Week 
due Reactors

Distillation 
columns

Centri-
fuges

AK14 1 None 15 4 22 5 3 2
2 1 15 3 22 0 1 1
3 None 15 3 22 2 0 2

AK15 1 None 16 3 23 1 1 1
2 None 16 2 23 2 0 0
3 1 16 2 23 2 2 0

AK16 1 None 17 5 23 2 1 1
2 None 17 1 23 1 3 0

Resource requirements

Production Scheduling
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Data input
struct JobIndex {

string ordernumber;
int jobnum;

};
struct JobInfo {

int jobprec;
int arrival;
int duration;
int weekdue;
int reactors;
int columns;
int centrifuges;

};
struct JobData {

JobIndex ind;
JobInfo  info;

};

setof(JobData) jobs = ...;

jobs =
{
< < "AK14", 1 >, < 0, 15, 4, 22, 5, 3, 2 > >,
< < "AK14", 2 >, < 1, 15, 3, 22, 0, 1, 1 > >,
< < "AK14", 3 >, < 0, 15, 3, 22, 2, 0, 2 > >,
< < "AK15", 1 >, < 0, 16, 3, 23, 1, 1, 1 > >,
< < "AK15", 2 >, < 0, 16, 2, 23, 2, 0, 0 > >,
< < "AK15", 3 >, < 1, 16, 2, 23, 2, 2, 0 > >,
< < "AK16", 1 >, < 0, 17, 5, 23, 2, 1, 1 > >,
< < "AK16", 2 >, < 0, 17, 1, 23, 1, 3, 0 > >
};

Production Scheduling
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Data organization
setof(JobIndex) joblist = { i | <i,j> in jobs };

assert ( card(joblist) = card(jobs) );

JobInfo datarray[joblist];
initialize {

forall (j in jobs)  
datarray[j.ind] = j.info;

};

int reactors = ...;
int columns = ...;
int centrifuges = ...;

datarray[<"AK14", 1>] = < 0, 15, 4, 22, 5, 3, 2 >
datarray[<"AK14", 2>] = < 1, 15, 3, 22, 0, 1, 1 >
datarray[<"AK14", 3>] = < 0, 15, 3, 22, 2, 0, 2 >
datarray[<"AK15", 1>] = < 0, 16, 3, 23, 1, 1, 1 >
datarray[<"AK15", 2>] = < 0, 16, 2, 23, 2, 0, 0 >
datarray[<"AK15", 3>] = < 1, 16, 2, 23, 2, 2, 0 >
datarray[<"AK16", 1>] = < 0, 17, 5, 23, 2, 1, 1 >
datarray[<"AK16", 2>] = < 0, 17, 1, 23, 1, 3, 0 >

reactors = 8;
columns = 5;
centrifuges = 4;

Production Scheduling
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Model
scheduleOrigin = min(j in jobs) j.info.arrival;
scheduleHorizon = max(j in jobs) j.info.weekdue;

Activity makespan(0);
Activity a[j in joblist](datarray[j].duration);
DiscreteResource Reactors(reactors);
DiscreteResource Columns(columns);
DiscreteResource Centrifuges(centrifuges);

minimize makespan.end
subject to
{

forall (j in joblist) {
a[j] precedes makespan;
if (datarray[j].jobprec > 0) then

a[<j.ordernumber,datarray[j].jobprec>] precedes a[j]
endif;
a[j] requires(datarray[j].reactors) Reactors;
a[j] requires(datarray[j].columns) Columns;
a[j] requires(datarray[j].centrifuges) Centrifuges;
a[j].start >= datarray[j].arrival;
a[j].end <= datarray[j].weekdue;

};
};

Production Scheduling
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Solution for activities
Optimal Solution with Objective Value: 22
makespan = [22 -- 0 --> 22]
a[#<ordernumber:"AK14",jobnum:1>#] = [15 -- 4 --> 19]
a[#<ordernumber:"AK14",jobnum:2>#] = [19 -- 3 --> 22]
a[#<ordernumber:"AK14",jobnum:3>#] = [19 -- 3 --> 22]
a[#<ordernumber:"AK15",jobnum:1>#] = [16 -- 3 --> 19]
a[#<ordernumber:"AK15",jobnum:2>#] = [19 -- 2 --> 21]
a[#<ordernumber:"AK15",jobnum:3>#] = [19 -- 2 --> 21]
a[#<ordernumber:"AK16",jobnum:1>#] = [17 -- 5 --> 22]
a[#<ordernumber:"AK16",jobnum:2>#] = [21 -- 1 --> 22]

Production Scheduling
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Resource allocation (text)
Reactors = Discrete Resource
required by a[#<ordernumber:"AK16",jobnum:2>#] over [21,22]  in capacity 1
required by a[#<ordernumber:"AK16",jobnum:1>#] over [17,22]  in capacity 2
required by a[#<ordernumber:"AK15",jobnum:3>#] over [19,21]  in capacity 2
required by a[#<ordernumber:"AK15",jobnum:2>#] over [19,21]  in capacity 2
required by a[#<ordernumber:"AK15",jobnum:1>#] over [16,19]  in capacity 1
required by a[#<ordernumber:"AK14",jobnum:3>#] over [19,22]  in capacity 2
required by a[#<ordernumber:"AK14",jobnum:1>#] over [15,19]  in capacity 5

Columns = Discrete Resource
required by a[#<ordernumber:"AK16",jobnum:2>#] over [21,22]  in capacity 3
required by a[#<ordernumber:"AK16",jobnum:1>#] over [17,22]  in capacity 1
required by a[#<ordernumber:"AK15",jobnum:3>#] over [19,21]  in capacity 2
required by a[#<ordernumber:"AK15",jobnum:1>#] over [16,19]  in capacity 1
required by a[#<ordernumber:"AK14",jobnum:2>#] over [19,22]  in capacity 1
required by a[#<ordernumber:"AK14",jobnum:1>#] over [15,19]  in capacity 3

Centrifuges = Discrete Resource
required by a[#<ordernumber:"AK16",jobnum:1>#] over [17,22]  in capacity 1
required by a[#<ordernumber:"AK15",jobnum:1>#] over [16,19]  in capacity 1
required by a[#<ordernumber:"AK14",jobnum:3>#] over [19,22]  in capacity 2
required by a[#<ordernumber:"AK14",jobnum:2>#] over [19,22]  in capacity 1
required by a[#<ordernumber:"AK14",jobnum:1>#] over [15,19]  in capacity 2

Production Scheduling



43

Resource allocation (graphs)

Production Scheduling
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Which is BETTER????

! It depends upon the data
! It depends on the search strategy
! It depends on the combinatorial nature of the 

problem

! For general applications, you need tools that 
allow you to try both methodologies!

Comparing CP and MP



45

What is a solution?

! Linear programs and integer programs always 
have objective functions

! A constraint satisfaction problem may simply 
be a feasibility problem
! It may have many possible solutions!

! People in constraint programming say that 
they have a “solution” when people in 
mathematical programming would say they 
have a “feasible solution”

Comparing CP and MP
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Vocabulary Differences

Mathematical Programming Constraint Programming
Feasible Solution Solution
Optimal Solution Optimized Solution
Decision Variable Constrained Variable
Fixed Variable Bound Variable
Bound Strengthening Domain Reduction (a superset)
Iterative Presolve Constraint Propagation

Comparing CP and MP
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Constraint Programming 
Successes
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! Centralized Vehicle Scheduler: for vehicle 
production

! Results: Competitive advantage & savings
! 10-20% improvement in purge rates
! Increased production by 4,000 cars/year/plant
! Estimated savings of $27 million annually

DaimlerChrysler
Optimization Successes
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! Loan Arranger:  Searches for loan that best 
meets each customer’s requirements

! Results: Competitive advantage & savings
! 4 x increase in monthly loan volume
! 15% increase in average loan size
! Reduced “time to funding” from 21 to 8 days
! Reduced underwriting costs by 78%

First Union

Optimization Successes
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SNCF Railways

! Rolling Stock Maintenance Operations
! Schedule Operations Efficiently
! Save 10% of 2,000 maintenance workers

Optimization Successes
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Nissan (UK)

! Challenge: Build 3rd car model with 2 existing 
production lines

! Results: Europe’s already most efficient car 
production facility is even more productive
! No need to add any new production line and no 

significant investment needed
! Production capacity increased by 30%
! Schedule adherence rose from 3% to 90%

Optimization Successes
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Applications

! Scheduling
! Dispatching
! Configuration
! Enumeration
! Sequencing

Constraint Programming
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Conclusions

! Optimization technologies have significantly 
improved over the past 15 years

! Multiple techniques
! Traditional Mathematical Programming
! Newer Constraint Programming

! An explosion of applications

Summary


