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Classical Stochastic Programming
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Stochastic Programming

SP : min
x∈X

{
f (x) := EP [F (x , ξ)]

}

x is the decision vector,
X is the set of feasible solutions,
ξ is a random vector with known distribution P,
F is a “cost” function, and
we want to minimize expected cost.
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Examples

Newsvendor
x : order quanity; ξ: demand
F (x , ξ) := q+(x − ξ)+ + q−(ξ − x)+
X := R+.

Portfolio selection
x : investment proportions; ξ: asset returns
F (x , ξ): portfolio loss function, e.g. F (x , ξ) := −ξ>x
X := {x ∈ Rn : e>x = 1, x ≥ 0}

Two-stage stochastic programs
x : first stage decisions; ξ: uncertain parameters; y : second stage
decisions
F (x , ξ := (q,h,T )) = min{q>y : Wy ≥ h − Tx}
X := {x ∈ Rn : Ax ≥ b}
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2S-SP Example: Supply Chain Network Design

Strategic decisions: Locate DCs
and warehouses

Operational decisions:
Shipments through the network
to satisfy customer demands

Locate→ observe demand→
ship.
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Issues

SP : min
x∈X

{
f (x) := EP [F (x , ξ)]

}

(Typically) evaluating f (x̂) = EP [F (x̂ , ξ)] exactly is impossible.
Large-scale optimization problem.

Stochastic Programming ≈ Sampling + (Deterministic) Optimization
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Sample Average Approximation

Generate i.i.d sample (ξ1, . . . , ξN) from P.
Solve

SAAN : min
x∈X

{
fN(x) := N−1

N∑
i=1

[F (x , ξi)]
}

Let vN be the optimal value and XN be the set of optimal solutions.
Let v∗ and X ∗ be the optimal value and optimal solution set for SP
(assume these exist).

What is the relation between vN and v∗ and between XN and X ∗

w.r.t sample size N?

How to solve SAAN?
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Convergence

Theorem (Shapiro, Wets, Birge etc.)
As N →∞, vN and XN converges to their true counterparts v∗ and X ∗

... exponentially fast!

Implication: For problem with n variables, with

N = O
( n
ε2

)
an optimal solution to SAAN is an ε-optimal solution to SP with
very high probability.

SAAN also serves in a simple statistical procedure to validate the
quality of a candidate solution.
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Optimization via Decomposition

x̂ x̂ x̂

),ˆ( 11 ξxFs ∂∈
),ˆ( 11 ξxFv ∈

),ˆ( 22 ξxFs ∂∈
),ˆ( 22 ξxFv ∈

),ˆ( NN xFs ξ∂∈
),ˆ( NN xFv ξ∈

),( 11 sv ),( 22 sv ),( NN sv
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Risk Aversion
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Risk Aversion

SP : min
x∈X

{
f (x) := E[F (x , ξ)]

}

Why expected costs?
Given x , the objective (cost) is a random variable F (x , ξ).

),( 1 ξxF

),( 2 ξxF

We need a scalar measure to compare solutions x1 and x2.
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Risk functions ρ

A risk function is a mapping that assigns a real number ρ[Z ] to a
random variable Z .

Examples:
Expected value: ρ[Z ] = E[Z ]
Expected (dis)utility: ρ[Z ] = E[u(Z )]
Mean-Variance: ρ[Z ] = E[Z ] + λV[Z ]
α-quantile or α-VaR: ρ[Z ] = Kα[Z ] = min{t : Pr(Z ≤ t) ≥ α}
α-Conditional-VaR: ρ[Z ] = CVaRα = E[Z |Z ≥ Kα[Z ]]

α

1 − α

Kα CVaRα
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Risk Averse SP

RASP : min
x∈X

{
f (x) := ρ[F (x , ξ)]

}

Choice of ρ is (mostly) a modeling issue.
How to solve RASP? (Sampling + Optimization)
Expected (dis)utility→ straight-forward (Rutenberg ’73).
Utility function hard to elicit→ Dispersion statistics preferred.
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Mean-Risk Optimization

We will consider risk functions of the form

ρ[Z ] = γE[Z ] + λD[Z ]

where D is a dispersion measure, and γ and λ are trade-off
weights.
Can analyze risk return tradeoff.
What D, γ, and λ “makes sense”?
How do we solve (sampling + optimization) the corresponding
stochastic programs?
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Mean-Variance

Markowitz approach:
ρ[Z ] = E[Z ] + λV[Z ].
V[F (x , ξ)] is often
non-convex.
Provably NP-hard.
Sampling theory hard to
extend.
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V[f(x, ω)] is a non-convex function.

F (x , ξ) = q+(x − ξ)+ + q−(ξ − x)+
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Value-at-Risk Optimization

VaR Stochastic Programming:

min{f (x) := Kα[F (x , ξ)] : x ∈ X}.

Equivalent to a chance-constrained stochastic program:

min{t : Pr[F (x , ξ)− t ≤ 0] ≥ α, x ∈ X}

Non-convex even in the linear setting F (x , ξ) = −ξ>x .
Sampling theory extended (Luedtke + A.’08)
SAAN is NP-hard, solve via integer programming
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Distribution Robustness
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Distribution Robustness

SP : min
x∈X

{
f (x) := EP [F (x , ξ)]

}

SP assumes precise knowledge of underlying distribution P.
In the SAA framework, a sampling oracle for P is needed.
How to handle imprecision of the distribution?
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Distribution Families

Instead of knowing P exactly, suppose we only know a family P of
likely distributions.

E.g. We have estimated a nominal distribution P0 and to account
for estimation errors we can consider

P = {P : (1− ε1)P0 � P � (1 + ε2)P0, EP [1] = 1},

where 0 ≤ ε1 < 1 and 0 ≤ ε2.
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Distribution Robust SP

DRSP : min
x∈X

max
P∈P

EP [F (x , ξ)]

Convex problem in x , but evaluation may be difficult.
Sampling theory does not immediately extend.
Q. Can we extend classical SP methodology (sampling and
optimization) to DRSP?
A. Yes (for some P) but indirectly.
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Distribution robustness and risk aversion

Theorem (Artzner et al.’99)
If P is a closed convex family of distributions then there exists a
(convex + ...) risk function ρ such that

max
P∈P

EP [Z ] = ρ[Z ],

and vice versa.

Follows from conjugate duality.
The associated risk functions are “consistent” with rational choice
(e.g. stochastic ordering, risk aversion, coherence etc.).
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Example

Consider a setting with K scenarios:

max
p

{
K∑

k=1

pkF (x , ξk ) :
K∑

k=1

pk = 1, 0 ≤ pk ≤ (1 + ε)p0
k

}

= min
λ

max
p

{
λ+

K∑
k=1

pk (F (x , ξk )− λ) : 0 ≤ pk ≤ (1 + ε)p0
k

}

= min
λ

{
λ+ (1 + ε)

K∑
k=1

p0
k (F (x , ξk )− λ)+

}
= min

λ
{λ+ (1 + ε)E(F (x , ξ)− λ)+}

= CVaR[F (x , ξ)]
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Equivalence

When ρ is a convex risk function and P is a closed convex set,

min
x∈X

max
P∈P

EP [F (x , ξ)]⇔ min
x∈X

ρ[F (x , ξ)]

Unified way of treating both distribution robustness and risk
aversion.
We focus on solving the risk model.
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Band distribution family

Given a nominal distribution P0 consider the “band” distribution family

P = {P : (1− ε1)P0 � P � (1 + ε2)P0, EP [1] = 1}

with 0 ≤ ε1 ≤ 1 and 0 ≤ ε2.

P0

P
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The Mean-QDEV Risk Function

Theorem
The risk function corresponding to the band family is

ρ[Z ] = EP0 [Z ] + λQDEVα[Z ]

where λ = (ε1 + ε2) and α = ε2/(ε1 + ε2), and

QDEVα[Z ] = EP0 [α(Z − Kα[Z ])+ + (1− α)(Kα[Z ]− Z )+].

α

1 − α

Kα
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Mean-ASD

Note that ε1 + ε2 controls the “width” of the “band” and ε2/(ε1 + ε2)
controls its “position.”
If the worst position is allowed then the corresponding coherent
risk measure is

ρ[Z ] = EP0 [Z ] + λEP0 [(Z − EZ )+]

with λ = (ε1 + ε2).
MASD[Z ] := EP0 [(Z − EZ )+].
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Two Mean-Risk SP Models

We consider mean-risk models
min
x∈X
{E[F (x , ξ)] + λD[F (x , ξ)]}

where D is

(i) QDEVα

(ii) MASD

Equivalent to RSP models corresponding to the “band” distribution
family.
Can we extend SAA? Can we optimize SAAN efficiently?
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Mean-QDEV

Theorem
A Mean-QDEV SP is equivalent to a standard (expectation
minimization) SP.

QDEVα[Z ] = miny∈R E[α(Z − y)+ + (1− α)(y − Z )+]

min
x∈X

E[F (x , ξ)] + λQDEVα[F (x , ξ)]

m
min

x∈X ,y∈R
E[F (x , ξ)] + λα(F (x , ξ)− y)+ + λ(1− α)(y − F (x , ξ))+︸ ︷︷ ︸

φ(x ,y ,ξ)

]

m
min

x∈X ,y∈R
E[φ(x , y , ξ)].

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 29 / 41



Mean-QDEV

Theorem
A Mean-QDEV SP is equivalent to a standard (expectation
minimization) SP.

QDEVα[Z ] = miny∈R E[α(Z − y)+ + (1− α)(y − Z )+]

min
x∈X

E[F (x , ξ)] + λQDEVα[F (x , ξ)]

m
min

x∈X ,y∈R
E[F (x , ξ)] + λα(F (x , ξ)− y)+ + λ(1− α)(y − F (x , ξ))+︸ ︷︷ ︸

φ(x ,y ,ξ)

]

m
min

x∈X ,y∈R
E[φ(x , y , ξ)].

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 29 / 41



Mean-QDEV

Theorem
A Mean-QDEV SP is equivalent to a standard (expectation
minimization) SP.

QDEVα[Z ] = miny∈R E[α(Z − y)+ + (1− α)(y − Z )+]

min
x∈X

E[F (x , ξ)] + λQDEVα[F (x , ξ)]

m
min

x∈X ,y∈R
E[F (x , ξ)] + λα(F (x , ξ)− y)+ + λ(1− α)(y − F (x , ξ))+︸ ︷︷ ︸

φ(x ,y ,ξ)

]

m
min

x∈X ,y∈R
E[φ(x , y , ξ)].

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 29 / 41



Mean-QDEV

Theorem
A Mean-QDEV SP is equivalent to a standard (expectation
minimization) SP.

QDEVα[Z ] = miny∈R E[α(Z − y)+ + (1− α)(y − Z )+]

min
x∈X

E[F (x , ξ)] + λQDEVα[F (x , ξ)]

m
min

x∈X ,y∈R
E[F (x , ξ)] + λα(F (x , ξ)− y)+ + λ(1− α)(y − F (x , ξ))+︸ ︷︷ ︸

φ(x ,y ,ξ)

]

m
min

x∈X ,y∈R
E[φ(x , y , ξ)].

S. Ahmed (GA Tech) Risk Averse SP FOCAPO 2012 29 / 41



Solving Mean-QDEV SP

When X is compact the domain of y is compact.
Existing SAA analysis and method applies directly (dimension
goes up by one).
When F is linear and X is polyhedral, the corresponding SAAN
problem is a linear program.
When F is convex (e.g. two-stage stochastic linear programs) and
X is polyhedral, a specialized parametric decomposition algorithm
has been developed to construct the efficient frontier (Mean vs
QDEV).
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Mean-MASD SP

Theorem
A Mean-MASD SP is equivalent to a minimax (expectation
minimization) SP.

min
x∈X
{E[F (x , ξ)] + λMASD[F (x , ξ)]}

m

min
x∈X

max
α∈[0,1]

{E[F (x , ξ)] + λQDEVα[F (x , ξ)]}
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Mean-MASD SP⇔ Minmax SP (contd)

m

min
x∈X

max
α∈[0,1]

min
y∈R

E[F (x , ξ) + λα(F (x , ξ)− y)+ + λ(1− α)(y − F (x , ξ))+︸ ︷︷ ︸
ψ(x ,y ,α,ξ)

]


m

min
x∈X ,y∈R

max
α∈[0,1]

{E[ψ(x , y , α, ξ)]}
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Stochastic Minimax Problems

The mean-ASD problem is equivalent to a stochastic minimax
problem.
Existing SAA approaches do not apply directly.
Decomposition is not obvious.
Consider general stochastic minimax problems

min
x∈X

max
y∈Y
{Ψ(x , y) := E[F (x , y , ξ)]}

where X and Y are compact convex sets, and F is convex in x
and concave in y a.e.
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SAA for Stochastic Minimax Problems

SAAN : vN = min
x∈X

max
y∈Y
{N−1

N∑
i=1

[F (x , y , ξi)]}

Theorem
As N →∞, vN and XN converges to their true counterparts v∗ and X ∗

exponentially fast. So with

N = O
(

nx + ny

ε2

)
an optimal solution to SAAN is an ε-optimal solution to minmax SP with
very high probability.
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Solving SAAN for mean-MASD

Sharper sample size estimates for Mean-MASD stochastic
programs.
We have developed statistical validation techniques to screen
candidate solutions from SAAN .
How to decompose?
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Decomposition of mean-MASD SP

E[F (x , ξ)] + λMASD[F (x , ξ)]
= E[F (x , ξ)] + λE[F (x , ξ)− E[F (x , ξ)]]+
= (1− λ)E[F (x , ξ)] + λmax{F (x , ξ),E[F (x , ξ)]}
= (1− λ)µ(x) + λν(x)

Let I(ξ) = 1 if F (x , ξ) > E[F (x , ξ)] and 0 otherwise. Given
s(ξ) ∈ ∂F (x , ξ) and s = E[s(ξ)], let

ŝ = E[I(ξ)s(ξ) + (1− I(ξ))s]

then s ∈ ∂ν(x).

Thus, evaluation of µ and ν and its subgradients can be done in a
decomposed manner.
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Illustration: Inventory Problems

Considered Distribution robust newsvendor = Risk averse
newsendor
Analytical optimality equations.
Analysis of sensitivity of order quantity to distributional
inaccuracies = risk aversion.
For multi-period problems optimal policy structure is identical to
that of standard expectation minimization problems.
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Effect of distribution robustness

P0P− P+

cost

Classical SP solution
Robust SP solution
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Illustration: Supply Chain Network Design

A chemical supply chain adapted from Tsiakis, Shah & Pantelides,
2001
Two-stage problem (Mixed-integer first stage)
First-stage: Capacity of 6 warehouses and 8 DCs
Customer demand is uncertain (6 random variables)
Second-stage: Ship to customers + Outsource penalty
Minimize (annualized) capacity costs + shipping costs +
outsourcing penalty
Solved Expectation + 0.5*MASD model
Sample size = 500, Replications = 20, Evaluation sample size =
10000
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Results: Supply Chain Network Design

Model Deterministic Traditional SP Mean-MASD
cost1 17541 22095 26556

Ê[cost2] 144834 130156 126408
SD[cost2] 861 681 600

Pr{infeas}0.95(%) 43.52 13.29 4.39
Ê[cost2|feas] 109076 110104 118032

total-time 7.57 1414.32 1694.10
W1 (1300) 0 0 620
W2 (1100) 0 0 0
W3 (1200) 0 0 0
W4 (1200) 0 0 0
W5 (1100) 1100 1100 1100
W6 (1300) 610 1300 1239
D1 (1000) 800 1000 1000
D2 ( 900) 0 0 0
D3 ( 950) 0 0 0
D4 (1050) 910 1050 1050
D5 (1100) 0 0 0
D6 (1000) 0 0 0
D7 ( 980) 0 350 909
D8 (1050) 0 0 0
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Conclusions

Classical SP assumes accurate distribution and is risk-neutral.
SP with risk functions offer a unifying treatment of these
deficiencies.
Classical sampling and decomposition algorithms extended to
mean-MASD and mean-QDEV models.
Extended models not much harder than classical SP.
Additional research: Risk averse extensions of dynamic
(multi-stage) stochastic inventory problems.
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