
Progress in Linear and Integer
Programming and Emergence of
Constraint Programming
Dr. Irvin Lustig
Manager, Technical Services
Optimization Evangelist
ILOG Direct

2

Outline

! Mathematical Programming
! Improvements in Performance

! Constraint Programming
! A Quick Tutorial

! Constraint Programming Successes

Agenda

3

Mathematical Programming

Some material courtesy of Bob Bixby

4

Linear Programming

Minimize cTx
Subject to Ax = b

l ≤≤≤≤ x ≤≤≤≤ u

Objective
Function

Constraints

Decision
Variables

Lower
Bounds

Upper
Bounds

Mathematical Programs

5

Linear Programming

Minimize cTx
Subject to Ax = b

l ≤≤≤≤ x ≤≤≤≤ u

(LP)

Maximize
x1 + 2 x2 + 3 x3

Subject To
- x1 + x2 + x3 ≤≤≤≤ 20
x1 - 3 x2 + x3 ≤≤≤≤ 30

0 ≤≤≤≤ x1 ≤≤≤≤ 40
x2, x3 ≥≥≥≥ 0

Mathematical Programs

6

Linear Programming

! George Dantzig, 1947
! Introduces LP and recognized it as more than a

conceptual tool: Computing answer important.
! Invented “primal” simplex algorithm.
! First LP solved: Laderman, 9 cons., 77 vars., 120

MAN-DAYS.
! What is the single most important event in LP

since Dantzig?
! We have (since ~1990) 3 algorithms to solve LPs

" Primal Simplex Algorithm (Dantzig, 1947)
" Dual Simplex Algorithm (Lemke, 1954)
" Barrier Algorithm (Karmarkar, 1984 and others)

Mathematical Programs

7

PDS Models
“Patient Distribution System”: Carolan, Hill, Kennington, Niemi, Wichmann, An

empirical evaluation of the KORBX algorithms for military airlift applications,
Operations Research 38 (1990), pp. 240-248

MODEL ROWS
pds02 2953
pds06 9881
pds10 16558
pds20 33874
pds30 49944
pds40 66844
pds50 83060
pds60 99431
pds70 114944

CPLEX1.0
1988
0.4
26.4
208.9
5268.8
15891.9
58920.3
122195.9
205798.3
335292.1

CPLEX5.0
1997
0.1
2.4
13.0
232.6
1154.9
2816.8
8510.9
7442.6
21120.4

CPLEX8.0
2002
0.1
0.9
2.6
20.9
39.1
79.3
114.6
160.5
197.8

SPEEDUP
1.0####8.0

4.0
29.3
80.3
247.3
406.4
743.0
1066.3
1282.2
1695.1

Primal
Simplex

Dual
Simplex

Dual
Simplex

Linear Programming

8

Not just faster -- Growth with size:
Quadratic then & Linear now !

.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

0 10 20 30 40 50 60 70 80

Time Periods: PDS02 -- PDS70

C
PL

EX
 1

.0
 s

ec
on

ds

.00

50.00

100.00

150.00

200.00

250.00

C
PL

EX
 8

.0
 s

ec
on

ds

Linear Programming

9

The same methodology was applied throughout.

Linear Programming

BIG TEST: The testing methodology

! Not possible for one test to cover 10+ years:
Combined several tests.

! The biggest single test:
! Assembled 680 real LPs (up to 7 million consts.)
! Test runs: Using a time limit (4 days per LP), two

chosen methods would be compared as follows:
" Run method 1: Generate 680 solve times
" Run method 2: Generate 680 solve times
" Compute 680 ratios and form GEOMETRIC MEAN (not

arithmetic mean!)

10

Progress: 1988 – Present
! Algorithms

! Best simplex 960x
! Best simplex + barrier 2360x

! Machines
! Simplex algorithms 800x
! Barrier algorithms 13000x

Linear Programming

11

Algorithm comparison: Extracted
from the previous results …

! Dual simplex vs. primal: Dual 2x faster
! Best simplex vs. barrier: About even
! Best of three vs. primal: Best 7.5x faster

Linear Programming

12

Maximize x1 + 2 x2 + 3 x3 + x4
Subject To

- x1 + x2 + x3 + 10 x4 ≤≤≤≤ 20
x1 - 3 x2 + x3 ≤≤≤≤ 30

x2 - 3.5 x4 = 0

0 ≤≤≤≤ x1 ≤≤≤≤ 40 x2, x3 ≥≥≥≥ 0
2 ≤≤≤≤ x4 ≤≤≤≤ 3
x4 integer

(MIP)

Mixed Integer Programming

Minimize cTx
Subject to Ax = b

l ≤≤≤≤ x ≤≤≤≤ u
Some x are integer

Mixed Integer Programming

13

Computational History: 1950 –1998
! 1954 Dantzig, Fulkerson, S.

Johnson: 42 city TSP
! Solved to optimality using

cutting planes and LP
! 1957 Gomory

! Cutting plane algorithm: A
complete solution

! 1960 Land, Doig, 1965
Dakin
! Branch-and-bound (B&B)

! 1971 MPSX/370, Benichou
et al.

! 1972 UMPIRE, Forrest,
Hirst, Tomlin (Beale)

! 1972 – 1998 Good B&B
remained the state-of-the-
art in commercial codes, in
spite of
! 1973 Padberg
! 1974 Balas (disjunctive

programming)
! 1983 Crowder, Johnson,

Padberg: PIPX, pure 0/1
MIP

! 1987 Van Roy and Wolsey:
MPSARX, mixed 0/1 MIP

! Grötschel, Padberg, Rinaldi
…TSP (120, 666, 2392 city
models solved)

Mixed Integer Programming

14

Mixed Integer Programming

1998… A new generation of MIP codes

! Linear programming
! Stable, robust dual simplex

! Variable/node selection
! Influenced by traveling

salesman problem

! Primal heuristics
! 8 different tried at root
! Retried based upon success

! Node presolve
! Fast, incremental bound

strengthening (very similar
to Constraint Programming)

! Presolve – numerous
small ideas
! Probing in constraints:
! ∑ xj ≤ (∑ uj) y, y = 0/1
! $ xj ≤ ujy (for all j)

! Cutting planes
! Gomory, knapsack

covers, flow covers, mix-
integer rounding, cliques,
GUB covers, implied
bounds, path cuts,
disjunctive cuts

! Various extensions
" Aggregation

15

Computational Results I: 964 models
(30 hour time limit)

74%

11%

8%
5%

0%

20%

40%

60%

80%

100%

CPLEX 8.0

Setting: "MIP emphasis feasibility"
Integer Solution with > 10% Gap
Integer Solution with < 10% Gap
Solved to provable optimality

56%

74%

0%

20%

40%

60%

80%

100%

CPLEX 5.0 CPLEX 8.0

Solving to Optimality Finding Feasible Solutions

98% (19 MIPs)

Mixed Integer Programming

16

Computational Results II: 651 models
(all solvable to optimality)

! Ran for 30 hours using defaults
! Relative speedups:

! All models (651): 12x
! CPLEX 5.0 > 1 second (447): 41x
! CPLEX 5.0 > 10 seconds (362): 87x
! CPLEX 5.0 > 100 seconds (281): 171x

Mixed Integer Programming

17

Mathematical Programming

Summary of Progress

! Through a combination of advances in algorithms and
computing machines, combined with developments in
data availability and modern modeling languages, what
is possible today could only have been dreamed of
even 10 years ago.

! The result is that whole new application domains have
been enabled
! Larger, more accurate models and multiple scenarios
! Tactical and day-of-operations are possible, not just planning
! Disparate components of the extended enterprise can now be

“optimized” in concert.

18

Constraint Programming

19

Problem Definition

! Minimize (or maximize) an Objective Function
! Subject to Constraints
! Over a set of values of Decision Variables

! Usual Requirements
! Objective function and constraints have closed

mathematical forms (linear, quadratic, nonlinear,
etc.)

! Decision variables are real or integer-valued
" Each variable takes values over an interval

Mathematical Programming

20

Mathematical Programming

Problem Types

! Linear Program
! (Mixed) Integer Program
! Quadratic Program
! Nonlinear Program
! ...

A program is a problem

21

Constraint Programming

Computer Programming

! Knuth, 1968, The Art of Computer
Programming
! “An expression of a computational method in a

computer language is called a program.”
! Programming Paradigms

! Procedural Programming
! Object-oriented Programming
! Functional Programming
! Logic Programming
!

22

Definition

! A computer programming methodology
! Solves

! Constraint satisfaction problems
! Combinatorial optimization problems

! Methodology
! Represent a model of a problem in a computer

programming language
! Describe a search strategy for solving the problem

Constraint Programming

23

Constraint Satisfaction Problems

! Find a Feasible Solution
! Subject to Constraints
! Over a set of values of Decision Variables

! Usual Requirements
! Constraints are easy to evaluate

" Closed mathematical forms or table lookups

! Decision variables are values over a discrete set

Constraint Programming

24

Combinatorial Optimization Problems

! Minimize (or maximize) an Objective Function
! Subject to Constraints
! Over a set of values of Decision Variables

! Usual Requirements
! Objective Function and Constraints are easy to

evaluate
" Closed mathematical forms or table lookups

! Decision variables are values over a discrete set

Constraint Programming

25

What is a potential representation?

! Let x1, x2 ,..., xn be the decision variables

! Each xj (j = 1, 2, ..., n) has a domain Dj of allowable
values
! Note that a domain may be finite or infinite

! A domain may have “holes” (e.g., even numbers between 0
and 100)

! The allowable values could be elements of a particular set

! A constraint is a function f
f (x1, x2 ,..., xn) ∈ {0, 1}

! The function may just be a table of values!

Constraint Programming

26

Constraint Satisfaction Problem

! A constraint satisfaction problem is
Find values of x1, x2 ,..., xn such that

xj ∈ Dj (j = 1, 2,..., n)
fk (x1, x2 ,..., xn) = 1 (k=1,...,m)

! A solution of this problem is any set of values
satisfying the above conditions

(CSP)

Constraint Programming

27

Constraint Programming

Optimization Problem

! Suppose you have an objective function
g (x1, x2 , ..., xn)

that you wish to minimize.
! Optimization Problem is then

minimize g (x1, x2 , ..., xn)
subject to

xj ∈ Dj (j = 1, 2,..., n)
fk (x1, x2 ,..., xn) = 1 (k=1,...,m)

28

Constraint Programming

Examples of Constraints

! Logical constraints
! If x is equal to 4, then y is equal to 5
! Either "Activity a" precedes "Activity B" OR "Activity B" precedes

"Activity A"

! Global constraints
! All of the values in the array x are different
! Element i of the array card is the number of times that the ith

element of the array value appears in the array base

! Meta constraints
! The number of times that the array x has the value 5 is exactly 3

! Element constraint
! The cost of assigning person i to job j is cost[job[i]], when

job[i] is j

29

Constraint Programming Provides:

! A modeling methodology for stating decision
variables, constraints, and objective functions

! A programming language for stating a search
algorithm for finding values of the variables
that satisfy the constraints and optimize the
objective

! A programming system that includes
! Predefined constraints with powerful filtering

algorithms for reducing the size of the search
space

! Functionality to allow definitions of new constraints
and filtering algorithms

Constraint Programming

30

Examples of Constraints

! Logical constraints
! (x = 4) => (y = 5)

! (a.end <= b.start) \/ (b.end <= a.start)

! Global constraints
! alldifferent(x)

! distribute(card,value,base)

" card[i] is the number of times value[i] appears in base

! Meta constraints
! sum (i in S) (x[i] < 5) = 3;

! Element constraint
! z = y[x[i]]

Constraint Programming

31

! Have a list of countries

! Have a set of colors to use on a map to color
the countries

! Want to decide how to assign the colors to the
countries so that no two bordering countries
have the same color

enum Country {Belgium,Denmark,France,Germany,
Netherlands,Luxembourg};

enum Colors {blue,red,yellow,gray};

var Colors color[Country];

The decision variables
are values from a set

Map Coloring Example

Example

32

enum Country {Belgium,Denmark,France,Germany,
Netherlands,Luxembourg};

enum Colors {blue,red,yellow,gray};

var Colors color[Country];

solve {

color[France] <> color[Belgium];
color[France] <> color[Luxembourg];
color[France] <> color[Germany];
color[Luxembourg] <> color[Germany];
color[Luxembourg] <> color[Belgium];
color[Belgium] <> color[Netherlands];
color[Belgium] <> color[Germany];
color[Germany] <> color[Netherlands];
color[Germany] <> color[Denmark];

};

Find all Solutions

Constraints

Data

Decision
Variables

Constraint Programming Model

Example

33

Constraint Satisfaction
enum Country {Belgium,Denmark,France,Germany,

Netherlands,Luxembourg};
enum Colors {blue,red,yellow,gray};

var Colors color[Country];

solve {

color[France] <> color[Belgium];
color[France] <> color[Luxembourg];
color[France] <> color[Germany];
color[Luxembourg] <> color[Germany];
color[Luxembourg] <> color[Belgium];
color[Belgium] <> color[Netherlands];
color[Belgium] <> color[Germany];
color[Germany] <> color[Netherlands];
color[Germany] <> color[Denmark];

};

Example

34

Constraint Satisfaction
enum Country {Belgium,Denmark,France,Germany,

Netherlands,Luxembourg};
enum Colors {blue,red,yellow,gray};
var Colors color[Country];

solve {
color[France] <> color[Belgium];
color[France] <> color[Luxembourg];
color[France] <> color[Germany];
color[Luxembourg] <> color[Germany];
color[Luxembourg] <> color[Belgium];
color[Belgium] <> color[Netherlands];
color[Belgium] <> color[Germany];
color[Germany] <> color[Netherlands];
color[Germany] <> color[Denmark];

};

Example

35

Optimization
enum Country {Belgium,Denmark,France,Germany,

Netherlands,Luxembourg};
enum Colors {blue,red,yellow,gray};
var Colors color[Country];

solve {
color[France] <> color[Belgium];
color[France] <> color[Luxembourg];
color[France] <> color[Germany];
color[Luxembourg] <> color[Germany];
color[Luxembourg] <> color[Belgium];
color[Belgium] <> color[Netherlands];
color[Belgium] <> color[Germany];
color[Germany] <> color[Netherlands];
color[Germany] <> color[Denmark];

};

var int colorcount[Colors] in 0..card(Country);
maximize colorcount[yellow]
subject to {

forall (i in Colors)
colorcount[i] = sum(j in Country) (color[j] = i);

Example

36

Problem Description

! From Bradley, Hax, Magnanti, Applied
Mathematical Programming, Chapter 9,
Exercise 24
! Custom Pilot Chemical Company is a chemical manufacturer that produces

batches of specialty chemicals to order. Principal equipment consists of
eight interchangable reactor vessels, five interchangeable distillation
columns, four large interchangeable centrifuges, and a network of switchable
piping and storage tanks. Customer demand comes in the form of orders for
batches of one or more specialty chemicals, normally to be delivered
simultaneously for further use by the customer.

! An order consists of a set of jobs. Each job has an optional precedence
requirement, arrival week of the job, duration of the job in weeks, the week
that the job is due, the number of reactors required, distillation columns
required, and centrifuges required.

! Find a schedule of the orders and jobs to minimize the completion time of all
orders

Production Scheduling

37

Problem Data

Order
Number

Job
number

Precedence
relations

Arrival
Week

Duration
in weeks

Week
due Reactors

Distillation
columns

Centri-
fuges

AK14 1 None 15 4 22 5 3 2
2 1 15 3 22 0 1 1
3 None 15 3 22 2 0 2

AK15 1 None 16 3 23 1 1 1
2 None 16 2 23 2 0 0
3 1 16 2 23 2 2 0

AK16 1 None 17 5 23 2 1 1
2 None 17 1 23 1 3 0

Resource requirements

Production Scheduling

38

Data input
struct JobIndex {

string ordernumber;
int jobnum;

};
struct JobInfo {

int jobprec;
int arrival;
int duration;
int weekdue;
int reactors;
int columns;
int centrifuges;

};
struct JobData {

JobIndex ind;
JobInfo info;

};

setof(JobData) jobs = ...;

jobs =
{
< < "AK14", 1 >, < 0, 15, 4, 22, 5, 3, 2 > >,
< < "AK14", 2 >, < 1, 15, 3, 22, 0, 1, 1 > >,
< < "AK14", 3 >, < 0, 15, 3, 22, 2, 0, 2 > >,
< < "AK15", 1 >, < 0, 16, 3, 23, 1, 1, 1 > >,
< < "AK15", 2 >, < 0, 16, 2, 23, 2, 0, 0 > >,
< < "AK15", 3 >, < 1, 16, 2, 23, 2, 2, 0 > >,
< < "AK16", 1 >, < 0, 17, 5, 23, 2, 1, 1 > >,
< < "AK16", 2 >, < 0, 17, 1, 23, 1, 3, 0 > >
};

Production Scheduling

39

Data organization
setof(JobIndex) joblist = { i | <i,j> in jobs };

assert (card(joblist) = card(jobs));

JobInfo datarray[joblist];
initialize {

forall (j in jobs)
datarray[j.ind] = j.info;

};

int reactors = ...;
int columns = ...;
int centrifuges = ...;

datarray[<"AK14", 1>] = < 0, 15, 4, 22, 5, 3, 2 >
datarray[<"AK14", 2>] = < 1, 15, 3, 22, 0, 1, 1 >
datarray[<"AK14", 3>] = < 0, 15, 3, 22, 2, 0, 2 >
datarray[<"AK15", 1>] = < 0, 16, 3, 23, 1, 1, 1 >
datarray[<"AK15", 2>] = < 0, 16, 2, 23, 2, 0, 0 >
datarray[<"AK15", 3>] = < 1, 16, 2, 23, 2, 2, 0 >
datarray[<"AK16", 1>] = < 0, 17, 5, 23, 2, 1, 1 >
datarray[<"AK16", 2>] = < 0, 17, 1, 23, 1, 3, 0 >

reactors = 8;
columns = 5;
centrifuges = 4;

Production Scheduling

40

Model
scheduleOrigin = min(j in jobs) j.info.arrival;
scheduleHorizon = max(j in jobs) j.info.weekdue;

Activity makespan(0);
Activity a[j in joblist](datarray[j].duration);
DiscreteResource Reactors(reactors);
DiscreteResource Columns(columns);
DiscreteResource Centrifuges(centrifuges);

minimize makespan.end
subject to
{

forall (j in joblist) {
a[j] precedes makespan;
if (datarray[j].jobprec > 0) then

a[<j.ordernumber,datarray[j].jobprec>] precedes a[j]
endif;
a[j] requires(datarray[j].reactors) Reactors;
a[j] requires(datarray[j].columns) Columns;
a[j] requires(datarray[j].centrifuges) Centrifuges;
a[j].start >= datarray[j].arrival;
a[j].end <= datarray[j].weekdue;

};
};

Production Scheduling

41

Solution for activities
Optimal Solution with Objective Value: 22
makespan = [22 -- 0 --> 22]
a[#<ordernumber:"AK14",jobnum:1>#] = [15 -- 4 --> 19]
a[#<ordernumber:"AK14",jobnum:2>#] = [19 -- 3 --> 22]
a[#<ordernumber:"AK14",jobnum:3>#] = [19 -- 3 --> 22]
a[#<ordernumber:"AK15",jobnum:1>#] = [16 -- 3 --> 19]
a[#<ordernumber:"AK15",jobnum:2>#] = [19 -- 2 --> 21]
a[#<ordernumber:"AK15",jobnum:3>#] = [19 -- 2 --> 21]
a[#<ordernumber:"AK16",jobnum:1>#] = [17 -- 5 --> 22]
a[#<ordernumber:"AK16",jobnum:2>#] = [21 -- 1 --> 22]

Production Scheduling

42

Resource allocation (text)
Reactors = Discrete Resource
required by a[#<ordernumber:"AK16",jobnum:2>#] over [21,22] in capacity 1
required by a[#<ordernumber:"AK16",jobnum:1>#] over [17,22] in capacity 2
required by a[#<ordernumber:"AK15",jobnum:3>#] over [19,21] in capacity 2
required by a[#<ordernumber:"AK15",jobnum:2>#] over [19,21] in capacity 2
required by a[#<ordernumber:"AK15",jobnum:1>#] over [16,19] in capacity 1
required by a[#<ordernumber:"AK14",jobnum:3>#] over [19,22] in capacity 2
required by a[#<ordernumber:"AK14",jobnum:1>#] over [15,19] in capacity 5

Columns = Discrete Resource
required by a[#<ordernumber:"AK16",jobnum:2>#] over [21,22] in capacity 3
required by a[#<ordernumber:"AK16",jobnum:1>#] over [17,22] in capacity 1
required by a[#<ordernumber:"AK15",jobnum:3>#] over [19,21] in capacity 2
required by a[#<ordernumber:"AK15",jobnum:1>#] over [16,19] in capacity 1
required by a[#<ordernumber:"AK14",jobnum:2>#] over [19,22] in capacity 1
required by a[#<ordernumber:"AK14",jobnum:1>#] over [15,19] in capacity 3

Centrifuges = Discrete Resource
required by a[#<ordernumber:"AK16",jobnum:1>#] over [17,22] in capacity 1
required by a[#<ordernumber:"AK15",jobnum:1>#] over [16,19] in capacity 1
required by a[#<ordernumber:"AK14",jobnum:3>#] over [19,22] in capacity 2
required by a[#<ordernumber:"AK14",jobnum:2>#] over [19,22] in capacity 1
required by a[#<ordernumber:"AK14",jobnum:1>#] over [15,19] in capacity 2

Production Scheduling

43

Resource allocation (graphs)

Production Scheduling

44

Which is BETTER????

! It depends upon the data
! It depends on the search strategy
! It depends on the combinatorial nature of the

problem

! For general applications, you need tools that
allow you to try both methodologies!

Comparing CP and MP

45

What is a solution?

! Linear programs and integer programs always
have objective functions

! A constraint satisfaction problem may simply
be a feasibility problem
! It may have many possible solutions!

! People in constraint programming say that
they have a “solution” when people in
mathematical programming would say they
have a “feasible solution”

Comparing CP and MP

46

Vocabulary Differences

Mathematical Programming Constraint Programming
Feasible Solution Solution
Optimal Solution Optimized Solution
Decision Variable Constrained Variable
Fixed Variable Bound Variable
Bound Strengthening Domain Reduction (a superset)
Iterative Presolve Constraint Propagation

Comparing CP and MP

47

Constraint Programming
Successes

48

! Centralized Vehicle Scheduler: for vehicle
production

! Results: Competitive advantage & savings
! 10-20% improvement in purge rates
! Increased production by 4,000 cars/year/plant
! Estimated savings of $27 million annually

DaimlerChrysler
Optimization Successes

49

! Loan Arranger: Searches for loan that best
meets each customer’s requirements

! Results: Competitive advantage & savings
! 4 x increase in monthly loan volume
! 15% increase in average loan size
! Reduced “time to funding” from 21 to 8 days
! Reduced underwriting costs by 78%

First Union

Optimization Successes

50

SNCF Railways

! Rolling Stock Maintenance Operations
! Schedule Operations Efficiently
! Save 10% of 2,000 maintenance workers

Optimization Successes

51

Nissan (UK)

! Challenge: Build 3rd car model with 2 existing
production lines

! Results: Europe’s already most efficient car
production facility is even more productive
! No need to add any new production line and no

significant investment needed
! Production capacity increased by 30%
! Schedule adherence rose from 3% to 90%

Optimization Successes

52

Applications

! Scheduling
! Dispatching
! Configuration
! Enumeration
! Sequencing

Constraint Programming

53

Conclusions

! Optimization technologies have significantly
improved over the past 15 years

! Multiple techniques
! Traditional Mathematical Programming
! Newer Constraint Programming

! An explosion of applications

Summary

