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@ Classical stochastic programming
@ Modeling issues

o Risk aversion
o Distribution robustness

@ Algorithmic issues
e Sampling
o Optimization

Based on work with J. Luedtke, A. Shapiro, and W. Wang.
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Classical Stochastic Programming
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Stochastic Programming

SP: min {f(x) = Ep[F(x,¢)]}

@ Xx is the decision vector,

@ X is the set of feasible solutions,

@ ¢ is arandom vector with known distribution P,
@ Fis a “cost” function, and

@ we want to minimize expected cost.
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@ Newsvendor
e x: order quanity; &: demand

o F(x,&)=qi(Xx—&++g-({—x)+
o X =R,.
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@ Portfolio selection

e x: investment proportions; &: asset returns
e F(x,¢&): portfolio loss function, e.g. F(x,&) == —¢Tx
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@ Newsvendor
e x: order quanity; &: demand

o F(x,&)=qi(Xx—&++g-({—x)+
o X =R,.

@ Portfolio selection
@ x: investment proportions; ¢: asset returns
e F(x,¢&): portfolio loss function, e.g. F(x,&) == —¢Tx
e X:={xecR": e'x=1, x>0}

@ Two-stage stochastic programs
o x: first stage decisions; ¢: uncertain parameters; y: second stage
decisions
o F(x,¢:=(q,h, T))=min{q'y: Wy >h— Tx}
o X:={xeR": Ax > b}
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2S5-SP Example: Supply Chain Network Design

@ Strategic decisions: Locate DCs
and warehouses

@ Operational decisions:
Shipments through the network
to satisfy customer demands

@ Locate — observe demand —
ship.
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Issues

SP: min {f(x) := Ep[F(x,8)]}
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Issues

SP: min {f(x) := Ep[F(x,8)]}

o (Typically) evaluating f(X) = Ep[F (X, £)] exactly is impossible.
@ Large-scale optimization problem.

Stochastic Programming ~ Sampling + (Deterministic) Optimization
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Sample Average Approximation
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Sample Average Approximation

@ Generate i.i.d sample (¢',...,¢N) from P.
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Sample Average Approximation
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N
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Sample Average Approximation

@ Generate i.i.d sample (¢',...,¢N) from P.
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N
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@ Let vy be the optimal value and Xy be the set of optimal solutions.
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@ Let vy be the optimal value and Xy be the set of optimal solutions.
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Sample Average Approximation

@ Generate i.i.d sample (¢',...,¢N) from P.
@ Solve

N
SAAy: min {iy(x):= N g[F(X,é’)]}

@ Let vy be the optimal value and Xy be the set of optimal solutions.

@ Let v* and X* be the optimal value and optimal solution set for SP
(assume these exist).

@ What is the relation between vy and v* and between Xy and X*
w.r.t sample size N?

@ How to solve SAAN?
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Convergence

Theorem (Shapiro, Wets, Birge etc.)
As N — oo, vy and Xy converges to their true counterparts v* and X*
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Convergence

Theorem (Shapiro, Wets, Birge etc.)

As N — oo, vy and Xy converges to their true counterparts v* and X*
... exponentially fast!

@ Implication: For problem with n variables, with

v-o(3)

an optimal solution to SAAy is an e-optimal solution to SP with
very high probability.

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 9/41



Convergence

Theorem (Shapiro, Wets, Birge etc.)

As N — oo, vy and Xy converges to their true counterparts v* and X*
... exponentially fast!

@ Implication: For problem with n variables, with

v-o(3)

an optimal solution to SAAy is an e-optimal solution to SP with
very high probability.

@ SAAy also serves in a simple statistical procedure to validate the
quality of a candidate solution.
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Optimization via Decomposition

min f(x)
st. xeX

(v?,s?)
VeFRE) | [VeFRE) [ vieF(Y)
st e OF (X, &Y s? e oF (X, &£2) sM e oF (X,&V)
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Risk Aversion
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SP: min {f(x) := E[F(x, ]}

@ Why expected costs?
@ Given x, the objective (cost) is a random variable F(x,¢).

@ We need a scalar measure to compare solutions x' and x2.
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Risk functions p

@ Arisk function is a mapping that assigns a real number p[Z] to a
random variable Z.

@ Examples:

Expected value: p[Z] = E[Z]

Expected (dis)utility: p[Z] = E[u(Z)]

Mean-Variance: p[Z] = E[Z] + AV[Z]

a-quantile or a-VaR: p[Z] = K,[Z] = min{t: Pr(Z <t) > a}
a-Conditional-VaR: p[Z] = CVaR, = E[Z|Z > K,[Z]]

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 13/41



Risk Averse SP

RASP . min {f(x) := plF(x.)]}
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Risk Averse SP

RASP . min {f(x) := plF(x.)]}

@ Choice of p is (mostly) a modeling issue.

@ How to solve RASP? (Sampling + Optimization)

@ Expected (dis)utility — straight-forward (Rutenberg '73).

@ Ultility function hard to elicit — Dispersion statistics preferred.
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Mean-Risk Optimization

@ We will consider risk functions of the form
plZ] = 7E[Z] + AD[Z]

where D is a dispersion measure, and v and A are trade-off
weights.
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Mean-Risk Optimization

@ We will consider risk functions of the form
plZ] = 7E[Z] + AD[Z]

where D is a dispersion measure, and v and A are trade-off
weights.

@ Can analyze risk return tradeoff.
@ What D, ~, and X\ “makes sense”?

@ How do we solve (sampling + optimization) the corresponding
stochastic programs?
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Mean-Variance
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Mean-Variance

@ Markowitz approach:
plZ] = E[Z] + A\V[Z].
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Mean-Variance

@ Markowitz approach:
plZ] = E[Z] + A\V[Z].

@ V[F(x,&)]is often
non-convex.

@ Provably NP-hard.

F(x,6) = q+(x = &)+ +g-(§ — x)+
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Mean-Variance

@ Markowitz approach:
p[Z] = E[Z] + \V[Z].

@ V[F(x,&)]is often
non-convex.

@ Provably NP-hard.

@ Sampling theory hard to T
extend. F(x.€) = qe(x = ) + (€ = x)s
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Value-at-Risk Optimization

@ VaR Stochastic Programming:

min{f(x) := K,[F(x,&)]: x € X}.
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Value-at-Risk Optimization

@ VaR Stochastic Programming:

min{f(x) := K,[F(x,&)]: x € X}.

@ Equivalent to a chance-constrained stochastic program:

min{t: Pr[F(x,&) —t<0] > a, x € X}

@ Non-convex even in the linear setting F(x,&) = —¢' x.
@ Sampling theory extended (Luedtke + A.’08)
@ SAAy is NP-hard, solve via integer programming
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Distribution Robustness
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Distribution Robustness

SP: min {f(x) := Ep[F(x,8)]}

@ SP assumes precise knowledge of underlying distribution P.
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Distribution Robustness

SP: min {f(x) := Ep[F(x,8)]}

@ SP assumes precise knowledge of underlying distribution P.
@ In the SAA framework, a sampling oracle for P is needed.
@ How to handle imprecision of the distribution?
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Distribution Families

@ Instead of knowing P exactly, suppose we only know a family P of
likely distributions.

@ E.g. We have estimated a nominal distribution P° and to account
for estimation errors we can consider

P={P: (1-&)P° <P =(1+e)P’ Ep[1] =1},

where 0 < e¢1 < 1and 0 < eo.
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Distribution Robust SP

DRSP : mi Ep[F
SP - min max Ep[F(x, ¢)]

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 21/ 41



Distribution Robust SP

DRSP : mi Ep[F
SP - min max Ep[F(x, ¢)]

@ Convex problem in x, but evaluation may be difficult.

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 21 /41



Distribution Robust SP

DRSP : mi Ep[F
SP - min max Ep[F(x, ¢)]

@ Convex problem in x, but evaluation may be difficult.
@ Sampling theory does not immediately extend.

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 21 /41



Distribution Robust SP

DRSP : mi Ep[F
SP: min max Ep[F(x, )]

@ Convex problem in x, but evaluation may be difficult.
@ Sampling theory does not immediately extend.

@ Q. Can we extend classical SP methodology (sampling and
optimization) to DRSP?
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Distribution Robust SP

DRSP : mi Ep[F
SP - min max Ep[F(x, ¢)]

@ Convex problem in x, but evaluation may be difficult.
@ Sampling theory does not immediately extend.

@ Q. Can we extend classical SP methodology (sampling and
optimization) to DRSP?
@ A. Yes (for some P) but indirectly.
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Distribution robustness and risk aversion
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Distribution robustness and risk aversion

Theorem (Artzner et al.'99)

IfP is a closed convex family of distributions then there exists a
(convex + ...) risk function p such that

maxEe[Z] = p[Z];

and vice versa.
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Distribution robustness and risk aversion

Theorem (Artzner et al.'99)

IfP is a closed convex family of distributions then there exists a
(convex + ...) risk function p such that

maxEe[Z] = p[Z];

and vice versa.

@ Follows from conjugate duality.

@ The associated risk functions are “consistent” with rational choice

(e.g. stochastic ordering, risk aversion, coherence etc.).
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Consider a setting with K scenarios:
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Consider a setting with K scenarios:

K K
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k=1 k=1

K
= mAinmSX{MkZ_;pk(F(x,&k) —A): 0< pe < (1 +e)p2}
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Consider a setting with K scenarios:

K K
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k=1 k=1

K
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k=1

m/\in{)\+(1+ez (F(x, &%) — )}

=
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k=1 k=1

K
:mlnmax{A+Zpk(Fx§) )ngk§(1+e)p2}
k=1

K

mAin{)\+(1+e D PR(F(x,€9) = )4 }
k=1

= min{A+ (1 + )E(F(x,€) = A)+}

= CVaR[F(x, )]
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Equivalence
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Equivalence

@ When p is a convex risk function and IP is a closed convex set,

min max Ep[F(x, )] < min p[F(x, £)]
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Equivalence

@ When p is a convex risk function and IP is a closed convex set,

min max Ep[F(x, )] < min p[F(x, £)]

@ Unified way of treating both distribution robustness and risk
aversion.
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Equivalence

@ When p is a convex risk function and IP is a closed convex set,

min max Ep[F(x, )] < min p[F(x, £)]

@ Unified way of treating both distribution robustness and risk
aversion.

@ We focus on solving the risk model.
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Band distribution family

Given a nominal distribution P° consider the “band” distribution family
P={P: (1-¢)P°<P=<(1+e)P° Ep[1]=1}

With0§61§1and0§eg.
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The Mean-QDEV Risk Function

Theorem

The risk function corresponding to the band family is

p[Z] = Epo[Z] + AQDEV,[Z]
where \ = (e1 + e2) and o = ea/(e1 + €2), and

QDEV,[Z] = Epo[lZ — Ka[Z])1 + (1 — a)(KalZ] — Z)4].

Y
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Mean-ASD

@ Note that ¢1 + e, controls the “width” of the “band” and e»/(e1 + €2)
controls its “position.”
@ If the worst position is allowed then the corresponding coherent
risk measure is
2] = Eppl2] + \Eps[(Z — EZ) ]
with A = (€1 + €2).
@ MASD|Z] :=Ep[(Z —EZ)4].

|
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Two Mean-Risk SP Models
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Two Mean-Risk SP Models

@ We consider mean-risk models
ngiQ{E[F(x, )] + AD[F(x, )]}

where D is

() QDEV,
(i) MASD

@ Equivalent to RSP models corresponding to the “band” distribution
family.
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Two Mean-Risk SP Models

@ We consider mean-risk models
ngiQ{E[F(x, )] + AD[F(x, )]}

where D is
() QDEV,
(i) MASD
@ Equivalent to RSP models corresponding to the “band” distribution
family.
@ Can we extend SAA? Can we optimize SAAy efficiently?

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 28 /41



Mean-QDEV
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Mean-QDEV

A Mean-QDEV SP is equivalent to a standard (expectation
minimization) SP.
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Mean-QDEV

A Mean-QDEV SP is equivalent to a standard (expectation
minimization) SP.

QDEV,[Z] = minyer E[a(Z — y)+ + (1 — a)(y — 2)4]
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Mean-QDEV

A Mean-QDEV SP is equivalent to a standard (expectation
minimization) SP.

QDEV,[Z] = minyer E[a(Z — y)+ + (1 — a)(y — 2)4]

min E[F(x, )] + AQDEV[F(x. )

T
Jpin | E[FO O]+ ha(F(.6) —y) + M1 — )y ~ F(x.9).]
B(X.y:€)
T
min _ E[¢(x, y,¢)].

xeX,yeR
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Solving Mean-QDEV SP
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Solving Mean-QDEV SP

@ When X is compact the domain of y is compact.
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Solving Mean-QDEV SP

@ When X is compact the domain of y is compact.

@ Existing SAA analysis and method applies directly (dimension
goes up by one).
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Solving Mean-QDEV SP

@ When X is compact the domain of y is compact.

@ Existing SAA analysis and method applies directly (dimension
goes up by one).

@ When F is linear and X is polyhedral, the corresponding SAAy
problem is a linear program.

@ When F is convex (e.g. two-stage stochastic linear programs) and
X is polyhedral, a specialized parametric decomposition algorithm
has been developed to construct the efficient frontier (Mean vs
QDEV).
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Mean-MASD SP

A Mean-MASD SP is equivalent to a minimax (expectation
minimization) SP.

min {E[F(x, £)] + AMASDIF(x, ¢)]}
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Mean-MASD SP

A Mean-MASD SP is equivalent to a minimax (expectation
minimization) SP.

min {E[F(x, £)] + AMASDIF(x, ¢)]}

)

min max_ {E[F(x, )] + AQDEV,[F(x,&)]}
xeX ael0,1]
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Mean-MASD SP < Minmax SP (contd)

min max min < E[F(x, &) + Aa(F(x,8) = ¥)+ + A(1 = a)(y — F(x,£))+]
xeX acl0,1] yeR
P(x,y,0.8)
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Mean-MASD SP < Minmax SP (contd)

min max min {E[F(x,{) + Xa(F(x,€) —y)4 + 21 —a)(y — F(Xaﬁ))d}

xeX a€l0,1] yeR
w(x7.y7a7§)

)

i E
(pin arg[% {E[¢(x,y,a,8)]}
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Stochastic Minimax Problems
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Stochastic Minimax Problems
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Stochastic Minimax Problems

@ The mean-ASD problem is equivalent to a stochastic minimax
problem.

@ Existing SAA approaches do not apply directly.
@ Decomposition is not obvious.
@ Consider general stochastic minimax problems

Xmei)rg rpeag({w(x,y) =E[F(x,y,9l}

where X and Y are compact convex sets, and F is convex in x
and concave in y a.e.
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SAA for Stochastic Minimax Problems
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SAA for Stochastic Minimax Problems

N
] o —1 i
SAA: vy = minmax(N g[F(x,y,s)]}
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SAA for Stochastic Minimax Problems

N
] o —1 i
SAAN: W= xmeI)Q Tga({N ;[F(X,y,{ )]}

Theorem

As N — oo, vy and Xy converges to their true counterparts v* and X*
exponentially fast. So with

N:O(nx":n}’>
€

an optimal solution to SAAy is an e-optimal solution to minmax SP with
very high probability.

v
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Solving SAAy for mean-MASD

@ Sharper sample size estimates for Mean-MASD stochastic
programs.

@ We have developed statistical validation techniques to screen
candidate solutions from SAAy.

@ How to decompose?
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Decomposition of mean-MASD SP

E[F(x,&)] + AMASDI[F(x,¢&)]

E[F(x,&)] + AE[F(x, &) — E[F(x,)]]+

(1 = ME[F(x, )] + Amax{F(x, &), E[F(x, )]}
(1 = Nu(x) + Av(x)
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E[F(x,&)] + AE[F(x, &) — E[F(x,)]]+

(1 = ME[F(x, )] + Amax{F(x, &), E[F(x, )]}
(1 = Nu(x) + Av(x)

Let I(&) =1if F(x,&) > E[F(x,£)] and 0 otherwise. Given
s(¢) € OF(x,€) and s = E[s(¢)], let

§=E[I(§)s(&) + (1 - 1(£))s]
then s € ov(x).
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Decomposition of mean-MASD SP

E[F(x,&)] + AMASDI[F(x,¢&)]

E[F(x,&)] + AE[F(x, &) — E[F(x,)]]+

(1 = ME[F(x, )] + Amax{F(x, &), E[F(x, )]}
(1 = Nu(x) + Av(x)

Let I(&) =1if F(x,&) > E[F(x,£)] and 0 otherwise. Given
s(¢) € OF(x,€) and s = E[s(¢)], let

§=E[I(§)s(&) + (1 - 1(£))s]
then s € ov(x).

Thus, evaluation of . and v and its subgradients can be done in a
decomposed manner.
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lllustration: Inventory Problems

@ Considered Distribution robust newsvendor = Risk averse
newsendor

@ Analytical optimality equations.

@ Analysis of sensitivity of order quantity to distributional
inaccuracies = risk aversion.

@ For multi-period problems optimal policy structure is identical to
that of standard expectation minimization problems.
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Effect of distribution robustness

cost q

Classical SP solution
Robust SP solution
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lllustration: Supply Chain Network Design

@ A chemical supply chain adapted from Tsiakis, Shah & Pantelides,
2001

@ Two-stage problem (Mixed-integer first stage)

@ First-stage: Capacity of 6 warehouses and 8 DCs

@ Customer demand is uncertain (6 random variables)

@ Second-stage: Ship to customers + Outsource penalty

@ Minimize (annualized) capacity costs + shipping costs +
outsourcing penalty

@ Solved Expectation + 0.5*MASD model

@ Sample size = 500, Replications = 20, Evaluation sample size =
10000
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Results: Supply Chain Network Design

Model Deterministic Traditional SP Mean-MASD
costy 17541 22095 26556
R[costp] 144834 130156 126408
SD[cost,] 861 681 600
Pr{infeas}.g5(%) 4352 13.29 4.39
R[costs |feas] 109076 110104 118032
total-time 7.57 1414.32 1694.10
W1 (1300) 0 0 620
W2 (1100) 0 0 0
W3 (1200) 0 0 0
W4 (1200) 0 0 0
W5 (1100) 1100 1100 1100
W6 (1300) 610 1300 1239
D1 (1000) 800 1000 1000
D2 (900) 0 0 0
D3 ( 950) 0 0 0
D4 (1050) 910 1050 1050
D5 (1100) 0 0 0
D6 (1000) 0 0 0
D7 (980) 0 350 909
D8 (1050) 0 0 0
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Conclusions

@ Classical SP assumes accurate distribution and is risk-neutral.

@ SP with risk functions offer a unifying treatment of these
deficiencies.

@ Classical sampling and decomposition algorithms extended to
mean-MASD and mean-QDEV models.

@ Extended models not much harder than classical SP.

@ Additional research: Risk averse extensions of dynamic
(multi-stage) stochastic inventory problems.
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