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Control and Operations

 Goals

— Control for operability
— Operations for economics

* Design Tools

— Similar optimization techniques

* Is combination elusive?
— Optimal feedback controllers with economic objectives, or
— Real-time dynamic economic optimization
Edgar, CompChE 2004
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Control and Operations
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Is it just a question of time scale separation and computational
complexity?



Controllers with economic objectives

Often the wrong idea
Automotive and aircraft control

* Control designed according to
stringent safety specs

* Control layer must not be
confused by fuel efficiency

* Operations and control are
strictly hierarchical



Car on Autopilot

the institute alert & |IEEE

The IEEE member news source 10 January 2012

B TECHFocCus

Crash-Free Commutes

There are about 33 000 traffic deaths annually in the United
States and 39 000 in European Union countries. Ninety
percent of roadway deaths could be avoided simply by making
cars smarter, according to Alberto Broggi and Azim
Eskandarian of the IEEE Intelligent Transportation Systems
Society. Their solution: Get rid of the drivers and let the cars
drive themselves. Learn more



Controllers with economic objectives

Idea that did not catch on

The Use of Economic Performance Measures to Synthesize Optimal Control Systems

Prasad S. R. K, Chintapalli and J. M. Douglas™

Universily of Massachusetts. Amberst, Massachussls 01002

Care must be taken in the synihesis of control sysiems which maximize the profiiability of a plant be-
cause optimization equations do not always have a solutior. When a typical process was constrained to
nstantanecusly give the deslgn product rate, a linear feedback controller was almost equivalent to the
mast profitable controller ang was superior to most other multivariable systems. Parturbation tech-

niques can ke used to assess the significance of the process nenlirearities and o deveiop multhvar -
able, nonlinear feedback controflers that are simple to implamenrnt,

ind. Eng. Chem., Fundam., Voi. 14, Na, 1, 1975



Outline

* Purpose of Feedback

e MDPC Practice
« “Separation theorem” for Control and Operations

* Importance of real world problems



Early History of Control

FELLDACH CROIT

Objectives:

e Stability (Maxwell, Routh, Stodola, Hurwitz,..)
« Remove effect of uncertainty (Bode, Nyquist, Nichols,...)

« Know what you don’t know!



Controller Synthesis — Linear Systems

LQ optimal control: Wiener, Kalman
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Controller Synthesis — Nonlinear Systems

* Pontryagin, control vector parametrization,
Dynamic Programming (Hamilton-Jacobi-Bellman )

1969 1981



Controller Synthesis — Linear Systems

In the spirit of Bode and Nichols

* Quantitative Feedback Theory QFT
(Horowitz, 1963)

* Inverse Nyquist Array
(Rosenbrock , 1969)

e Characteristic Loci ..e+.;-; n
(Kouvaritakis & MacFarlane, 1974)

=> Ideas did not catch on




Erik Ydstie — CAST Award 2007




Theory-Practice Gap

Main theme of CPC I in 1976
Explosive development of theory

had taken place

* Industry did not understand theory
« Academia had no clue about

real controller design

Exceptions: Astrom, Gilles, Balchen,...



CPC 1 Editorial (Mort Denn, Alan Foss)

The status of chemical process control has been a subject of
intense controversy in recent years. We are now two decades
into the era of modern control theory, and many theorists,
pointing to the apparent advanced applications in the aerospace
industry, wonder at the slow pace of application in the process
industries. Control practitioners conventionally argue that the
modern theory is not relevant to chemical process control and
that classical techniques and designer experience will always
lead to a satisfactory and perhaps optimal solution. Publications
by members of these groups have done little to establish a
satisfactory dialogue; few practitioners have more than a
superficial knowledge of modern control theory, and modern
control researchers have produced few convincing examples of
successful process applications.



Theory-Practice Gap: Model Uncertainty

« Control Objective did not address robustness / uncertainty
directly. Indirect effect of tuning parameters was not
understood (Horowitz, Shinnar, J. Doyle,...)

8 Ind Eng. Chem. Procass Des. Dav., Vol 18, Mo, 1, 1979

Design of Sampled Data Controllers

Zalman J. Palmor' and Reusl Shinnar*

Papariment of Chemical Engltearing, The City College of The Oity University of New York, New York, New York 10031

linearized models. A good design procedure must take into
account that there is a finite but unknown deviation
hetween the model used for design and the real description
of the process. This also applies to probahilistic models
of the disturbance,

5. The Controller Must Be Reasonably Insensitive
to Changes in System Parameters, It must be stable
and perform well over a reasonable range of system pa-
rameters.



Theory-Practice Gap: Model Uncertainty

Guaranteed Margins for LQG Regulators
JOHN C. DOYLE

Abstract—There are noue.

INTRODUCTION

Considerable attention has been given lately to the issue of robustness
of lincar—quadratic (L{) regulators. The recent work by Safonov and
Athans [1] has extended to the multivariable case the now well-known
guarantee of 60° phase and 6 dB gain margin for such controllers.
However, for even the single-input, single-output case there has re-
mained the question of whether there exist any guaranteed margins for
the full LQG (Kalman filter in the loop) regulator. By counterexample,
this note answers that question; there are none.

A standard two-state single-input single-output LQG control problem
is posed for which the resulting closed-loop regulator has arbitrarily
small gain margin.

[EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-23, N0. 4, AuGUST 1978



Theory-Practice Gap: Model Uncertainty

Effect of Design on the Stability and Control of Fixed Bed Catalytic
Reactors with Heat Feedback. 1. Concepts

Jetirey L. Sliverstein* and Reusl Shinnar

Chemical Enginearing Department, The Gity Collage of Naw York, City Univarsity of Maw York, New York, New York 10037
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Theory-Practice Gap resolved

H_, optimal control and Structured Singular Value u:
Zames, Helton, Doyle, Stein, Francis, Safonov, Khargonekar, Tannenbaum, ...
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Theory-Practice Gap resolved

IEFF TRANSACTIONSG ON AUTOMATIT COONTROL, VOL. 33, NO. 12, DECEMBER 1983

Robust Control of IlI-Conditioned Plants:
High-Purity Distillation

SIGURD SKOGESTAD, MANFRED MORARI, MEMBER, [EEE, aNp JOHN C. DOYLE

Axelby Award for Best Paper in IEEE TAC, 1990

Zames (1996):

— Feedback reduces the effect of model uncertainty
— Model uncertainty limits the performance of feedback



Optimal Feedback Control - Conclusions

 Uncertainty / robustness determine achievable performance

* Optimal feedback control was largely a failure until
robustness (considerations) were made explicit in the
objective function and/or the design process.



Outline

* Purpose of Feedback

e MPC Practice

 “Separation theorem” for Control and Operations
* Importance of real world problems



Model Predictive Control Theory

Propoi, A. 1. (1963) Automation and Remote Control

“Use of LP methods for synthesizing sampled-data automatic
systems”

 On-line use of simulation models for control
* On-line optimization
* Moving (receding) horizon



Technology: Digital Control Computer

IBM 1800 (introduced 1964)

[wikipedia]



Model Predictive Control Engineering

Cutler & Ramaker (1979)
AIChE National Mtg.
based on Cutler (1969)



Typical Implementation
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* LP determines (x,u) targets
(was always standard in DMC, see also Pannocchia &
Rawlings, AIChE ] 2003)



Typical Implementation

« PC should remove uncertainty and nonlinearities
« MPC may use linear (even static — cf. M. Morshedi) model

« MPC tuned loosely (open loop response speed) to tolerate
model uncertainty

« MPC mostly used for constraint management



Model Predictive Control - Conclusions

« MPC is a type of optimal feedback control
 Uncertainty / robustness limit achievable performance

* If uncertainty is not dominant one may
— move economics into MPC objective
— take constraint handling into RTO / D-RTO layer
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Is it just a question of time scale separation and computational
complexity? NO

* The separation of RTO and Control is determined by
uncertainty. RTO is sensitive to uncertainty.



RTO — State of the Art

MGINGE L
Biegler, 2011

w >
R Plant
APC < I
u y
RTO j DR-PE
c(x,u,p)=0 D c(x,u,p)=0
Real-time optimization Data Reconciliation & Parameter
-Steady state model for states (x) Identification
-Supply setpoints (u) to APC *Estimation problem formulations
(control system) Steady state model
Model mismatch, measured and Maximum likelihood objective
unmeasured disturbances (w) functions considered to get
parameters (p)
Min, F(x, u, w)
s.t. c(x, u, p, w) =0 Min, ®(X,y, p, w)
xeXueUu s.t.c(x,u,p,w)=0

xeX, peP



a,;qg Dynamic On-line Optimization:

Biegler, 2011 W
»
| m Plant
——»
APC
1
u y
N-RTO
RTO DR-PE
c(x,u,p)=0 D c(x,u,p)=0

Integrate On-line Optimization with APC (Engell, 2007)

-Consistent, first-principle dynamic models
-Consistent, feed-forward optimization
Increase in computational complexity
-Time-critical calculations

Essential for:

-Feed changes

-Nonstandard operations

-Optimal disturbance rejection



1. "Obvious” solution:
Optimizing control =

7 F%f Orward 7 ObjeItive

Optimizing |
Controller

Measurements

Estimate d and compute new u,,(d)

Probem: Complicated and
sensitive to uncertainty

d —»| Process




2. In Practice: Feedback implementation
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What should we control?

e CONTROL ACTIVE CONSTRAINTS!

— Optimal solution isusually at constraints, that is, most of the degrees of
freedom are used to satisfy “active constraints’, g(u,,d) =0

— Implementation of active constraintsis usually simple.

« WHAT MORE SHOULD WE CONTROL?

— But what about the remaining unconstrained degrees of freedom?
— Look for “self-optimizing” controlled variables!




Optimal operation — Runner

— Cost: =T
— One degree of freedom (u=power)
— Optimal operation?




Optimal operation - Runner

Solution 1: Optimizing control

Even getting a reasonable model
requires>10PhD’s © ... and
the model has to be fitted to each
individual....

Clearly impractical!




Optimal operation - Runner

Solution 2 — Feedback
(Self-optimizing control)

— What should we control ?




Optimal operation - Runner

Conclusion Marathon runner

-
Optimizer
(RTOq
select one measurement
Cs
¢ = heart rate Measuremen
Feedhack ] combination
4 - -'" =- .
Controller [‘H;I
u
Y
d Process
s h‘ “7
(G, Gy} y n’

« Simple and robust implementation
 Disturbances are indirectly handled by keeping a constant heart rate
« May have infrequent adjustment of setpoint (heart rate)
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The separation of RTO and Control is determined by
* Uncertainty: RTO is sensitive to uncertainty.
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The separation of RTO and Control is determined by
* Uncertainty: RTO is sensitive to uncertainty.
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June 2010









Validation and Verification (V&V) Requirements

 Large system is composed of well defined and well behaved
(through feedback!) parts

« Parts can be readily abstracted for analysis at a higher level of

the hierarchy



Outline

* Purpose of Feedback
* MPC Practice

“Separation theorem” for Control and Operations

* Importance of real world problems



Control and Operations - Conclusions
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Research Question

Uncertainty analysis is central but
* toolset is very limited
* rarely used

e “Mathematical Foundations of Verification, Validation, and
Uncertainty Quantification” National Academies Report 2012

 Software: GoSUM by AIMdyn (Igor Mezic)



Outline

* Purpose of Feedback
* MPC Practice
 “Separation theorem” for Control and Operations

 Importance of real world problems



Applications by the Automatic Control Lab

YL

18 ns Multi-core thermal management (EPFL)
[Zanini et al 2010]
10 us A Voltage source inverters
[Mariethoz et al 2008]
20 us DC/DC converters (STM)
[Mariethoz et al 2008]
25 us Direct torque control (ABB)
[Papafotiou 2007]
50 us AC / DC converters
[Richter et al 2010]
5 ms Electronic throttle control (Ford)
[Vasak et al 2006]
20 ms Traction control (Ford)
[Borrelli et al 2001]
40 ms Micro-scale race cars
50 ms Autonomous vehicle steering (Ford)
[Besselmann et al 2008]
500 ms Energy efficient building control (Siemens)

[Oldewurtel et al 2010]



Computation

* Real-time MPC algorithms are highly complex
— Codes span many fields: Geometry, Control, Optimization, ...
— Extremely sensitive to small numerical and coding errors

« Uptake requires provision of community-generated toolsets
— CVX, ACADO, Hybrid toolbox, JModellica, ...

Multi-Parametric Toolbox (MPT)

— Free and open-source

— (Non)-Convex Polytopic Manipulation
— Multi-Parametric Programming

— Control of PWA and LTI systems

— > 22 000 downloads to date

MPT 3.0 coming in 2012 [Kvasnica et al.]




Control Faculty at ETH

» Raff D’Andrea

* Lino Guzzella

« Heinz Koppel (Asst.Prof.)
* John Lygeros

* Manfred Morari

* Roy Smith



Flying Machine Arena

[D’Andrea, IDSC, ETH Zurich]



Flying Machine Arena

[D’Andrea, IDSC, ETH Zurich]



Flight Assembled Architecture




Flight Assembled Architecture




Graduate Course Enrollments ETH

Raff D’ Andrea
Lino Guzzella

John Lygeros
Manfred Morari

MPC 32 44 67

Linear Systems 34 42 59

Dynamic Programming 72 101 140



Welcome to ECC13

The 12th Biannual European Control Conference

duly 17-19, 2013
8‘ :‘ : ¢ zurich

4
EUROPEAN CONTROL CONFERENCE —

www.ecc13.ch



