
Derivative–Free Optimization Methods:

A Brief, Opinionated, and Incomplete
Look at a Few Recent Developments

Margaret H. Wright

Computer Science Department

Courant Institute of Mathematical Sciences

New York University

Foundations of Computer-Aided Process Operations

(FOCAPO)

Savannah, Georgia

January 9, 2012

I’m delighted to be here giving this talk. Thank you

for the invitation!

Disclaimer: This talk does not mention all the

researchers who have worked and are working on

derivative-free optimization.

For an extended, factual, and complete
review of derivative-free methods and
software, see “Derivative-free optimization:
A review of algorithms and comparison of
software implementations”, Rios and
Sahinidis (2011).

Optimization is a central ingredient in all fields of science,

engineering, and business—notably, as all of us here know, in

chemical engineering and enterprise-wide optimization.

This talk will consider the generic area of derivative-free

optimization (also called non-derivative optimization),

meaning unconstrained optimization of nonlinear functions

using only function values.

(But we do not count methods that form explicit

finite-difference approximations to derivatives.)

This talk will discuss only local optimization.

When is a derivative-free method appropriate for minimizing

f(x), x ∈ IRn?

• Calculation of f is very time-consuming or expensive,

even on the highest-end machines.

• f requires data collected from the real world (which may

take hours, weeks, . . .).

• f is calculated through black-box software.

• f is unpredictably non-nice (e.g., undefined at certain

points, discontinuous, non-smooth).

• f is “noisy” (not a precise term).

For such problems, first derivatives are often difficult,

expensive, or impossible to obtain, even using the most

advanced automatic differentiation.

A few examples (not from chemical engineering):

• Drug selection during cancer chemotherapy, based on the

patient’s measured responses, e.g. blood tests.

• Importance sampling in image synthesis.

• Automatic detection of airborne contaminants.

• Optimizing a sheet-metal press line in the automotive

industry.

• Prediction of in vitro liver bile duct excretion.

Typically we think of two broad classes of non-derivative

methods:

1. “Direct search”

• No explicit model of f .

2. Model-based

• Create a model of f , usually linear or quadratic, based on

interpolation or least-squares, and minimize the model in

some form of trust region.

NB: Genetic and evolutionary algorithms will not be

considered.

A sketchy history of direct search methods (more details in

Rios and Sahinidis):

• Started in 1950s (or before)—Fermi and Metropolis

applied coordinate search in a 1952 paper.

• LOVED by practitioners from day 1, especially the

“simplex” method of Nelder and Mead (1965).

• A fall from favor in mainstream optimization (but not

with practitioners) throughout the 1970s and early 1980s.

• A renaissance starting with Torczon’s (1989) PhD thesis,

which gave a convergence proof for a new class (pattern

search) of direct search methods.

• Major activity ever since, especially theoretical analysis.

Too many names to list them all here!

Example: “Opportunistic” coordinate search (Fermi and

Metropolis) looks for a new best point by taking steps along

the ± coordinate directions, reducing the step if no strictly

better point is found.

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

We now have convergence proofs (with varying definitions of

“convergence”, e.g. results involving lim inf rather than lim)

for these direct search methods and more:

• pattern search and generalized pattern search,

• generating set search,

• mesh-adaptive direct search,

• frame-based and grid-restrained methods.

The proofs often require strong assumptions about f , such as

twice-continuous differentiability, etc.

Nelder–Mead, to be mentioned only in passing today, is a far

outlier (with extremely limited theoretical results), but

nonetheless near and dear to my heart.

Typical proofs for direct search methods involve

• Requirements that the set of search directions remain

“nice” (think of the coordinate directions), and

• Carefully specified acceptance criteria, e.g. simple or

sufficient decrease.

The proof techniques are very closely related to those used in

derivative-based optimization.

See papers by Abramson, Audet, Dennis, Kolda, Lewis,

Torczon, . . .

For approximately the past 10 years, there has been major

interest in model-based methods. Why?

If f is smooth, algorithms for unconstrained

optimization are hardly ever efficient unless attention

is given to the curvature of f . (Powell).

By definition, vanilla direct search methods cannot do this.

Proofs for model-based methods need to enforce conditions

on the geometry of the sample points used to define the local

models. (Some very recent methods use randomness to

obtain the needed conditions with high probability.)

See Introduction to Derivative-Free Optimization, by Conn,

Scheinberg, and Vicente, SIAM (2009).

Selected recent development 1:

Within the past few years, some researchers in nonlinear

optimization have become preoccupied with the

computational complexity of many classes of unconstrained

optimization methods, including Newton’s method,

quasi-Newton trust region and line search methods, and

steepest descent.

There have been surprising results, such as that both steepest

descent and Newton’s method may require O(1/ǫ2) iterations

and function evaluations to drive the norm of the gradient

below ǫ, even when f is bounded below and

twice-continuously differentiable (Cartis, Gould, Toint, 2009).

Remember the 2-d Rosenbrock “banana” function?

fR = (x1 − 1)2 + 100(x2 − x2
1)

2,

with a steep curving valley that approximately follows the

parabolic path x2 = x2
1.

The unique minimizer is x∗ = (1, 1)T .

The “classical” starting point is (−1.2, 1)T .

The difficulty of minimizing this function for descent methods

is the need (unless a lucky step is taken by chance) to move

around the corner.

Classical 2-d Rosenbrock

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Similar figures are featured in the latest analyses of the

worst-case work needed by descent methods, using a “cute”

(actually, very nasty) class of functions devised by Nesterov,

called the smooth Chebyshev-Rosenbrock function.

For x ∈ Rn and ρ > 0:

fCR(x) =
(x1 − 1)2

4
+ ρ

n−1∑

i=1

(xi+1 − 2x2
i
+ 1)2,

where ρ can be interpreted as a penalty parameter.

The unique minimizer of fCR is x∗ = (1, 1, . . . , 1)T .

“Rosenbrock” is obvious—but why “Chebyshev”?

The “penalty” term in fCR is zero when xi+1 − 2x2
i
+ 1 = 0, i.e.,

when

xi+1 = 2x2
i − 1 = T2(xi) = T2i(x1),

where Tk(x) is the kth Chebyshev polynomial of the first kind,

Tk(x) = cos(k arccos(x)), with T2(x) = 2x2 − 1.

Suppose we start minimizing at the very special point

x0 = [−1, 1, 1, . . . , 1]T . This point is special because

xi+1 − 2x2
i

+ 1 = 0, so that fCR = 1.

fCR with ρ = 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Starting at x0, using any descent method, in which each new

iterate must have a strictly lower value of fCR, iterates are

forced to stay close to the manifold in which xi+1 − 2x2
i

+ 1 = 0

for i = 1,. . . , n − 1. This greatly restricts how far they can

move.

Jarre (2011) showed that, starting at x0 = (−1, 1, 1, . . . , 1)T , for

n ≥ 12 and ρ ≥ 400, any continuous piecewise linear descent

path from x0 to x∗ consists of at least (1.44)(1.618n) linear

segments.

When ρ = 400 and n = 12, this means that at least 460

iterations are needed—and this is only a lower bound.

There are also two non-smooth Chebyshev-Rosenbrock

functions (see Gurbuzbalaban and Overton, 2011):

fCR1(x) =
(x1 − 1)2

4
+ ρ

n−1∑

i=1

|xi+1 − 2x2
i
+ 1|.

fCR2(x) =
|x1 − 1|

4
+ ρ

n−1∑

i=1

|xi+1 − 2|xi| + 1|.

fCR2 with ρ = 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

The smooth and non-smooth Chebyshev-Rosenbrock

functions pose severe challenges for descent derivative-free

methods, even for ρ = 1 and small values of n.

Smooth CR, n = 3

method nfuneval best f best x

model-based (newuao) 1605 4.60−8 (0.9996, 0.9983, 0.9931)T

coordinate search 13500 1.17−4 (0.9785, 0.9136, 0.6990)T

Nelder–Mead∗∗ 426 5.60−9 (1.0001, 1.0006, 1.0022)T

Second non-smooth CR, n = 2

model-based (newuao) 22 1.0 (−1, 1)T

coordinate search 197 1.0 (−1, 1)T

Nelder–Mead∗∗ 261 5.24−8 (1.000, 1.000)T

Why might these results on complexity, and these nasty

functions, be interesting to practicing optimizers?

Of course they are when we’re wearing our “mathematics”

hats. But what are the practical implications, if any?

They show the importance of an appropriate model and the

benefits of allowing non-descent steps.

One can interpret the smooth Chebyshev-Rosenbrock function

as a quadratic penalty function for the constrained problem of

minimizing (x1 − 1)2 subject to the constraint xi+1 − 2x2
i
+ 1 = 0.

Because the starting point is “on” the nonlinear constraint,

insisting on a strict reduction in the penalty function at each

iteration forces the method to take little teeny steps.

Déjà vu!

In 1978, Maratos analyzed the lack of progress if the ℓ1

penalty merit function is used in a constrained optimization

method when an iterate lies exactly on an equality constraint

but is very far from the solution.

Minimize 2(x2 + y2 − 1) − x subject to x2 + y2 = 1.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

To remedy the Maratos effect, in 1982 Chamberlain and

Powell developed the “watchdog” technique. The idea is to

compute the step using a powerful method like Newton’s

method, but not to enforce descent for a (small) number of

iterations. If descent has not occurred at the end of this

sequence of iterations, a “fail-safe” procedure is used.

For at least 20 years, “non-monotone” versions of standard

unconstrained methods have been proposed, with the idea of

improving efficiency.

The Chebyshev-Rosenbrock examples provide a motivation for

designing non-monotone derivative-free methods. . . and they

also emphasize a great truth that users sometimes neglect to

consider: the implications of the starting point for algorithmic

performance.

Selected recent development 2:

As seen on the smooth Chebyshev-Rosen problem (and as

known for more than 40 years), derivative-free descent

methods—especially direct search methods—can “stagnate”

far from the solution, i.e. take many (hundreds, even

thousands) of tiny steps without noticeably improving the

function value.

Wilde (1964) noted the danger of stagnation in a “resolution

valley”, attributable in most cases to numerical errors or noise

in evaluating f—difficulties that are still with us!

An example where some direct search methods get stuck:

Beale’s “awkward function”, featuring curving valleys (like

Rosenbrock, like Chebyshev–Rosenbrock):

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

A resolution valley in Beale’s function.

4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5
0.66

0.67

0.68

0.69

0.7

0.71

0.72

Here is what can happen when coordinate search is used on

Beale’s function:

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
0.77

0.775

0.78

0.785

0.79

0.795

0.8

0.805

0.81

Starting closer to the solution helps for a while, but

stagnation occurs again.

3 4 5 6 7 8 9 10
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

How to escape from stagnation in direct search

methods?

Idea: re-visit ideas from Shah, Buehler, and

Kempthorne (1964), Powell (1964), and Brent

(1973), where the crucial strategy is

Start by doing something random

and then follow up.

Under investigation: let x̄ be the best point in an

unproductive sequence of iterations:

1. Generate a perturbed point xR from x̄ by adding random

multiples of the columns of a matrix V with linearly

independent columns.

2. Perform line searches along the columns of V from xR,

producing the point x̂.

3. Define a new point x̃ as the best point found in a line

search between x̄ and x̂.

Because of randomness, every example is different, but the

strategy seems promising. (Only 2-d results are shown.)

The blue diamond is the random point and the green diamond

is the improved point, far from where the method stagnated.

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
0.77

0.775

0.78

0.785

0.79

0.795

0.8

0.805

0.81

0.815

0.82

Issues to be decided (knowing that there is no all-purpose

answer):

1. How can the algorithm numerically identify an

“unproductive” sequence of iterations?

2. Should the random multiples taken of the columns of V

be related to the termination tolerances, significantly

larger, or. . . ?

3. In the line searches, is a single parabolic fit enough, or is

a more accurate line search needed, keeping in mind that

evaluating f is assumed to be expensive?

Also see “Non-intrusive termination of noisy optimization”,

Larson and Wild, 2011.

Selected recent development 3:

Time for only a brief mention!

The goal is to develop model-based methods using techniques

from compressed sensing and sparse approximation.

A very hot topic, already arguably overcrowded with eager

researchers—23,000,000 Google hits for “compressed

sensing” on January 7, 2012.

In compressed sensing, under various conditions it is possible

to obtain an exact representation of an n-component sparse

signal from many fewer than n measurements.

What are possible applications in non-derivative methods?

One such connection: Bandeira, Scheinberg, and Vicente

(2011) have proposed a model-based method for functions

with sparse Hessians in which the components of the Hessian

are estimated via a linear programming subproblem at each

iteration. Numerical results are very favorable, and there are

proofs of convergence “with high probability”.

A closely related idea, just beginning to be explored, is to use

analogous techniques to develop Hessian approximations for

multiscale problems in which the elements of the Hessian

differ drastically in magnitude (although the Hessian is not

strictly sparse).

Summary of three recent developments in derivative-free

methods:

1. Analysis of the worst-case work needed for general

unconstrained optimization, with implications for

beneficial features in future non-derivative methods;

2. Strategies for using randomness to escape stagnation and

terminate gracefully without wasting function evaluations;

3. Application of compressed sensing ideas within

derivative-free methods to enhance performance on

multiscale problems.

A lot for all of us to do!!!

