

A Decision Support System based on Simulation and Optimization

Marco A. Duran Corporate Strategic Research ExxonMobil Research & Engineering Lifei Cheng
Dept of Chemical Engineering
Carnegie Mellon University

FOCAPO 2003, Coral Springs, Florida, January 12-15, 2003

Motivation and Objectives

- Transportation is the central operation between the "upstream" and "downstream" functions
- To investigate the behavior and improve the performance of the combined transportation and inventory system through simulation and optimization

World Wide Crude Logistics

- Crude supply
- Crude demand
- Tanker pool
- Tanker route
- Pipeline

Assume:

- $_{\Upsilon}$ Yearly world-wide crude transportation cost \sim 2 billion \$
- Crude transportation through tanker fleet and pipeline
- Decisions: Sizing and composition of the tanker fleet; dispatch and routing of tankers

Methodologies

- Discrete event simulation
 - → Conduct experiments with the model of a real system to investigate the system behavior and evaluate operation strategies

- Stochastic optimal control
 - → Decision makers periodically observe the state of the system and choose control actions according to certain policies

Decision Support System

- An integrated decision support system
 - → Simulation: Investigate behavior and evaluate performance
 - → Optimization: Find the optimal or near optimal policies

Simulation - Framework

Simulation - Model

- Discrete event simulation using Arena®
 - → Define the model using a process oriented approach
 - → Perform the simulation using an event driven approach

Controller Design

- Integration of simulation model and controller
 - → Access and monitor state information in simulation
 - → Manipulate variables or perform actions
- Active X automation through Visual Basic for Application
- Design and operate the tanker fleet

Physical actions	Arena actions
Rent/return tankers	Create/dispose entities
Dispatch tankers	Send release signals
Route tankers	Assign "route" attribute

Simulation - Animation

- Visualize the entity flow through in the dynamic system
 - → Movement: traveling tankers, crude parcel, etc
 - → Queuing: crude inventory, waiting orders, etc

Simulation - Report

- Summary report
 - \rightarrow Cost information total cost, cost per route, cost per type of tanker, cost per barrel, etc.
 - → System statistics tanker utilization, etc.
 - → Stochastic analysis
- Real-time state report
 - → Inventory levels
 - → Demand shortage
 - → Positions of tankers
 - → Status of pipeline

Statistical Analysis

- Analyze and interpret simulation results
- Evaluate system performance under various design and operation strategies
- Example, "How many spot tanker shall we rent?"

	Number of spot tanker	Total cost	Shortage penalty	Ship Utilizatio ⁿ
1	0	784656.50	122665.95	59%
2	10	775240.81	8603.27	60%
3	20	841588.52	8578.35	52%

Transportation-Inventory System

- Inventory routing problem
 - → A central decision maker is responsible for replenishing inventory by managing a fleet
 - → Coordination between inventory control and vehicle routing
 - → Transportation system serves as a buffer against demand shortage

14

Uncertainty in Travel Time

Incorporate uncertainty in tanker travel time into inventory/transportation system

$$\alpha_{nk\tau} = \begin{cases} 1 & \text{if tankers that have travled on route } (n,k) \text{ for } \tau \text{ days} \\ & \text{arrive today given that they have not arrived before} \\ & \text{otherwise} \end{cases}$$

$$p_{nk\tau} = P\{\alpha_{nk\tau} = 1\} = \frac{F_{nk}(\tau + 1) - F_{nk}(\tau)}{F_{nk}(\infty) - F_{nk}(\tau)} \qquad F_{nk}(t) \qquad \begin{array}{c} \text{Probability} \\ \text{distribution of} \\ \text{travel time} \end{array}$$

January 15, 2003

Stochastic Optimal Control

- Y State information
 - → Inventory levels, Demand shortages, Tanker positions, Status of pipeline transportation
- Y Control decisions
 - → Dispatch and routing of existing fleet
 - → Creating (chartering or spotting) and returning of tankers
- Y Uncertainties
 - → Crude demands, Tanker travel time, etc.

Minimize: E {Transportation cost + Inventory cost + Shortage penalty...}

Schematic Model

January 15, 2003

A simplified representation of the combined inventory/transportation system

17

Mathematical Formulation

System state s(t)

 $w_{ii}(t)$ number of tankers j at location i

 $x_{nkj\tau}(t)$ number of tankers j traveling on route (n,k) for τ days

 $z_i(t)$ inventory level at location i

Control action u(t)

 $y_{nkj}(t)$ number of tankers j dispatched to route (n,k)

 $r_{ii}(t)$ number of tankers j rented/returned at location i

Random variable ω(t)

 $d_i(t)$ number of tankers j rented/returned at location i

 $\alpha_{nk\tau}(t)$ =1 if tankers j that have been traveled on route (n,k) for τ days arrive

Mathematical Formulation (cont.)

• State equations $s(t+1) = f_t(s(t), u(t), \omega(t))$

$$w_{0j}(t+1) = w_{0j}(t) - \sum_{k=1}^{7} y_{1kj}(t) + \sum_{k=1}^{7} \sum_{\tau=a_k}^{b_k} \alpha_{2k\tau} x_{2kj\tau}(t) + r_{0j}(t) \quad \text{tanker pool}$$

$$z_0(t+1) = z_0(t) - \sum_{j=1}^{3} \sum_{k=1}^{6} y_{1kj}(t) \cdot c + v(t) \quad \text{inventory change}$$

- Cost equations g_t(s(t),u(t))
 tanker costs + operating costs + holding costs + inventory costs + shortage penalty + canal toll + pipeline costs ...
- Control Set u(t)∈ U(s(t))

$$0 \le \sum_{k=1}^{7} y_{1kj}(t) \le w_{0j}(t) + r_{0j}(t)$$
 tanker availability
$$\sum_{j=1}^{3} y_{21j}(t) \le (MC_1 - z_1(t))/c$$
 storage availability

Dynamic Programming

Optimal control is to find a strategy π , which is a sequence of control policies $\pi = (\mu_1, ..., \mu_N) \in \Pi$ $u_t = \mu_t(s_t)$

$$\pi = (\mu_1, \dots, \mu_N) \in \Pi \qquad u_t = \mu_t(s_t)$$

such that

$$J_{\pi^*}(s_0) = \min_{\pi \in \Pi} E\left\{ \sum_{t=1}^{N-1} g_t(s_t, \mu_t(s_t), \omega_t) + g_N(s_N) \right\}$$

Bellmans' equations

$$J_{t}(s_{t}) = \min_{u_{t} \in U(s_{t})} \{g_{t}(s_{t}, u_{t}) + E\{J_{t+1}(s_{t+1}) | s_{t}, u_{t}\}\}$$

$$\mu_{t}(s_{t}) = \arg\min_{u_{t} \in U(s_{t})} \{g_{t}(s_{t}, u_{t}) + E\{J_{t+1}(s_{t+1}) | s_{t}, u_{t}\}\}$$

 $\forall s_t \in S$ N(s) is prohibitively large – "curse of dimensionality"

Solution Strategies

- Decomposition of the system
 - → A controler for each subsystem
- Approximation of subproblems
 - → Parametric function approximation of individual cost function
 - → Find a parameter that minimizes error

$$\widetilde{J}_{mt}(s_{mt}, v_{mt}, \theta_t) = \theta_{1t}\phi_1(s_{mt}, v_{mt}) + \cdots + \theta_{Kt}\phi_K(s_{mt}, v_{mt})$$

 $\mathcal{V}_{\mathit{mt}}$ tanker capacity assigned to θ_{t} parameter vector subsystem m

$$\min_{\theta_{t}} \sum_{\left(s_{mt}, v_{mt}\right) \in S} \gamma_{mt} \left(s_{mt}, v_{mt}\right) \left[J_{mt}\left(s_{mt}, v_{mt}\right) - \widetilde{J}_{mt}\left(s_{mt}, v_{mt}, \theta_{t}\right)\right]^{2}$$

Solution Strategies (cont.)

- Computation of control policies
 - → Approximate the overal cost function by solving a knapsack problem
 - → Find near optimal policies based on the Bellman equations

Sub 1 ... Sub N
$$\hat{J}_1(s_1, \theta_1)$$
System $\hat{J}(s)$
Control policy $\hat{\mu}(s)$

$$\hat{J}_{t}(s_{t}) = \min_{v_{mt} \in Z_{+}^{1}} \left\{ \sum_{m=1}^{4} J_{mt}(s_{mt}, v_{mt}) + r_{02} \cdot CC \right\}$$

$$\sum_{m=1}^{4} v_{mt} \le \begin{pmatrix} w_{01t} \\ w_{02t} + r_{02} \\ w_{03t} \end{pmatrix}$$

$$\hat{\mu}_{t}(s_{t}) = \arg\min_{u_{t} \in U(s_{t})} \{g_{t}(s_{t}, u_{t}) + E\{\hat{J}_{t+1}(s_{t+1}) | s_{t}, u_{t}\}\}$$

Approximate Algorithm

Refinery Operation

Assume: A typical large refinery

- ~ 3-10 Crude tanks
- ~ 10-30 Intermediate tanks
- ~ 30-50 Product tanks
- ~ 2 week demand amount of inventory

Assume:

- Tank investment ~ 3 million \$/each; Tank yearly operating cost ~ 150 thousand \$/each
- Continuous blending technology makes it possible to produce finished products only when they are needed
- Decisions: ordering/delivery, real-time plant operation

Model Formulation

- Inventory I(t): Ic_i crude; Ii_j intermediate; Ip_k product
- Flowrates F(t): Fc_i feed; Ft_j , Fb_j tank/blender splits; Fbb_{jk} , Fib_{jk} blend recipes \cdots
- Equations: e.g. $Ip(k,t) = Ip(k,t-1) Vd(k,t-1) + Fp(k,t-Lt-1) \dots$ Lt- transportation lead time
- Objective: Cost = $\alpha \sum_{t} I(t) \overline{P}(t) + \sum_{t} S(t) \overline{C}(t) \cdots \alpha$ interest rate

January 15, 2003

Moving Horizon Control (sub-optimal)

- State information
 - → Inventory levels (crude, intermediate, finished)
 - → Crude supply/Product demand
 - → Production yields

Minimize: Inventory/Tankage cost

Uncertainty

+ Shortage penalty

- Control decisions
 - → Purchase/Delivery
 - → Plant operation (feed, tank/ blend splits, blend recipes)
- Uncertainties
 - → Crude supply availability
 - → Production yields
 - → Product stream prices

January 15, 2003

Conclusions

Systematic decision makings in the supply chain management through simulation and optimization

Supply Chain Optimization

Crude logistics system

- Coordination between transportation and inventory control
 Simulation based investigation and evaluation
 Optimal control of the transportation/inventory system

- Approximation architecture for computing policies
- Currently working on model verificatiovalidation and efficiency improvement
- Could be implemented in a world wide crude logistics system