

An Integrated System Solution for Supply Chain Optimization in the Chemical Process Industry

Franz- J. Tölle, Guido Berning, Marcus Brandenburg, Korhan Gürsoy, Jürgen-S. Kussi, and Vipul Mehta

©2002 Bayer AG / Bayer Technology Services

- Motivation & Goals
- Scheduling Solution
- Collaborative Planning
- Manual Updates
- Benefits

Motivation: Complex Production

Complexity due to chain production running through multiple plants

multi-step, multi-plant chains

flexible routing network

Bayer Technology Services

Routing, Campaigns

Challenge: Size of Problem

Goals

Optimized overall production plan

Automated planning for higher capacity utilization

High degree of transparency in planning

• Forecasting, orders, queries and problems regarding chains

Support conflict resolution

• Manual interaction with simulations, scenarios

Higher degree of customer satisfaction

Minimized due date violations through ATP/CTP

Scheduler

Transparency

Definition of an Individual, Example

Chain Computation

Chain Generation

Product (only one facility per synthesis step)

Example of a generated Chain

Chain Scheduling

Schedule Improvement

Generating New Individuals by Recombination

$$P*Q(j) = \begin{cases} P(j) & :j < i+1 \\ Q(k) \text{ with } k = \min\{x|1 < =x < =n, Q(x) < >P*Q(l) \text{ für } 1 < =l < j\} : else \end{cases}$$
$$S*T(j) = \begin{cases} S(j) : j < i+1 \\ T(j) : else \end{cases}$$

Modifying a generated Individual by Mutation

Evaluation of the Individuals by Obtained Schedules

EvoPlan Algorithm

Optimizer EvoPlan

Target function:

f = min Warehouse costs Penalties for due date violations Setup and cleanup costs

Model constraints:

- ► Resource priorities
- Max. and min. lot sizes
- ► Frozen activities
- Shutdown and breakdowns
- M Initial inventories

Optimization based on:

O Genetic algorithms

- Motivation & Goals
- Scheduling Solution
- Collaborative Planning
- Manual Updates
- Benefits

Collaborative Planning

Collaborative Planning

Planning Tool

"3-in-1" Integrated Solution Approach

Genetic algorithm based optimizer In-house development: EvoPlan

User-friendly tool for manual updates Toolbox: Aspen MIMI[™]

Mechanism for collaborative planning Environment: Windows NT[®] / 2000[®] Toolbox: Aspen MIMI[™]

- Motivation & Goals
- Scheduling Solution
- Collaborative Planning
- Manual Update
- Benefits

"However beautiful the strategy, you should occasionally look at the results." W. Churchill

- Early diagnosis leads to best treatment: Due date violations avoided
- Correct information is power: Global use reduces inventory levels \checkmark
- Better overview of customer orders and purchase orders reduces idle time
- Better and quicker manual planning reduces planning effort in plant
- Quick response through ATP/CTP increases customer satisfaction \checkmark

High level of **Transparency** makes life of a planner much easier

Information Flow before Project

©2002 Bayer AG / Bayer Technology Services

Information Flow after Project

Seamless data transfer + Clearly defined flow of information + Transparent planning

An Integrated System Solution for Supply Chain Optimization in the Chemical Process Industry

Franz - J. Tölle Guido Berning, Marcus Brandenburg, Korhan Gürsoy, Jürgen-S. Kussi, and Vipul Mehta Foundations of Computer-Aided Process Operations