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A LONG RECOGNIZED NEED

“Those of us who were doing the planning right 
from the very beginning understood that the 
real problem was to be able to do planning 
under uncertainty.”

G. B. Dantzig, E-Optimization (2001)
Interviewed by Irv Lustig



THE FIRST PAPERS

• Stochastic Programming
– Based on probability distributions for uncertain 

parameters
– Minimize expected costs

» Beale (1955)
» Dantzig (1955)
» Tintner (1955)

– Maximize system’s ability to meet constraints
» Charnes & Cooper’s chance-constraint programming 

(1959)
• Fuzzy Programming

– Optimization over soft constraints
– Bellman & Zadeh (1970)



• Maarten H. van der Vlerk. Stochastic Programming Bibliography. 
http://mally.eco.rug.nl/biblio/stoprog.html, 1996-2002 

• Over 3500 papers on stochastic programming
– 100 papers per year for the past 30 years

STOCHASTIC PROGRAMMING 
PUBLICATIONS PER YEAR



STILL A NEED

“Planning under uncertainty.  This, I feel, is the 
real field we should all be working on.”

G. B. Dantzig, E-Optimization (2001)



PRESENTATION GOALS

• Illustrate algorithmic challenges 
– Stochastic programming

» Expectation minimization
» Chance-constrained
» Linear, integer, and nonlinear programming

– Fuzzy programming

• Review progress to date
– Computational state-of-the-art

• Highlight contributions of the PSE 
community to optimization under uncertainty



STOCHASTIC PROGRAMS

• Multi-stage optimization problems with 
parameter uncertainties
– Decisions do not affect the uncertainties
– Finite number of decision stages

• Objective: Minimize expected total cost 

Decide
capacity

Observe
demand

Sell or buy
extra capacity



MODELING UNCERTAINTY

• Assume: A finite sample 
space

• Uncertainty is modeled as a
scenario tree

• A scenario is a path from 
the root to a leaf
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TWO-STAGE STOCHASTIC LP
WITH RECOURSE

• Decide     ⇒ Observe scenario ⇒ Decide
– is the vector of first-stage variables
– is the vector of second-stage variables

• Objective: E[total cost]
• Second stage problem depends on first-stage 

decision and scenario realized      
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THE CHALLENGE

• Consider 100 uncertain parameters
• Each parameter can take 3 values
• Total number of possible scenarios is

3100 = 5x1047

• Explicit evaluation of the second-stage cost 
function is out of the question



STOCHASTIC LP
• is the value function of a linear program

• Piece-wise linear and convex
• Convex programming methods are applicable

• Properties and algorithms extend to:
• Multi-stage stochastic LP
• First-stage integer variables

• Large scale LP with special structure
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DECOMPOSITION
Primal Methods Dual Methods
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SAMPLING APPROXIMATIONS

• “Interior” sampling methods
– In each decomposition iteration, sample a few only 

scenarios
– Dantzig and Infanger (1992), Infanger (1994)

• “Exterior” sampling methods
– First sample a few scenarios, then solve stochastic LP 

with sampled scenarios only
– Shapiro (1996)

• Desirable statistical convergence properties



STATE-OF-THE-ART 
IN COMPUTATIONS

• Exact algorithms
– Birge (1997)
– Millions of variables in deterministic equivalent

» 1000 variables
» 10 uncertain parameters, each with 3 possible values

– Parallel computers

• Sampling-based methods
– Linderoth, Shapiro and Wright (2002)
– Computational grid
– Up to 1081 scenarios
– Within an estimated 1% of optimality



• Second stage optimization problem involves 
combinatorial decisions

• Examples:
– Resource acquisition (Dempster et al., 1983):

Acquire machines ⇒ Observe processing times ⇒ Schedule jobs

– Location-Routing (Laporte et al., 1989):
Locate depots ⇒ Observe demand ⇒ Route vehicles

– Crew recovery:
Assign crews ⇒ Observe breakdown ⇒ Recover crews

• is the value function of an integer program

TWO-STAGE STOCHASTIC 
INTEGER PROGRAMMING
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THE CHALLENGE

• Discontinuous

• Highly non-convex

• Many local minima
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BRANCH-AND-BOUND



FINITENESS ISSUE
• With continuous first-stage variables, existing 

B&B algorithms are not finite

• The most common branching 
scheme is rectangular 
partitioning—branching along 
a variable axis

• The polyhedral shaped 
discontinuous pieces cannot 
be isolated by a finite number 
of rectangular partitions

• Requires infinite partitioning 
for lower and upper bounds 
to become equal



VARIABLE TRANSFORMATION

Ahmed, Tawarmalani and Sahinidis (Math Progr, 2003)
• Solve the problem in the space of the “tender variables”
• Variable transformation aligns discontinuities orthogonal to variable 

axes
• Discontinuities identified based on Blair and Jeroslow (1977) results
• Finite termination

Tx=χ



IMPLEMENTATION
• BARON is used to maintain the branch and 

bound tree
– Constraint propagation & duality-based range reduction

» Ryoo and Sahinidis, 1995, 1996
» Shectman and Sahinidis, 1998
» Tawarmalani and Sahinidis, 2002

– Tawarmalani and Sahinidis, Convexification and Global 
Optimization in Continuous and Mixed-Integer Nonlinear 
Programming, Kluwer Academic Publishers, Nov. 2002.

• Open partitions account for discontinuities
• OSL is the IP solver
• CPLEX is the LP solver



COMPUTATIONAL RESULTS

Problem Binary        Continuous        Constraints
Variables        Variables

SIZES3               40                   260                   142
SIZES5               60                   390                   186
SIZES10           110                   715                     341

TEST PROBLEMS

JORJANI (‘95)                                 CAROE (‘98)                                       BARON
CPLEX B&B B&B with Lagrangian Rel.                   

Problem LB      UB        nodes     CPU           LB        UB      nodes    CPU         LB        UB        nodes      CPU

SIZES3       218.2     224.7     20000     1859.8       224.3   224.5       - 1000        224.4    224.4        260          70.7

SIZES5       220.1     225.6     20000     4195.2       224.3   224.6       - 1000        224.5    224.5     13562       7829.1

SIZES10     218.2     226.9   250000     7715.5       224.3    224.7       - 1000        224.2    224.7     23750     10000.0

¶ *¶

¶ Digital Alpha 500 Mhz

* IBM RS/6000 133 MHz



ROBUSTNESS ISSUES
• Recourse model provides first-stage solution that 

optimizes expected second-stage cost
• This solution may be very bad under certain 

conditions

• Robust solutions: remain near-optimal irrespective 
of uncertain outcome

• Mulvey, Vanderbei and Zenios (1995)
– May not lead to optimal second-stage decisions
– King et al. (1997), Sen and Higle (1999)
– Takriti and Ahmed (2002)

• More recent approaches
– Ben-Tal and Nemirovski (2000) 
– Bertsimas (2002)



PROBABILISTIC PROGRAMMING
• Also known as chance-constrained programming
• Focuses on reliability of the system
• LP with chance constraints:
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THE CHALLENGE
Consider
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FUZZY PROGRAMMING
• Considers uncertain parameters as fuzzy numbers
• Treats constraints as fuzzy sets
• Some constraint violation is allowed

• Bellman and Zadeh (1970)
– Minimize largest constraint violation

• Flexible programming
– Right-hand-side and objective uncertainty

• Possibilistic programming
– Constraint coefficient uncertainty
– Nonconvex optimization problem

» Liu and Sahinidis (1997)

• Zimmermann (1991)

• Comparisons needed between SP and FP!



PSE DEVELOPMENTS

• Aggregation-disaggregation for two-stage 
stochastic linear programs
– Clay and Grossmann (CACE, 1997)

• Multiparametric programming for mixed-
integer nonlinear programs
– Pistikopoulos et al. (IECR, 1999; CACE, 2002)

• Finite algorithm for two-stage stochastic 
integer programs
– Ahmed, Tawarlamani and Sahinidis (Math Progr, 2003)

• Approximation scheme for multistage 
stochastic integer programs for supply chain 
planning
– Ahmed and Sahinidis (Oper Res, 2003)



AGGREGATION-DISAGGREGATION 
FOR TWO-STAGE STOCHASTIC LPs

Clay and Grossmann (1997)

• Aggregation of 
probability space

• Rigorous lower 
and upper bounds

• Bounds sharpen 
by disaggregation

⇒

⇒



FEW SCENARIOS SUFFICE

49,7567450 x 74504,160,000 x 4,320,000EX11J

16,2865422 x 56441,704,000 x 1,770,000EX11I

20932692 x 2809539,000 x 560,000EX11H

16322354 x 2458260,000 x 270,000EX11G

4741470 x 1540107,000 x 111,000EX11F

179950 x 100033710 x 35020EX11C

34430 x 4606670 x 6940EX11E

Time (s)*Largest aggregateDeterministic LPProblem

*: alpha workstation with 64 MB RAM

From: Clay and Grossmann (1997)



MULTI-PARAMETRIC MIXED-INTEGER 
NONLINEAR PROGRAMMING

• The primal and dual solutions are linear functions of θ
• The value function is continuous, convex, and quadratic
• Developed algorithm for obtaining z(θ) in closed-form
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MODEL PREDICTIVE CONTROL

• Solves an optimization problem at each time interval



EVAPORATION PROCESS
(Pistikopoulos et al., 2002)

Steam
P100

LCFeed
F1, C1

Cooling Water
F200

Product
C2, P2

• Control variables: P100, F200
• State variables: C2, P2
• Hybrid system
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• You solve only one optimization problem

PARAMETRIC SOLUTION



• Given:
– A network of k facilities
– m product families
– Forecasts of demands and costs 

for n time periods

• Determine
– When and how much  to expand?
– How to allocate capacity?
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PLANNING IN THE SUPPLY CHAIN
Ahmed and Sahinidis (2003)



PROCESS 
SUPPLY CHAIN

• A network of processes, 
chemicals and markets

• New products and  
processing technology are 
anticipated

• When and how much new 
capacity to bring on-line?



SERVER FARMS

• A network of servers 
hosting WebPages

• When and how much 
new technology to 
install to meet demand 
growth?

• Multi-billion $ industry

• Technology adoption is 
a leading strategic 
concern



ASSUMPTIONS

• Expansion involves a set-up cost  ⇒ Fixed charge cost 
function

• Linear production technology

• No inventories across time periods (can be relaxed)

• Continuous expansion units



THE DETERMINISTIC MILP
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UNCERTAINTY

• Significant forecast uncertainty

• Sources:
– Demands
– Costs and prices
– Technology

• Evolves over multiple time periods

• There are integer decision making variables in 
every time period/stage



THE SCENARIO FORMULATION
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• The capacitated lot sizing problem (CLSP) is NP-hard
• Given any CLSP, we can construct an equivalent 

instance of the deterministic capacity expansion 
problem:

COMPLEXITY IN THE TIME DOMAIN

The deterministic capacity expansion is
NP-hard in the number of time periods but…
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EMPIRICAL EVIDENCE

• Liu & Sahinidis (IECR 1995)
• Processing Networks
• LP Relaxation

• Chang & Gavish (OR 1995)
• Telecommunication networks
• Lagrangian Relaxation
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CAPACITY SHIFTING
For the Deterministic Problem

Rounding

Rounding

N.B.: Naive rounding of LP solution results in too many expansions



3-PHASE HEURISTIC
For the Stochastic Problem

Construct an 
Implementable solution

Construct an 
Admissible solution

Construct a
Feasible solution

• Relax integrality

• Solve as a multi-
stage stochastic LP

• Relax non-anticipativity

• For each scenario,
construct an integral 
solution by capacity 
shifting

• Re-enforce non-
anticipativity by
capacity bundling



ILLUSTRATION



PROBABILISTIC ANALYSIS

• How does the heuristic perform in “most” 
cases?

• Consider instances generated from the 
following probability model:
– Demand in each period is independent with bounded 

first and second moments
– Cost parameters have bounded distributions
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Theorem:

• For “almost all,” “large” sampled instances, the heuristic error
vanishes asymptotically 
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GAPS FOR EXAMPLE 4
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• 38 processes, 24 chemicals
• With 10 time periods and 29 scenarios

― 36,000 binaries, 184,000 continuous variables, 368,000 
constraints

• Limited only by the size of the stochastic LP that 
can be solved



CONCLUSIONS

“Planning under uncertainty.  This, I feel, is the 
real field we should all be working on.”

G. B. Dantzig, E-Optimization (2001)

Optimization algorithm developers are all
working towards the solution of optimization 
problems under uncertainty
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