Abnormal Events Management in Complex Process Plants: Challenges and Opportunities in Intelligent Supervisory Control

Venkat Venkatasubramanian

Laboratory for Intelligent Process Systems School of Chemical Engineering Purdue University W.Lafayette, IN47907

Outline

Introduction

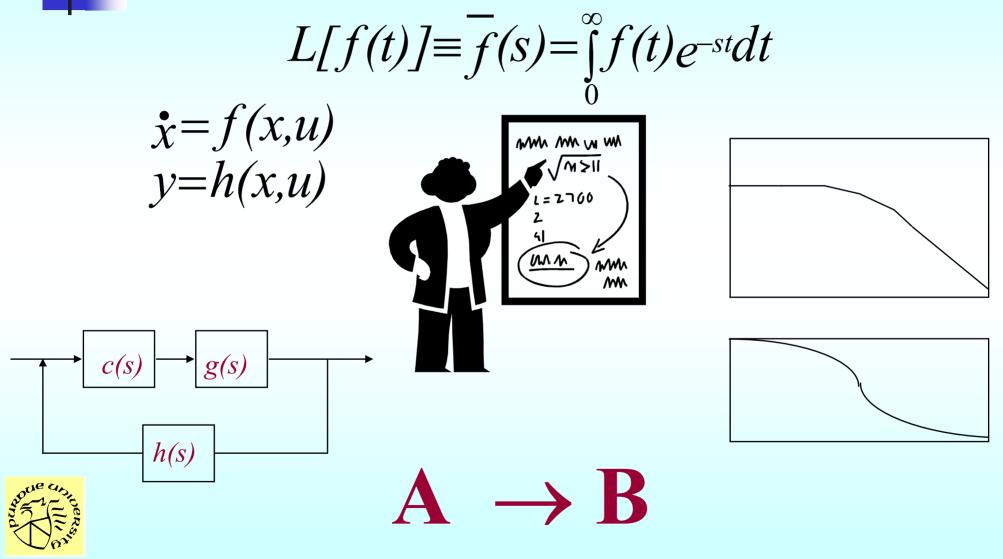
- What is AEM and why is it important?
- Intelligent Supervisory Control
- Challenges and Issues
- Various approaches
 - Model based and Process History based methods
 - Relative Merits and Demerits
- Process Hazards Analysis (PHA)
- Emerging Trends
- Future Directions

Talk Philosophy

Broad overview

- Not a detailed, in-depth review
- Identify key concepts, issues, challenges
- Compare and contrast different approaches

Introduction


 Abnormal events are deviations in process behavior from normal operating regime

- Safety problems
- Environmental concerns
- Quality problems and Economic losses
- Why do abnormal situations occur?
 - Human errors
 - Equipment degradation and failures

This is really a Process Control Problem

Academic View of Process Control

Operator's View of Process Control

- Pump A pumping oil has tripped Cause Unknown
- You switch to Pump B. That also trips Cause Unknown
- Soon hundreds of alarms are going off Cause(s) Unknown
- With in minutes you have an explosion and a fire. Two people are killed and a few hurt at this point.
- It is 10:00 in the night
- The plant manager is in Aberdeen, Scotland, and not available
- You are on top of an off-shore oil platform in the middle of the North Sea

You are the Shift Supervisor: What do you do?

Process Safety is a Major Concern: The BIG Ones

- Piper Alpha Disaster, Occidental Petroleum Scotland, 1988
 - Off-shore oil platform explosion
 - 164 people killed
 - \$2 Billion in losses

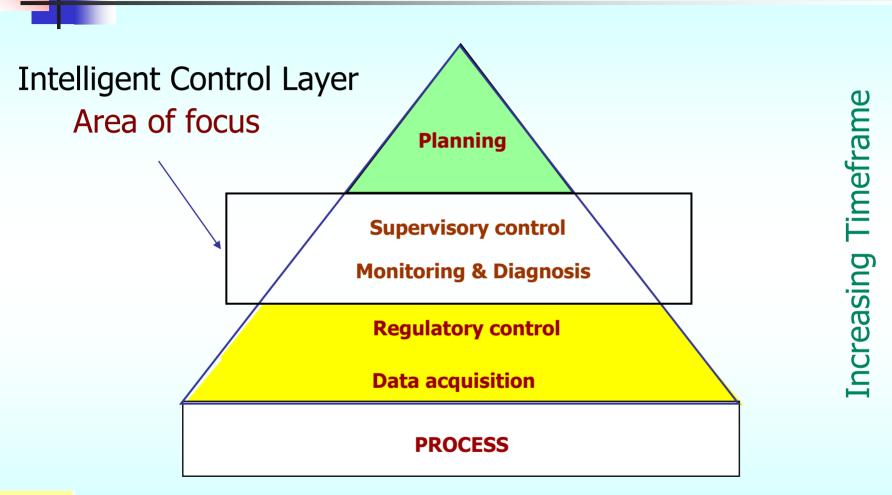
- MIC release into atmosphere
- 3000-10,000 people killed
- 100,000 injured
- \$0.5-1.0 Billion in losses

The BIG Ones: More recently....

- Mina Al-Ahmedhi Refinery, KPCL, Kuwait, June 2000
 - Leak led to flammable vapor release and explosion
 - 7 people killed, 50 injured
 - \$400 Million in losses
- Petrobras, Brazil, March 2001
 - Off-shore oil platform explosion
 - 10 people killed, \$5 Billion in losses
 - Platform sank into the Atlantic Ocean

AEM Lessons Learned

- Need intelligent real-time operator support
- Need more thorough PHA and integration with AEM
 - New OSHA/EPA regulations
- Importance of Operator Training
- Management/Organization commitment to AEM and PHA


AEM Problem: Important and Challenging

- \$20B+ impact on U.S. economy; \$10B impact on petrochemical companies
- Petrochemical companies have rated AEM their #1 problem
- Modern plants are more difficult to control, diagnose and manage

Process Operations Pyramid

Next Control Frontier:Intelligent Control

What are Intelligent Control Systems?

- Computer-based systems that can assist human operators with higher-level decision making to manage a complex process plant safely and optimally
- Beyond Regulatory Control

Real-time Supervisory Control Decisions

- Process Fault Diagnosis and Control: Abnormal Events Management (AEM)
- Alarm analysis and interpretation
- Optimal control
- Start-up and shut down

Next Frontier in Control Systems Design and Analysis

AEM Challenges

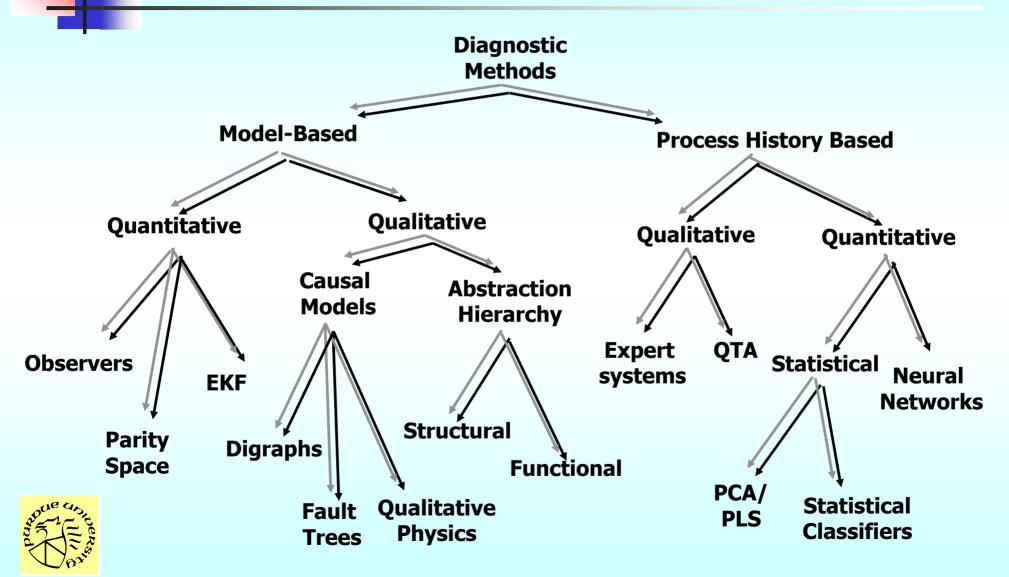
Intelligent Control System

- Fundamental Issues: Knowledge Representation and Search
- Implementation Issues
- Integration with other systems
 - Regulatory Control, Real-Time Optimizers, Scheduling, Databases etc.
- People/Organization Issues
 - Operator Acceptance, Training
 - Liability

Desirable Features of an Intelligent Control System

- Early detection & diagnosis
- Isolability : discriminate between failures
- Robustness : to noise & uncertainities
- Novelty Identifiability : novel malfunction
- Explanation facility : Fault propagation
- Adaptability : Processes change & evolve
- Reasonable storage & computational requirement

Multiple Fault Identifiability : Difficult requirement


Diagnostic Approaches – Brief Review

- Process Fault Diagnosis: First Step in Intelligent Control
- Diagnostic Philosophies
 - Source of Process knowledge
 - Process Model
 - Process History
 - Form of Process knowledge
 - Qualitative
 - Quantitative
- Process Model : *Deep, Causal or Model-Based knowledge*

Process History : *Shallow, Compiled, Evidential* © V.Venkatasubramanian

Classification of Diagnostic Methods

Comparison of Different Diagnostic Methods

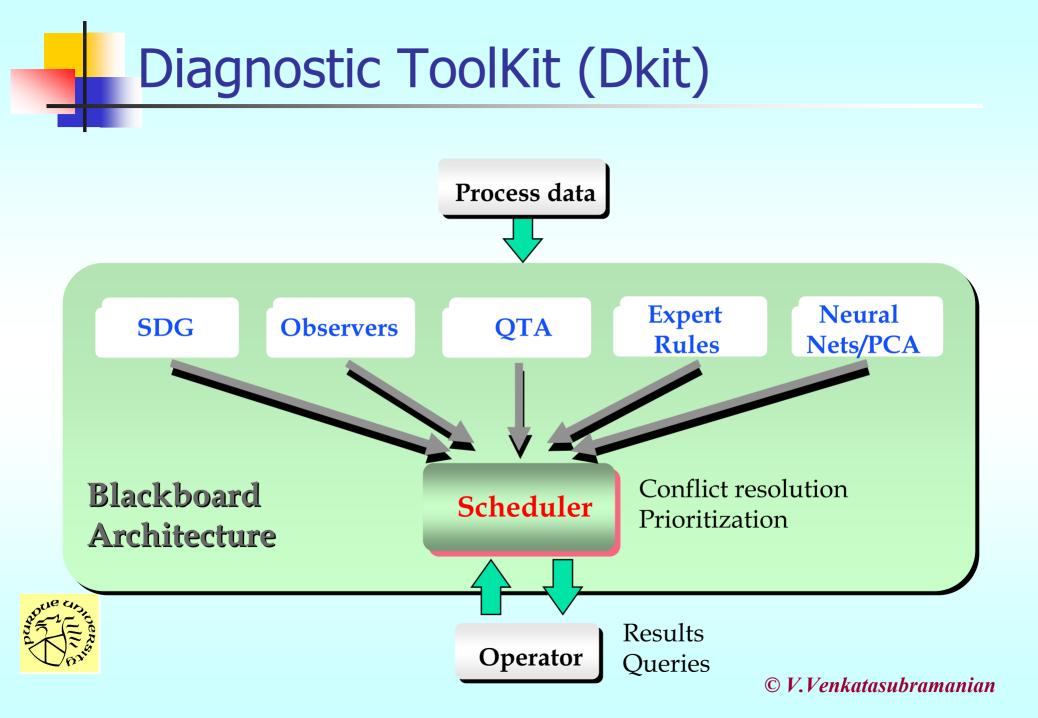
	Observer	Digraphs	Abstraction Hierarchy	Expert Systems	QTA	PCA	Neural . Networks
Quick Detection and Diagnosis	V	?	?	\checkmark	\checkmark	\checkmark	~
Isolability	\checkmark	×	×	\checkmark	\checkmark	×	\checkmark
Robustness	\checkmark	\checkmark	\checkmark	\checkmark	V	~	\checkmark
Novelty Identifiability	?	\checkmark	\checkmark	×	?	\checkmark	~
Classification Error	×	×	×	×	×	×	×
Adaptability	×	\checkmark	\checkmark	×	?	×	×
Explanation Facility	×	\checkmark	~	\checkmark	\checkmark	×	×
Modelling Requirement	?	~	~	\checkmark	\checkmark	\checkmark	~
Storage & Computation	~	?	?	\checkmark	\checkmark	\checkmark	\checkmark
Multiple Fault Identifiability	~	~	\checkmark	×	×	×	×

No single method achieves all

Emerging Trends Towards AEM

Hybrid Framework

No single method meets all the criteria of a 'good' diagnostic method


• A Hybrid Framework

- Involving different methodologies
- Based on a collective and synergistic approach to problem solving seems most promising (Mylaraswamy & Venkatasubramanian, 1997)
- Compensate one method's weakness with the strengths of another's

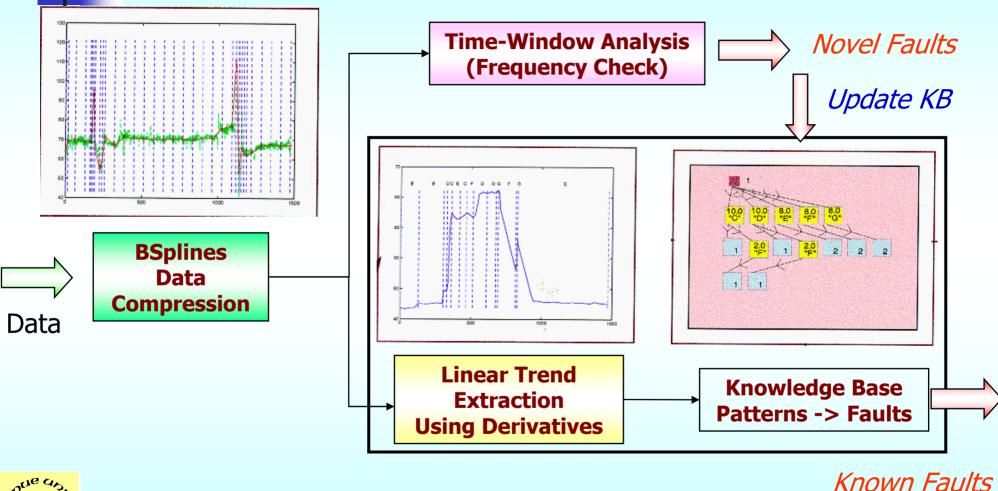
Dkit implemented in G2

- Effectiveness demonstrated on Model IV FCCU by successfully diagnosing wide varieties of faults
- Combined causal model-based diagnosis with statistical classifiers
- Basis for the prototype of the Honeywell ASM Consortium
- Licensed to Honeywell by Purdue University

ASM Consortium: Pilot Study at ExxonMobil

- BRCP Cold Ends; 500+ sensors, sampled every minute
- Started Feb. 1998. Historical data consists of annotated data for ~2months

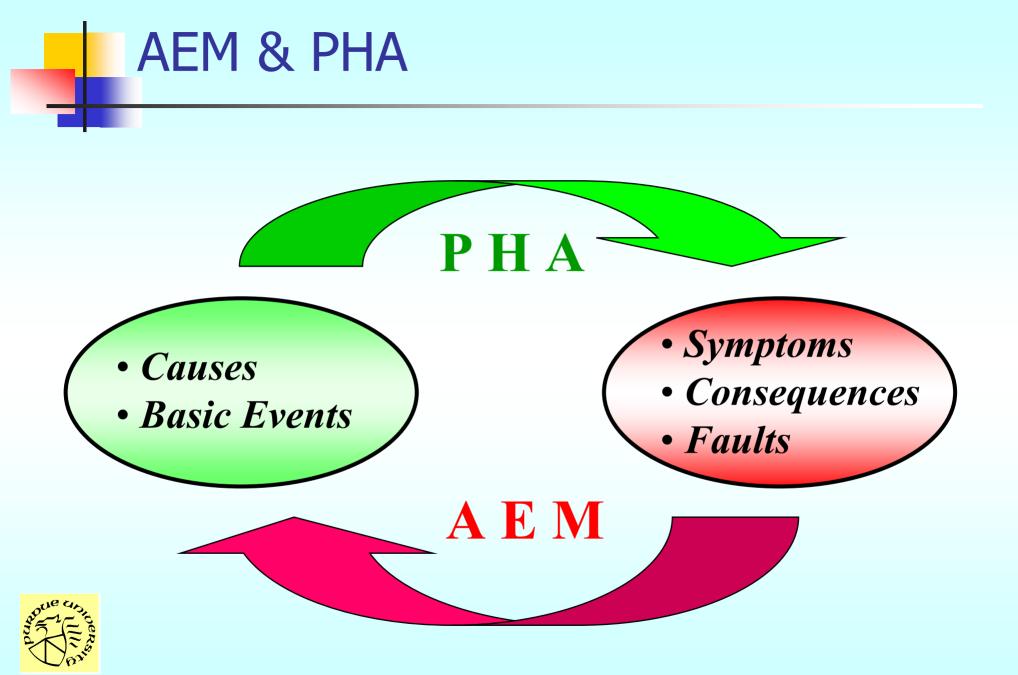
CHALLENGES


- Problem size
 - # of sensors
 - Noisy Data : Robustness
 - Unreliable/Missing Data
- Incomplete annotations and operator logs

Not every event is captured

- Distinguish operational events from abnormalities
 - Routine Controller actions
 - Shutdown of a unit
- Definition of normal operation
 - Normal Region keeps shifting: Changes in Feed Quality, Market demands etc.

QTA at BRCP for Process Monitoring & Diagnosis


FEATURE EXTRACTION

FEATURE CLASSIFICATION

Training & Testing of QTA on Real-Time Process

- Training of QTA done using data over the initial 3 weeks
- Identified all significant events with a few false alarms
- Earlier than process alarms by about 30 mins
 - Oil accumulation in ND-02
 - Leaky valve affecting downstream temperature
- Robust to process noise/shifts in the normal regime of the process
- Adaptive: Incrementally add new event classes to the knowledge base
- Honeywell licensed the technology from Purdue in June 1999
 - In the process of being commercialized by Honeywell Hi-Spec

Process Hazards Analysis (PHA)

PHA is the proactive identification, evaluation and mitigation of process hazards

HAZOP analysis is the most widely used PHA approach

Motivation for Automation

- PHA requires significant amount of time, effort and specialized expertise
 - 1~8 weeks to complete a typical PHA study
 - \$4-5 billion/year expenses for CPI, 1% of sales, 10% of profits
 - About 25,000 plant sites are covered by PSM 1910
- An automated PHA system can:
 - Make the PHA more thorough and consistent
 - Reduce the time and effort of the team
 - Handle information overload and complexity
 - Document results for regulatory compliance
 - Handle management of change with ease
 - Train new operators

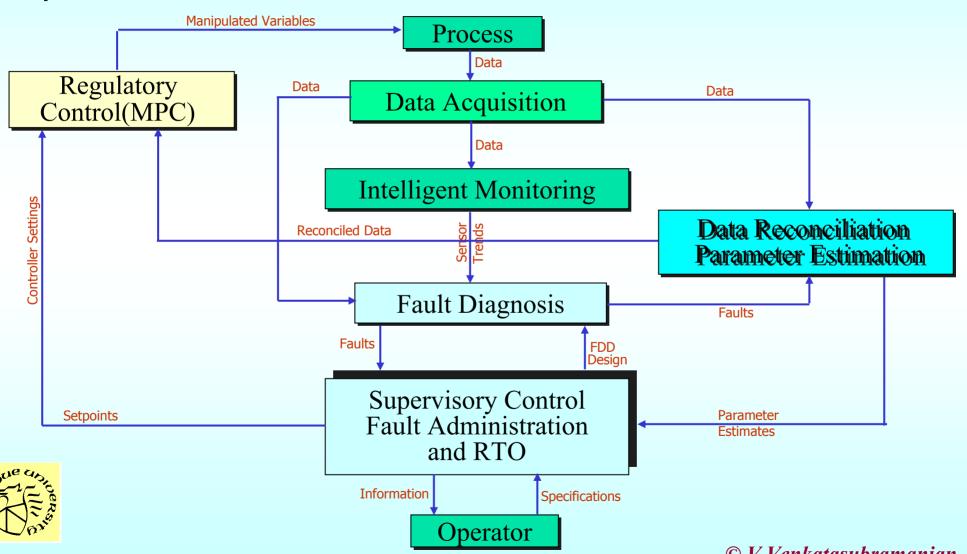
Online abnormal situation management applications

Future Directions

Prediction is Difficult, particularly about the Future.....

Niels Bohr

Future Directions in AEM



- Hybrid Intelligent Control Systems
 - System development/implementation, knowledge maintenance/management
- AEM-PHA Integration
- Integration with other systems
- People/Organization Issues
 - Operator Acceptance, Training

apr	ле -1	23.	6
bai	R	Ĩ	ers
\setminus	\cup	63	ç

Commitment, Liability

Computer Integrated Process Operations

© V.Venkatasubramanian

Future Directions

Operator Training for Safe Operations

Training: Developing Countries

When they don't value safety in their personal lives....

Courtesy: The Hindu, Jan 2001

What are the chances that they will take it seriously in your process plants?

Summary

- Complexity and size of modern chemical plants make it difficult to manage abnormal events (AEM) and analyze process hazards (PHA) effectively
- AEM has been identified as a very important problem by the process industries
 - Next Control Frontier: Intelligent Supervisory Control (ISC) Systems
- ISC systems can make a substantial improvement to current AEM practices in a variety of process industries
- We reviewed the approaches, challenges, emerging trends and future directions
 - Model based and Process history based approaches
 - Hybrid Systems
 - AEM/PHA integration, Integrated operations, Training

Considerable challenges remain but we have made great progress in the last decade and the future potential is enormous and exciting

Acknowledgements

Collaborators

- Prof. Raghu Rengaswamy, Clarkson
- Dr. Sourabh Dash, ExxonMobil
- Mano Ram Maurya, Purdue
- Dr. Mani Bhushan, Univ. of Alberta
- Past grad students and co-workers
- Funding Agencies
 - Honeywell ASM Consortium
 - ExxonMobil, ICI, Air Products, Mitsubishi,
 A D Little Searle Eli Lilly Nova Chemica
 - A. D. Little, Searle, Eli Lilly, Nova Chemicals
 - NSF, NIOSH
 - Purdue Trask Fund