Challenges & Opportunities in Enterprise-wide Optimization in the Pharmaceutical Industry

J.M. Laínez, E. Schaefer, G.V. Reklaitis

Johnson Johnson

Foundations of Computer Aided Process Operations (FOCAPO)

Savannah, January 2012

Outline

- Introduction
 - Product Life cycle
 - Pharmaceutical industry characteristics
 - Features of relevant decision problems
- Product development pipeline management
- Capacity Planning
- Supply chain Management
- Directions for Further Research
 - Enhancements / extensions
 - New opportunities & challenges

Product Life Cycle

General features

- Details specific to technology sector
- Driven by strategic decisions
- Translated into coordinated tactical and operational plans
- Requires support of multiple corporate functional units
- Complicated by exogenous and endogenous uncertainties
- Product can fail and in-licensing can add new one at any stage

Pharmaceutical Industry Characteristics

- High R&D cost & low success rate
 - 2010 R&D expenditures \$67.4 B (~18% sales)
 - 1 in 1000 compounds reach clinical stage
 - 1 in 5 entering trials is commercialized
- High clinical trials cost & extended time
 - \$1.3 B cost of new drug; Clinical trials ~50% of cost
 - Up to 15 years discovery to launch
- Heavy regulatory burden with regional variations
- Limited product shelf life
- Global business /extended supply chain
- Highly uncertain demands
- Generic competition

Source: PhRMA (2007)

Product Development Task Sequence

Pharmaceutical Market

Market Size (2010): \$856.4 B

Growth Forecast 2011-2015

Region	CAGR %
World	3-6
North America	0-3
Europe	2-5
Asia, Africa, Australia	11-14
Japan	2-5
Latin America	11-14

IMS Health, March 2011

Pfizer supply network

Scope: 87 sites, 188 logistics centers, 500 supply partners; 180+ human health products in US; 27 with sales >\$50 M

Enterprise Decision Problems over Product Life Cycle

Product Development Pipeline Management

Capacity Planning

Supply Chain Management

Product Development Decision Decomposition

Strategic Decisions

- Selection of candidates
- Prioritization /ordering
- Resource assignment/ reassignment
- Termination of product

Portfolio Selection & Management

Early Phase Testing

- toxicity/stability
- drug delivery options

Clinical Trials Supply Chain Management

Early Phase Testing

Given:

- A set of potential products
- A set of tests for each product
- Test technological precedence, duration and cost
- Product income as a function of its launching time
- Probability of success of tests Determine:
- Testing schedule that maximizes eNPV

Problem description (Source: Jain & Grossmann, 1999)

Early Phase Testing

- Schmidt & Grossmann (1996)
 - An MILP model for testing tasks sequencing
 - Consider no resource sharing among products
 - Trade-off between shorter makespan and higher sales
- Jain & Grossmann (1999)
 - Extension of previous work
 - Simultaneous consideration of resource constraints and task sequencing
 - Option to outsource testing task(s)
 - Rescheduling needed every time product fails test

Portfolio Selection & Execution

Mathematical programming approaches

- Maravelias & Grossmann (2001)
 - Simultaneous optimizations of test scheduling and design/production planning
 - Two stage stochastic problem considering uncertainties in clinical trials outcome
 - Lagrangian decomposition based algorithm
- Maravelias & Grossmann (2004)
 - Deterministic MILP
 - Consideration of trade-off between
 - higher cost of testing (assignment of more resources, capacity expansions) leading to shorter test duration &
 - higher income due to shorter completion times

Portfolio Selection & Execution

Mathematical programming approaches

- Colvin & Maravelias (2008)
 - Consideration of endogenous uncertainty in clinical trials
 - Multistage stochastic MILP
 - Reduction of the number of nonanticipativity constraints necessary to model indistinguishable scenarios
- Colvin & Maravelias (2009)
 - Consideration of outsourcing
 - Finite horizon approximation to formulate problems using fewer stages

Product Development Pipeline Tasks & Decisions

Decisions

Build Plant

Portfolio Selection & Execution

Simulation based approaches

- Blau et al. (2004)
 - Simulation coupled with genetic algorithm to search for best product portfolio
 - Account for resource, income, and technical interdependencies among different projects
- George & Farid (2008)
 - Multi-objective optimization: expected NPV vs Probability of positive NPV
 - Consideration of project interdependencies

Portfolio Selection & Execution

- Simulation based approaches
 - Subramanian et al. (2001)
 - Utilization of SIM-OPT framework (Simulation using mathematical programming instead of rules for decision making) for R&D project selection
 - Subramanian et al. (2003)
 - Integrate information from simulation to improve optimization solution
 - Zapata & Reklaitis (2010)
 - Use real option analysis & SIM-OPT for valuation of project portfolios
 - Importance of reflecting flexibility to adjust decisions when uncertainties are realized

SIM-OPT framework

Valuation of project portfolios Zapata et al. (2010)

- Comparison between decision tree analysis (DTA) and real options approach (eNPV)
- Case data from Blau et al. (2004)
 - Nine new products (0-8)
 - Comparison of 20 randomly selected portfolios

		ROA approach			
		Lower	Upper		
Portfolio	DTA (M\$)	bound	bound	Deviation	from DTA
0-6-8	5348.74	2139.00	2139.00	-60.01	-60.01
0-1-4-5	6054.31	2933.55	2905.01	-51.55	-52.02
0-2-4-7	8172.69	3675.17	3675.17	-55.03	-55.03
0-2-5-8	5091.82	1614.18	1443.88	-68.30	-71.64
2-4-5-6-8	8400.29	3610.46	3461.51	-57.02	-58.79
1-2-3-4-6	7370.15	3298.97	3196.04	-55.24	-56.64
0-1-4-6-7-8	10377.5	4469.29	4461.22	-56.93	-57.01
1-2-3-4-5-8	7809.25	3178.72	2703.94	-59.30	-65.38

Clinical Trial Supply Chain

Features

- Finite length horizon (1-2 years)
- Unused inventory at end of trial is wastage
- If right dosage unavailable on patient arrival, patient lost to trial
- Uncertainty in Patient completion of treatment is demand uncertainty
- Uncertainty in manufacturing & distribution channel performance
- Multiple SKU's for each API : dosage levels, placebo, comparator

Clinical Trial Supply Chain

- Kimko and Duffull (2003)
 - Survey statistical models for clinical trial simulation and patient pool selection
- Dowlman et al. (2004) and Peterson et al (2004)
 - Simulation models to evaluate outcomes of pre-defined supply strategy pool
- McGarvey et al. (2007)
 - A discrete event model of patient enrollment
- Abdelkafi et al (2009)
 - Selects best supply plan balancing costs and risk of short supply
 - Uses Bayesian principles to reevaluate supply strategies over time
- Fleischhacker and Zhou (2011)
 - Parameterized Wagner-Within lot sizing model that considers costs of clinical trials failure
- Chen et al (2010)
 - SIM- OPT approach for simulating patient demand
 - Consider the entire CT supply chain

Simulation-based Optimization Approach Chen et al. (2011)

Key trade-off: End of trial wastage vs missed patient dosage Safety stock level vs Customer Satisfaction Level (CSL)

Risk pooling strategy Chen et al. (2011)

	With Risk pooling		Non-Risk Pooling	
Drug Type	Leftovers	Safety Stock	Leftovers	Safety Stock
US Placebo	1839.7	0	2518.7	281
US Drug 1 Type	1062.2	83	4004.7	1856
US Drug 2 Type	1036.1	60	3653.6	1977
US Comparator	1078.4	10	3927.1	556
EU Placebo	3068.2	384	3253.8	253
EU Drug 1 Type	1592.35	913	3829.9	2039
EU Drug 2 Type	1900.9	934	3297.9	2275
EU Comparator	2986.9	323	3720.4	553

Capacity Planning

- Given
 - Product requirements & projected demands
 - New product introductions (approval uncertainties)
 - Existing manufacturing & distribution nodes
 - Possible new node locations
 - Possible manufacturing technology alternatives
 - Possible outsourcing alternatives
- Determine
 - Selection of manufacturing & distribution nodes
 - Selection of technologies at sites
 - Network capacity progression over time
 - Optimal Sourcing
- Decision components
 - Strategic level: design/structural decisions
 - Tactical level: production & distribution plans

Literature review

• Shah (2005)

- summarizes the state of the art of SC optimization research
- Papageorgiou et al. (2001)
 - Determine simultaneously product development, capacity/production planning and investment strategy.
 - Consideration of trading structures (Similarly to Fandel & Stammen (2004))
- Gatica et al. (2003) and Levis & Papageorgiou (2004)
 - Extend previous work to a stochastic model considering clinical trials outcomes and demand uncertainty
 - Hierarchical decomposition to address larger problems
- Tsang et al. (2007)
 - Further extend previous study to analyze risk metrics
- Laínez et al. (2009)
 - Selection of technology to be implemented
 - Consideration of financial concerns: Corporate value/Net working capital

Capacity Planning for Multiple Vaccines under uncertainty [Tsang et al. (2007)]

- Manufacturing site with four vaccines for clinical trials
- Consider four demand scenarios as a result of clinical trials outcomes uncertainty
- Develop a two stage MILP model
 - First stage (T1): capacity decisions and portfolio selection
 - Second stage (T1): uncertainty disclosed, planning decisions
- Manufacturing suite construction and scale-up included in the first stage
- Maximizes eNPV

Considered scenario tree

Managing financial risk in the coordination of SC and PDPM [Laínez et al. (2009)]

- Problem statement
 - Which new products to develop considering operational, technological & financial aspects?
 - Expand SC capacity to manufacture new products? Where? By how much?
 - Impact of PDPM decisions on SC echelons activities?
- Proposed approach:
 - Stochastic SC design planning/ PDPM MILP model with financial considerations
 - Clinical trials outcome endogenous uncertainty (Colvin & Maravelias, 2008)
 - Risk management formulation
 - Objective function: Corporate value

Binary V.

2520

Continuous

V.

52603

Equations

59173

	<u> </u>
	-

CPU Sec.*

148

Supply Chain Management

- Structural decisions handled within capacity planning subproblem
- SCM principally focused on Tactical & Operational level decisions:

Literature review

- Sundaramoorthy and Karimi (2004)
 - MILP model of introduction of new products into existing manufacturing facilities.
 - Includes consideration of outsourcing
- Amaro and Barbosa-Povoa (2008)
 - Sequential approach to planning and scheduling
 - Incorporates reverse flows
- Sousa et al. (2011)
 - MILP formulation for planning of global pharmaceutical SCs
 - Consideration of tax schemes of different regions
 - Decomposition strategies

Planning and scheduling of SCs w/reverse flows Amaro et al. (2008)

Integrated approach for planning and scheduling

- Considers reverse flows: returns of expired products or drug recalls
- Returned material considered as proportion of previous period production
- Develop MILP formulation
- Sequential solution strategy

Pharma case study

- Four drug products, 3 manufacturing sites
- Manufacturing stages: drug production and product customization (Portuguese, Spanish, other ECC markets)
- Three scenarios for recovery
 - SC1: All incinerated
 - SC2a: No minimum recovery requirement
 - SC2b: Minimum requirement for recovery
- Demonstrates advantages of recovery

Economic results for each scenario (Recovery 5% of previous period amount)

Profit

Marketing issues

- Same budget justification as other type of investments
 - In 2006, US pharmaceutical industry
 - R&D \rightarrow 19% of sales (US\$55.2 billions)
 - Marketing \rightarrow 10% of sales (US\$27.3 billions)
- Huge amount of market data → transform it into improved decision making
- Marketing Engineering: systematic translation of data into descriptive/normative model for improved decision making (Lilien & Rangaswamy, 2002)
- Opportunity
 - Coordinate marketing efforts to generate demand with capacity planning and supply chain operational plans
 - Meet demands in resource effective manner

Synchronizing Marketing and SC decisions Laínez et al. (2010)

- An MINLP model integrating SC design/retrofitting, capital budgeting and marketing decisions
- Relevance of correct appraisal of trade-off between induced demand and SC capacity investments required to meet such demand

Optimal Solutions

Induced demand & Advertising expenditures

Further Research

- Informatics systems (using ontologies) to support EWO
 - Basis to establish values of uncertain parameters
 - Reduce time for model updating/validation/training
 - Allow intra- and inter-firm benchmarking/comparison
- Product development decisions under interactions/interdependencies among projects
- Clinical trials supply chain
 - Consideration of structure of supply chain (choice of clinics?)
 - Outsourcing alternatives, technology fit & availability constraints
- Capacity planning: re-engineering of network
 - Can model most decision alternatives
 - Key issue: reliable solution of industrial scale problems

Further Research

- Modeling of uncertain parameters and selection of most appropriate scenarios using Bayesian methods
 - Historically based & subjective priors
 - Uncertain parameter distributions
- Use of MIP models & SIM-OPT framework for generalized sensitivity analysis
 - Develop insights about the system
 - Identify critical parameters that limit performance
 - Guidance towards improvements of "optimal" solutions

Further Research

- Systems Solutions vs Change management
 - Toyota paradigm: "Technology-Process-People"
 - What business process changes would result from adoption of EWO? Are desirable for effective exploitation of EWO?
 - What new roles are required? What existing roles abandoned?
- Mapping Enterprise Models to Regulatory Framework
 - How do FDA proposals on continuous verification of product quality (real time release) and QbD (flexibility offered by design space) link to and benefit from EWO
 - Can integrated informatics systems and enterprise models help in reducing effort in regulatory compliance

Future Vision

Delivering Business Value from Our Data

Execute **Collect & Store** Analyse which particular maintains •Few standards •Paper & electronic sources •Little built-in context • Every project is one-off (no integration) •>60% of FTE effort gathering •Few standards for master data / Current workflow execution • Significant effort (reactive) No connection with enterprise model • Electronic sources Integration & built-in context •Agreed Business Standards • Standards for Master Data •NO FTE effort gathering, Data integrated with established fully integrated & platform recipes Enterprise models – continuous learning/training of model Future Little effort (proactive)