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Abstract— In this paper, we provide a tutorial review of
recent results in the design of distributed model predictive
control systems. Our goal is to not only conceptually review
the results in this area but also to provide enough algorithmic
details so that the advantages and disadvantages of the various
approaches can be become quite clear. In this sense, our hope
is that this paper would complement a series of recent review
papers and catalyze future research in this rapidly-evolving
area.

I. INTRODUCTION

Continuously faced with the requirements of safety, en-
vironmental sustainability and profitability, chemical pro-
cess operation has been extensively relying on automated
control systems. This realization has motivated extensive
research, over the last fifty years, on the development of
advanced operation and control strategies to achieve safe,
environmentally-friendly and economically-optimal plant op-
eration by regulating process variables at appropriate values.
Classical process control systems, like proportional-integral-
derivative (PID) control, utilize measurements of a single
process output variable (e.g., temperature, pressure, level, or
product species concentration) to compute the control action
needed to be implemented by a control actuator so that this
output variable can be regulated at a desired set-point value.
PID controllers have a long history of success in the context
of chemical process control and will undoubtedly continue to
play an important role in the process industries. In addition to
relative ease of implementation, maintenance and organiza-
tion of a process control system that uses multiple single-loop
PID controllers, an additional advantage is the inherent fault-
tolerance of such a decentralized control architecture since
failure (or poor tuning) of one PID controller or of a control
loop does not necessarily imply failure of the entire process
control system. On the other hand, decentralized control
systems, like the ones based on multiple single-loop PID
controllers, do not account for the occurrence of interactions
between plant components (subsystems) and control loops,
and this may severely limit the best achievable closed-loop
performance. Motivated by these issues, a vast array of tools
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have been developed (most of those included in process
control textbooks, e.g., [119], [131], [138]) to quantify these
input/output interactions, optimally select the input/output
pairs and tune the PID controllers.

While there are very powerful methods for quantifying
decentralized control loop interactions and optimizing their
performance, the lack of directly accounting for multi-
variable interactions has certainly been one of the main
factors that motivated early on the development of model-
based centralized control architectures, ranging from linear
pole-placement and linear optimal control to linear model
predictive control (MPC). In the centralized approach to
control system design, a single multivariable control system
is designed that computes in each sampling time the control
actions of all the control actuators accounting explicitly for
multivariable input/output interactions as captured by the
process model. While the early centralized control efforts
considered mainly linear process models as the basis for
controller design, over the last twenty-five years, significant
progress has been made on the direct use of nonlinear models
for control system design. A series of papers in previous CPC
meetings (e.g., [73], [4], [95], [75], [159]) and books (e.g.,
[61], [25], [128]) have detailed the developments in nonlinear
process control ranging from geometric control to Lyapunov-
based control to nonlinear model predictive control.

Independently of the type of control system architecture
and type of control algorithm utilized, a common charac-
teristic of industrial process control systems is that they
utilize dedicated, point-to-point wired communication links
to measurement sensors and control actuators using local
area networks. While this paradigm to process control has
been successful, chemical plant operation could substantially
benefit from an efficient integration of the existing, point-to-
point control networks (wired connections from each actuator
or sensor to the control system using dedicated local area
networks) with additional networked (wired or wireless)
actuator or sensor devices that have become cheap and
easy-to-install. Over the last decade, a series of papers and
reports including significant industrial input has advocated
this next step in the evolution of industrial process systems
(e.g., [160], [31], [117], [24], [163], [99]). Today, such an
augmentation in sensor information, actuation capability and
network-based availability of wired and wireless data is well
underway in the process industries and clearly has the poten-
tial to dramatically improve the ability of the single-process
and plant-wide model-based control systems to optimize
process and plant performance. Network-based communi-
cation allows for easy modification of the control strategy
by rerouting signals, having redundant systems that can be



activated automatically when component failure occurs, and
in general, it allows having a high-level supervisory control
over the entire plant. However, augmenting existing control
networks with real-time wired or wireless sensor and actuator
networks challenges many of the assumptions made in the
development of traditional process control methods dealing
with dynamical systems linked through ideal channels with
flawless, continuous communication. On one hand, the use
of networked sensors may introduce asynchronous measure-
ments or time-delays in the control loop due to the potentially
heterogeneous nature of the additional measurements. On the
other hand, the substantial increase of the number of decision
variables, state variables and measurements, may increase
significantly the computational time needed for the solution
of the centralized control problem and may impede the ability
of centralized control systems (particularly when nonlinear
constrained optimization-based control systems like MPC are
used), to carry out real-time calculations within the limits set
by process dynamics and operating conditions. Furthermore,
this increased dimension and complexity of the centralized
control problem may cause organizational and maintenance
problems as well as reduced fault-tolerance of the centralized
control systems to actuator and sensor faults.

These considerations motivate the development of dis-
tributed control systems that utilize an array of controllers
that carry out their calculations in separate processors yet
they communicate to efficiently cooperate in achieving the
closed-loop plant objectives. MPC is a natural control frame-
work to deal with the design of coordinated, distributed
control systems because of its ability to handle input and
state constraints and predict the evolution of a system with
time while accounting for the effect of asynchronous and
delayed sampling, as well as because it can account for the
actions of other actuators in computing the control action of a
given set of control actuators in real-time [13]. In this paper,
we provide a tutorial review of recent results in the design
of distributed model predictive control systems. Our goal is
to not only review the results in this area but also to provide
enough algorithmic details so that the distinctions between
different approaches can become quite clear and newcomers
in this field can find this paper to be a useful resource. In
this sense, our hope is that this paper would complement a
series of recent review papers in this rapidly-evolving area
[15], [129], [134].

II. PRELIMINARIES

A. Notation

The operator | · | is used to denote the Euclidean norm of a
vector, while we use ‖·‖2Q to denote the square of a weighted
Euclidean norm, i.e., ‖x‖2Q = xT Qx for all x ∈ Rn. A
continuous function α : [0, a) → [0,∞) is said to belong to
class K if it is strictly increasing and satisfies α(0) = 0. A
function β(r, s) is said to be a class KL function if, for each
fixed s, β(r, s) belongs to class K functions with respect to
r and, for each fixed r, β(r, s) is decreasing with respect
to s and β(r, s) → 0 as s → 0. The symbol Ωr is used to

denote the set Ωr := {x ∈ Rn : V (x) ≤ r} where V is
a scalar positive definite, continuous differentiable function
and V (0) = 0, and the operator ‘/’ denotes set subtraction,
that is, A/B := {x ∈ Rn : x ∈ A, x /∈ B}. The symbol
diag(v) denotes a square diagonal matrix whose diagonal
elements are the elements of the vector v. The symbol ⊕
denotes the Minkowski sum. The notation t0 indicates the
initial time instant. The set {tk≥0} denotes a sequence of
synchronous time instants such that tk = t0+k∆ and tk+i =
tk + i∆ where ∆ is a fixed time interval and i is an integer.
Similarly, the set {ta≥0} denotes a sequence of asynchronous
time instants such that the interval between two consecutive
time instants is not fixed.

B. Mathematical Models for MPC

Throughout this manuscript, we will use different types
of mathematical models, both linear and nonlinear dynamic
models, to present the various distributed MPC schemes.
Specifically, we first consider a class of nonlinear systems
composed of m interconnected subsystems where each of
the subsystems can be described by the following state-space
model:

ẋi(t) = fi(x) + gsi(x)ui(t) + ki(x)wi(t) (1)

where xi(t) ∈ Rnxi , ui(t) ∈ Rnui and wi(t) ∈ Rnwi

denote the vectors of state variables, inputs and disturbances
associated with subsystem i with i = 1, . . . , m, respectively.
The disturbance w = [wT

1 · · · wT
i · · ·wT

m]T is assumed to
be bounded, that is, w(t) ∈ W with W := {w ∈ Rnw :
|w| ≤ θ, θ > 0}. The variable x ∈ Rnx denotes the state of
the entire nonlinear system which is composed of the states
of the m subsystems, that is x = [xT

1 · · ·xT
i · · ·xT

m]T ∈ Rnx .
The dynamics of x can be described as follows:

ẋ(t) = f(x) +
m∑

i=1

gi(x)ui(t) + k(x)w(t) (2)

where f = [fT
1 · · · fT

i · · · fT
m]T , gi = [0T · · · gT

si · · ·0T ]T

with 0 being the zero matrix of appropriate dimensions,
k is a matrix composed of ki (i = 1, . . . , m) and zeros
whose explicit expression is omitted for brevity. The m sets
of inputs are restricted to be in m nonempty convex sets
Ui ⊆ Rmui , i = 1, . . . ,m, which are defined as Ui :=
{ui ∈ Rnui : |ui| ≤ umax

i } where umax
i , i = 1, . . . , m,

are the magnitudes of the input constraints in an element-
wise manner. We assume that f , gi, i = 1, . . . ,m, and k
are locally Lipschitz vector functions and that the origin is
an equilibrium point of the unforced nominal system (i.e.,
system of Eq. 2 with ui(t) = 0, i = 1, . . . , m, w(t) = 0 for
all t) which implies that f(0) = 0.

Finally, in addition to MPC formulations based on
continuous-time nonlinear systems, many MPC algorithms
have been developed for systems described by a discrete-
time linear model, possibly obtained from the linearization
and discretization of a nonlinear continuous-time model of
the form of Eq. 1.



Specifically, the linear discrete-time counterpart of the
system of Eq. 1 is:

xi(k+1) = Aiixi(k)+
∑

i 6=j

Aijxj(k)+Biui(k)+wi(k) (3)

where k is the discrete time index and the state and control
variables are restricted to be in convex, non-empty sets
including the origin, i.e. xi ∈ Xi, ui ∈ Ui. It is also assumed
that wi ∈ Wi, where Wi is a compact set containing the
origin, with Wi = {0} in the nominal case. Subsystem j is
said to be a neighbor of subsystem i if Aij 6= 0.

Then the linear discrete-time counterpart of the system of
Eq. 2, consisting of m-subsystems of the type of Eq.3, is:

x(k + 1) = Ax(k) + Bu(k) + w(k) (4)

where x ∈ X =
∏

i Xi, u ∈ U =
∏

i Ui and w ∈
W =

∏
i Wi are the state, input and disturbance vectors,

respectively.
The systems of Eq. 1 and 3 assume that the m susbsytems

are coupled through the states but not through the inputs.
Another class of linear systems which has been studied in
the literature in the context of DMPC are systems coupled
only through the inputs, that is,

xi(k + 1) = Aixi(k) +
m∑

l=1

Bilul(k) + wi(k) (5)

C. Lyapunov-based control

Lyapunov-based control plays an important role in de-
termining stability regions for the closed-loop system in
some of the DMPC architectures to be discussed below.
Specifically, we assume that there exists a Lyapunov-based
locally Lipschitz control law h(x) = [h1(x) . . . hm(x)]T

with ui = hi(x), i = 1, . . . ,m, which renders the origin
of the nominal closed-loop system (i.e., system of Eq. 2
with ui = hi(x), i = 1, . . . , m, and w = 0) asymptotically
stable while satisfying the input constraints for all the states
x inside a given stability region. Using converse Lyapunov
theorems [94], [78], [25], this assumption implies that there
exist functions αi(·), i = 1, 2, 3 of class K and a continu-
ously differentiable Lyapunov function V (x) for the nominal
closed-loop system that satisfy the following inequalities:

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x

(
f(x) +

m∑

i=1

gi(x)hi(x)

)
≤ −α3(|x|)

hi(x) ∈ Ui, i = 1, . . . , m

(6)

for all x ∈ O ⊆ Rn where O is an open neighborhood of the
origin. We denote the region Ωρ ⊆ O as the stability region
of the nominal closed-loop system under the Lyapunov-based
controller h(x). We note that Ωρ is usually a level set of the
Lyapunov function V (x), i.e., Ωρ := {x ∈ Rn : V (x) ≤ ρ}.
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Subsystem 1

Subsystem 2

u1

u2

x1

x2

Fig. 1. Centralized MPC architecture.

III. MODEL PREDICTIVE CONTROL

A. Formulation

Model predictive control (MPC) is widely adopted in
industry as an effective approach to deal with large multivari-
able constrained control problems. The main idea of MPC
is to choose control actions by repeatedly solving an online
constrained optimization problem, which aims at minimizing
a performance index over a finite prediction horizon based on
predictions obtained by a system model [13], [85], [128]. In
general, an MPC design is composed of three components:

1) A model of the system. This model is used to predict
the future evolution of the system in open-loop and the
efficiency of the calculated control actions of an MPC
depends highly on the accuracy of the model.

2) A performance index over a finite horizon. This index
will be minimized subject to constraints imposed by
the system model, restrictions on control inputs and
system state and other considerations at each sampling
time to obtain a trajectory of future control inputs.

3) A receding horizon scheme. This scheme introduces
feedback into the control law to compensate for dis-
turbances and modeling errors.

Typically, MPC is studied from a centralized control point
of view in which all the manipulated inputs of a control
system are optimized with respect to an objective function
in a single optimization problem. Figure 1 is a schematic of a
centralized MPC architecture for a system comprised of two
coupled subsystems. Consider the control of the system of
Eq. 2 and assume that the state measurements of the system
of Eq. 2 are available at synchronous sampling time instants
{tk≥0}, a standard MPC is formulated as follows [52]:

min
u1,...,um∈S(∆)

J(tk) (7a)

s.t. ˙̃x(t) = f(x̃) +
m∑

i=1

gi(x̃)ui(t) (7b)

ui(t) ∈ Ui, i = 1, . . . ,m (7c)
x̃(tk) = x(tk) (7d)

with

J(tk) =
m∑

i=1

∫ tk+N

tk

[
‖x̃i(τ)‖2Qci

+ ‖ui(τ)‖2Rci

]
dτ



where S(∆) is the family of piece-wise constant functions
with sampling period ∆, N is the prediction horizon, Qci

and Rci are strictly positive definite symmetric weighting
matrices, and x̃i, i = 1, . . . , m, are the predicted trajectories
of the nominal subsystem i with initial state xi(tk), i =
1, . . . ,m, at time tk. The objective of the MPC of Eq.7 is
to achieve stabilization of the nominal system of Eq.7 at the
origin, i.e., (x, u) = (0, 0).

The optimal solution to the MPC optimization problem
defined by Eq. 7 is denoted as u∗i (t|tk), i = 1, . . . , m, and is
defined for t ∈ [tk, tk+N ). The first step values of u∗i (t|tk),
i = 1, . . . ,m, are applied to the closed-loop system for
t ∈ [tk, tk+1). At the next sampling time tk+1, when new
measurements of the system states xi(tk+1), i = 1, . . . , m,
are available, the control evaluation and implementation
procedure is repeated. The manipulated inputs of the system
of Eq. 2 under the control of the MPC of Eq. 7 are defined
as follows:

ui(t) = u∗i (t|tk), ∀t ∈ [tk, tk+1), i = 1, . . . , m (8)

which is the standard receding horizon scheme.
In the MPC formulation of Eq. 7, the constraint of Eq. 7a

defines a performance index or cost index that should be
minimized. In addition to penalties on the state and control
actions, the index may also include penalties on other con-
siderations; for example, the rate of change of the inputs.
The constraint of Eq. 7b is the nominal model, that is, the
uncertainties are supposed to be zero in the model of Eq. 2
which is used in the MPC to predict the future evolution
of the process. The constraint of Eq. 7c takes into account
the constraints on the control inputs, and the constraint of
Eq. 7d provides the initial state for the MPC which is a
measurement of the actual system state. Note that in the
above MPC formulation, state constraints are not considered
but can be readily taken into account.

B. Stability

It is well known that the MPC of Eq. 7 is not neces-
sarily stabilizing. To achieve closed-loop stability, different
approaches have been proposed in the literature. One class
of approaches is to use infinite prediction horizons or well-
designed terminal penalty terms; please see [12], [96] for
surveys of these approaches. Another class of approaches
is to impose stability constraints in the MPC optimization
problem (e.g.,[18], [96]). There are also efforts focusing on
getting explicit stabilizing MPC laws using offline computa-
tions [86]. However, the implicit nature of MPC control law
makes it very difficult to explicitly characterize, a priori, the
admissible initial conditions starting from where the MPC
is guaranteed to be feasible and stabilizing. In practice, the
initial conditions are usually chosen in an ad hoc fashion
and tested through extensive closed-loop simulations. To
address this issue, Lyapunov-based MPC (LMPC) designs
have been proposed in [102], [103] which allow for an
explicit characterization of the stability region and guarantee
controller feasibility and closed-loop stability. Below we
review various methods for ensuring closed-loop stability

under MPC that are utilized in the DMPC results to be
discussed in the following sections.

We start with stabilizing MPC formulations for linear
discrete-time systems based on terminal weight and termi-
nal constraints. Specifically, a standard centralized MPC is
formulated as follows:

min
u(k),...,u(k+N−1)

J(k) (9)

subject to Eq. (4) with w = 0 and, for j = 0, . . . , N − 1,

u(k + j) ∈ U , j ≥ 0 (10)
x(k + j) ∈ X , j > 0 (11)
x(k + N) ∈ Xf (12)

with

J(k) =
N−1∑

j=0

[‖x(k + j)‖2Q + ‖u(k + j)‖2R] + Vf (x(k + N))

(13)
The optimal solution is denoted u∗(k), . . . , u∗(k + N − 1).
At each sampling time, the corresponding first step values
u∗i (k) are applied following a receding horizon approach.

The terminal set Xf ⊆ X and the terminal cost Vf are
used to guarantee stability properties, and can be selected
according to the following simple procedure. First, assume
that a linear stabilizing control law

u(k) = Kx(k) (14)

is known in the unconstrained case, i.e. A+BK is stable; a
wise choice is to compute the gain K as the solution of an
infinite-horizon linear quadratic (LQ) control problem with
the same weights Q and R used in Eq. 13. Then, letting P
be the solution of the Lyapunov equation

(A + BK)′P (A + BK)− P = −(Q + K ′RK) (15)

it is possible to set Vf = x′Px and Xf = {x|x′Px ≤ c},
where c is a small positive value chosen so that u = Kx ∈ U
for any x ∈ Xf . These choices implicitly guarantee a
decreasing property of the optimal cost function (similar to
the one explicitly expressed by the constraint of Eq. 16e
below in the context of Lyapunov-based MPC), so that
the origin of the state space is an asymptotically stable
equilibrium with a region of attraction given by the set of
the states for which a feasible solution of the optimization
problem exists, see, for example, [96]. Many other choices
of the design parameters guaranteeing stability properties for
linear and nonlinear systems have been proposed see, for
example, [97], [33], [89], [90], [50], [109], [56], [53].

In addition to stabilizing MPC formulations based on
terminal weight and terminal constraints, we also review
a formulation using Lyapunov function-based stability con-
straints since it is utilized in some of the DMPC schemes
to be presented below. Specifically, we review the LMPC
design proposed in [102], [103] which allows for an explicit
characterization of the stability region and guarantees con-
troller feasibility and closed-loop stability. For the predictive
control of the system of Eq. 2, the LMPC is designed based



on an existing explicit control law h(x) which is able to
stabilize the closed-loop system and satisfies the conditions
of Eq. 6. The formulation of the LMPC is as follows:

min
u1,...,um∈S(∆)

J(tk) (16a)

s.t. ˙̃x(t) = f(x̃) +
m∑

i=1

gi(x̃)ui(t) (16b)

u(t) ∈ U (16c)
x̃(tk) = x(tk) (16d)
∂V (x(tk))

∂x
gi(x(tk))ui(tk)

≤ ∂V (x(tk))
∂x

gi(x(tk))hi(x(tk)) (16e)

where V (x) is a Lyapunov function associated with the
nonlinear control law h(x). The optimal solution to this
LMPC optimization problem is denoted as ul,∗

i (t|tk) which
is defined for t ∈ [tk, tk+N ). The manipulated input of the
system of Eq. 2 under the control of the LMPC of Eq. 16 is
defined as follows:

ui(t) = ul,∗
i (t|tk), ∀t ∈ [tk, tk+1) (17)

which implies that this LMPC also adopts a standard reced-
ing horizon strategy.

In the LMPC defined by Eq. 16, the constraint of Eq. 16e
guarantees that the value of the time derivative of the
Lyapunov function, V (x), at time tk is smaller than or equal
to the value obtained if the nonlinear control law u = h(x)
is implemented in the closed-loop system in a sample-and-
hold fashion. This is a constraint that allows one to prove
(when state measurements are available every synchronous
sampling time) that the LMPC inherits the stability and
robustness properties of the nonlinear control law h(x) when
it is applied in a sample-and-hold fashion. Specifically, one
of the main properties of the LMPC of Eq. 16 is that
it possesses the same stability region Ωρ as the nonlinear
control law h(x), which implies that the origin of the closed-
loop system is guaranteed to be stable and the LMPC is
guaranteed to be feasible for any initial state inside Ωρ when
the sampling time ∆ and the disturbance upper bound θ
are sufficiently small. The stability property of the LMPC
is inherited from the nonlinear control law h(x) when it
is applied in a sample-and-hold fashion; please see [28],
[110] for results on sampled-data systems. The feasibility
property of the LMPC is also guaranteed by the nonlinear
control law h(x) since u = h(x) is a feasible solution to the
optimization problem of Eq. 16 (see also [102], [103], [92]
for detailed results on this issue). The main advantage of
the LMPC approach with respect to the nonlinear control
law h(x) is that optimality considerations can be taken
explicitly into account (as well as constraints on the inputs
and the states [103]) in the computation of the control actions
within an online optimization framework while improving
the closed-loop performance of the system. We finally note
that since the closed-loop stability and feasibility of the
LMPC of Eq. 16 are guaranteed by the nonlinear control
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Fig. 2. Alkylation of benzene with ethylene process.

law h(x), it is unnecessary to use a terminal penalty term
in the cost index and the length of the horizon N does not
affect the stability of the closed-loop system but it affects
the closed-loop performance.

C. Alkylation of benzene with ethylene process example

We now introduce a chemical process network example
to discuss the selection of the control configurations in
the context of the various MPC formulations. The process
considered is the alkylation of benzene with ethylene and
consists of four continuously stirred tank reactors (CSTRs)
and a flash tank separator, as shown in Fig. 2. The CSTR-1,
CSTR-2 and CSTR-3 are in series and involve the alkylation
of benzene with ethylene. Pure benzene is fed through
stream F1 and pure ethylene is fed through streams F2,
F4 and F6. Two catalytic reactions take place in CSTR-
1, CSTR-2 and CSTR-3. Benzene (A) reacts with ethylene
(B) and produces the required product ethylbenzene (C)
(reaction 1); ethylbenzene can further react with ethylene
to form 1,3-diethylbenzene (D) (reaction 2) which is the
byproduct. The effluent of CSTR-3, including the products
and leftover reactants, is fed to a flash tank separator, in
which most of benzene is separated overhead by vaporization
and condensation techniques and recycled back to the plant,
and the bottom product stream is removed. A portion of
the recycle stream Fr2 is fed back to CSTR-1 and another
portion of the recycle stream Fr1 is fed to CSTR-4 together
with an additional feed stream F10 which contains 1,3-
diethylbenzene from another distillation process that we do
not explicitly consider in this example. In CSTR-4, reac-
tion 2 and a catalyzed transalkylation reaction in which 1,3-
diethylbenzene reacts with benzene to produce ethylbenzene
(reaction 3) take place. All chemicals left from CSTR-4
eventually pass into the separator. All the materials in the
reactions are in liquid phase due to high pressure.

The control objective is to stabilize the process at a desired
operating steady-state and achieve an optimal level of closed-
loop performance. To accomplish the control objective, we
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may manipulate the five heat inputs/removals, Q1, Q2, Q3,
Q4, Q5, as well as the two ethylene input flow rates, F4 and
F6. For a centralized MPC architecture, all the inputs will be
optimized in one optimization problem as shown in Fig. 3.

IV. DECENTRALIZED MODEL PREDICTIVE CONTROL

While there are some important reviews on decentralized
control (e.g., [132], [139], [9], [140]), in this section we
focus on results pertaining to decentralized MPC. The key
feature of a decentralized control framework is that there
is no communication between the different local controllers.
A schematic of a decentralized MPC architecture with two
subsystems is shown in Fig. 4. It is well known that strong
interactions between different subsystems may prevent one
from achieving stability and desired performance with de-
centralized control (e.g., [32], [158]). In general, in order
to achieve closed-loop stability as well as performance
in the development of decentralized MPC algorithms, the
interconnections between different subsystems are assumed
to be weak and are considered as disturbances which can be
compensated through feedback so they are not involved in
the controller formulation explicitly.

Consider the control of the system of Eq. 2 and assume

that the state measurements of the system of Eq. 2 are
available at synchronous sampling time instants {tk≥0}, a
typical decentralized MPC is formulated as follows:

min
ui∈S(∆)

Ji(tk) (18a)

s.t. ˙̃xi(t) = fi(x̃i−(t)) + gsi(x̃i−)ui(t) (18b)
ui(t) ∈ Ui (18c)
x̃i(tk) = xi(tk) (18d)

with

Ji(tk) =
∫ tk+N

tk

[
‖x̃i(τ)‖2Qci

+ ‖ui(τ)‖2Rci

]
dτ

where xi− = [0 · · ·xi · · · 0]T , Ji is the cost function used in
each individual local controller based on its local subsystem
states and control inputs.

In [91], a decentralized MPC algorithm for nonlinear
discrete time systems subject to decaying disturbances was
presented. No information is exchanged between the local
controllers and the stability of the closed-loop system relies
on the inclusion of a contractive constraint in the formulation
of each of the decentralized MPCs. In the design of the
decentralized MPC, the effects of interconnections between
different subsystems are considered as perturbation terms
whose magnitude depend on the norm of the system states.
In [124], the stability of a decentralized MPC is analyzed
from an input-to-state stability (ISS) point of view. In [2], a
decentralized MPC algorithm was developed for large-scale
linear processes subject to input constraints. In this work, the
global model of the process is approximated by several (pos-
sibly overlapping) smaller subsystem models which are used
for local predictions and the degree of decoupling among the
subsystem models is a tunable parameter in the design. In [3],
possible date packet dropouts in the communication between
the distributed controllers were considered in the context of
linear systems and their influence on the closed-loop system
stability was analyzed.

To develop coordinated decentralized control systems, the
dynamic interaction between different units should be con-
sidered in the design of the control systems. This problem of
identifying dynamic interactions between units was studied
in [55].

Within process control, another important work on the
subject of decentralized control includes the development
of a quasi-decentralized control framework for multi-unit
plants that achieves the desired closed-loop objectives with
minimal cross communication between the plant units un-
der state feedback control [146]. In this work, the idea
is to incorporate in the local control system of each unit
a set of dynamic models that provide an approximation
of the interactions between the different subsystems when
local subsystem states are not exchanged between different
subsystems and to update the state of each model using
states information exchanged when communication is re-
established.

In general, the overall closed-loop performance under a de-
centralized control system is limited because of the limitation
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Fig. 5. Decentralized MPC configuration for the alkylation of benzene
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on the available information and the lack of communication
between different controllers [29]. This leads us to the design
of model predictive control architectures in which different
MPCs coordinate their actions through communication to
exchange subsystem state and control action information.

A. Alkylation of benzene with ethylene process example
(Cont’)

For the alkylation of benzene process, we may design three
decentralized MPCs to manipulate the seven inputs as shown
in Fig. 5. In this decentralized control configuration, the first
controller (MPC 1) is used to compute the values of Q1, Q2

and Q3, the second distributed controller (MPC 2) is used to
compute the values of Q4 and Q5, and the third controller
(MPC 3) is used to compute the values of F4 and F6. The
three controllers make their decisions independently and do
not exchange any information.

V. DISTRIBUTED MODEL PREDICTIVE CONTROL

To achieve better closed-loop control performance, some
level of communication may be established between the dif-
ferent controllers, which leads to distributed model predictive
control (DMPC). With respect to available results in this
direction, several DMPC methods have been proposed as
well as some important review articles [129], [134] have
been written which primarily focus the review of the various
DMPC schemes at a conceptual level. With respect to the
DMPC algorithms available in the literature, a classification
can be made according to the topology of the communication
network, the different communication protocols used by
local controllers, and the cost function considered in the
local controller optimization problem [134]. In the following,
we will classify the different algorithms based on the cost
function used in the local controller optimization problem
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as used in [129]. Specifically, we will refer to the dis-
tributed algorithms in which each local controller optimizes
a local cost function as non-cooperative DMPC algorithms,
and refer to the distributed algorithms in which each local
controller optimizes a global cost function as cooperative
DMPC algorithms.

A. Non-Cooperative DMPC

In [130], a DMPC algorithm was proposed for a class of
decoupled systems with coupled constraints. This class of
systems captures an important class of practical problems,
including, for example, maneuvering a group of vehicles
from one point to another while maintaining relative for-
mation and/or avoiding collisions. In [130], the distributed
controllers are evaluated in sequence which means that
controller i + 1 is evaluated after controller i has been
evaluated or vice versa. A sequential DMPC architecture
with two local controllers is shown in Fig. 6. An extension of
this work [150] proposes the use of the robust design method
described in [98] for DMPC.

In the majority of the algorithms in the category of non-
cooperative DMPC, the distributed controllers are evaluated
in parallel i.e., at the same time. The controllers may be only
evaluated once (non-iterative) or iterate (iterative) to achieve
a solution at a sampling time. A parallel DMPC architecture
with two local controllers is shown in Fig. 7.

Many parallel DMPC algorithms in the literature belong
to the non-iterative category. In [15], a DMPC algorithm
was proposed for a class of discrete-time linear systems. In
this work, a stability constraint is included in the problem
formulation and the stability can be verified a-posteriori with
an analysis of the resulting closed-loop system. In [68],
DMPC for systems with dynamically decoupled subsystems



(a class of systems of relevance in the context of multi-
agents systems) where the cost function and constraints
couple the dynamical behavior of the system. The coupling
in the system is described using a graph in which each
subsystem is a node. It is assumed that each subsystem
can exchange information with its neighbors (a subset of
other subsystems). Based on the results of [68], a DMPC
framework was constructed for control and coordination of
autonomous vehicle teams [69].

In [64], a DMPC scheme for linear systems coupled
only through the state is considered, while [38] deals with
the problem of distributed control of dynamically decou-
pled nonlinear systems coupled by their cost function. This
method is extended to the case of dynamically coupled
nonlinear systems in [36] and applied as a distributed control
strategy in the context of supply chain optimization in [37].
In this implementation, the agents optimize locally their
own policy, which is communicated to their neighbors. The
stability is assured through a compatibility constraint: the
agents commit themselves not to deviate too far in their
state and input trajectories from what their neighbors believe
they plan to do. In [100] another iterative implementation
of a similar DMPC scheme was applied together with a
distributed Kalman filter to a quadruple tank system. Finally,
in [76] the Shell benchmark problem is used to test a similar
algorithm. Note that all these methods lead in general to
Nash equilibria as long as the cost functions of the agents
are selfish.

1) A noncooperative DMPC algorithm: As an example of
a noncooperative DMPC algorithm for discrete-time systems
described by Eq. 3, we now synthetically describe the method
recently proposed in [46] relying on the “tube-based” ap-
proach developed in [98] for the design of robust MPC. The
rationale is that each subsystem i transmits to its neighbors
its planned state reference trajectory x̃i(k + j), j = 1, ..., N ,
over the prediction horizon and “guarantees” that, for all
j ≥ 0, its actual trajectory lies in a neighborhod of x̃i, i.e.
xi(k+j) ∈ x̃i(k+j)⊕Ei, where Ei is a compact set including
the origin. In this way, Eq. (3) can be written as

xi(k + 1) = Aiixi(k) + Biui(k) +
∑

j

Aij x̃j(k) + wi(k)

(19)

where wi(k) =
∑

j Aij(xj(k) − x̃j(k)) ∈ Wi is a bounded
disturbance, Wi =

⊕
j AijEi and the term

∑
j Aij x̃j(k)

can be interpreted as an input, known in advance over the
prediction horizon. Note that in this case, we assume that
the only disturbance of each model is due to the mismatch
between the planned and real state trajectories.

From Eq. (19), the i-th subsystem nominal model is
defined as

x̂i(k + 1) = Aiix̂i(k) + Biûi(k) +
∑

j

Aij x̃j(k) (20)

Letting K =diag(K1, . . . ,KM ) be a block-diagonal matrix
such that both A+BK and Aii +BiKi are stable, the local

control law is chosen as

ui(k) = ûi(k) + Ki(xi(k)− x̂i(k)) (21)

From Eq. (19) and Eq. (21) and letting zi(k) = xi(k) −
x̂i(k), we obtain:

zi(k + 1) = (Aii + BiKi)zi(k) + wi(k) (22)

where wi ∈ Wi. Since Wi is bounded and Aii + BiKi is
stable, there exists a robust positively invariant set Zi for
Eq. (22) such that, for all zi(k) ∈ Zi and wi(k) ∈ Wi, then
zi(k + 1) ∈ Zi. Given Zi and assuming that there exist
neighborhoods of the origin Ei such that Ei ⊕ Zi ⊆ Ei, at
any time instant k, the i-th subsystem computes the value
of ûi(k) in Eq. 21 as the solution of

min
x̂i(k),ûi(k),...,ûi(k+N−1)

Ji(k) (23)

subject to Eq. (20) and, for j = 0, . . . , N − 1,

xi(k)− x̂i(k) ∈ Zi (24)
x̂i(k + j)− x̃i(k + j) ∈ Ei (25)

x̂i(k + j) ∈ X̂i ⊆ Xi ª Zi (26)

ûi(k + j) ∈ Ûi ⊆ Ui ªKiZi (27)

x̂i(k + N) ∈ X̂fi (28)

In this problem,

Ji(k) =
N−1∑

j=0

[‖xi(k+j)‖2Qi
+‖ui(k+j)‖2Ri

]+‖x(k+N)‖2Pi

(29)
and the restricted constraints given by Eqs. 24-27 are used
to ensure that the difference between xi and x̃i is effectively
limited, as initially stated, while a proper choice of the
weights Qi, Ri, Pi and of the terminal set Xfi guarantee
the stabilizing properties of the method, please see [46] for
details. Finally, with the optimal solution at time k, it is
also possible to compute the predicted value x̂i(k + N),
which is used to incrementally define the reference trajectory
of the state to be used at the next time instant k + 1, i.e.
x̃i(k + N) = x̂i(k + N).

B. Cooperative DMPC

The key feature of cooperative DMPC is that in each of the
local controllers, the same global cost function is optimized.
In recent years, many efforts have been made to develop
cooperative DMPC for linear and nonlinear systems.

The idea of cooperative DMPC was first introduced in
[154] and later developed in [129]. In the latter work, a
set of linear systems coupled through the inputs of the type
presented in Eq. 5 were considered.

In cooperative DMPC each controller takes into account
the effects of its inputs on the entire plant through the
use of a centralized cost function. At each iteration, each
controller optimizes its own set of inputs assuming that
the rest of the inputs of its neighbors are fixed to the last
agreed value. Subsequently, the controllers share the resulting



optimal trajectories and a final optimal trajectory is computed
at each sampling time as a weighted sum of the most recent
optimal trajectories with the optimal trajectories computed
at the last sampling time.

The cooperative DMPCs use the following implementation
strategy:

1. At k, all the controllers receive the full state measure-
ment x(k) from the sensors.

2. At iteration c (c ≥ 1):
2.1. Each controller evaluates its own future input tra-

jectory based on x(k) and the latest received in-
put trajectories of all the other controllers (when
c = 1, initial input guesses obtained from the
shifted latest optimal input trajectories are used).

2.2. The controllers exchange their future input tra-
jectories. Based on all the input trajectories, each
controller calculates the current decided set of
inputs trajectories uc.

3. If a termination condition is satisfied, each controller
sends its entire future input trajectory to its actuators;
if the termination condition is not satisfied, go to Step
2 (c ← c + 1).

4. When a new measurement is received, go to Step 1
(k ← k + 1).

At each iteration, each controller solves the following
optimization problem:

min
ui(k),...,ui(k+N−1)

J(k) (30)

subject to Eq. (4) with w = 0 and, for j = 0, . . . , N − 1,

ui(k + j) ∈ Ui , j ≥ 0 (31)

ul(k + j) = ul(k + j)c−1 ,∀l 6= i (32)
x(k + j) ∈ X , j > 0 (33)
x(k + N) ∈ Xf (34)

with
J(k) =

∑

i

Ji(k) (35)

and

Ji(k) =
N−1∑

j=0

[‖xi(k+j)‖2Qi
+‖ui(k+j)‖2Ri

]+‖x(k+N)‖2Pi

(36)
Note that each controller must have knowledge of the full
system dynamics and of the overall objective function.

After the controllers share the optimal solutions ui(k+j)∗,
the optimal trajectory at iteration c, ui(k + j)c, is obtained
from a convex combination between the last optimal solution
and the current optimal solution of the MPC problem of each
controller, that is,

ui(k + j)c = αiui(k + j)c−1 + (1− αi)ui(k + j)∗

where αi are the weighting factors for each agent. This
distributed optimization is of the Gauss-Jacobi type.

In [154], [143], an iterative cooperative DMPC algorithm
was designed for linear systems. It was proven that through

Process

LMPC 1

LMPC 2

LMPC m − 1

LMPC m

Sensors

x

x

um

um−1

.

.

.

u2

u1

um

.

.

.

um, um−1

um, . . . , u3

um, . . . , u2

Fig. 8. Sequential DMPC architecture using LMPC [80].

multiple communications between distributed controllers and
using system-wide control objective functions, stability of the
closed-loop system can be guaranteed for linear systems, and
the closed-loop performance converges to the corresponding
centralized control system as the iteration number increases.
A design method to choose the stability constraints and the
cost function is given that guarantees feasibility (given an
initial feasible guess), convergence and optimality (if the
constraints of the inputs are not coupled) of the resulting
distributed optimization algorithm. In addition, the stabil-
ity properties of the resulting closed-loop system, output
feedback implementations and coupled constraints are also
studied.

The properties of cooperative DMPC are strongly based
on convexity. In [144], the results were extended to include
nonlinear systems and the resulting non-convex optimization
problems without guaranteed convergence of the closed-loop
performance to the corresponding centralized control system.
Two cooperative and iterative DMPC algorithms for cascade
processes have been described in [162], where the perfor-
mance index minimized by each agent includes the cost
functions of its neighborhoods, communication delays are
considered and stability is proven in the unconstrained case.
In addition to these results, recent efforts [82], [80] have
focused on the development of Lyapunov-based sequential
and iterative, cooperative DMPC algorithms for nonlinear
systems with well-characterized regions of closed-loop sta-
bility. Below we discuss these DMPC algorithms.

1) Sequential DMPC: In [82], [80], a sequential DMPC
architecture shown in Figure 8 for fully coupled nonlinear
systems was developed based on the assumption that the
full system state feedback is available to all the distributed
controllers at each sampling time. In the proposed sequential
DMPC, for each set of the control inputs ui, a Lyapunov-
based MPC (LMPC), denoted LMPC i, is designed. The dis-
tributed LMPCs use the following implementation strategy:

1) At tk, all the LMPCs receive the state measurement
x(tk) from the sensors.

2) For j = m to 1
2.1. LMPC j receives the entire future input trajecto-

ries of ui, i = m, . . . , j + 1, from LMPC j + 1
and evaluates the future input trajectory of uj

based on x(tk) and the received future input



trajectories.
2.2. LMPC j sends the first step input value of uj to

its actuators and the entire future input trajecto-
ries of ui, i = m, . . . , j, to LMPC j − 1.

3) When a new measurement is received (k ← k +1), go
to Step 1.

In this architecture, each LMPC only sends its future
input trajectory and the future input trajectories it received
to the next LMPC (i.e., LMPC j sends input trajectories to
LMPC j − 1). This implies that LMPC j, j = m, . . . , 2,
does not have any information about the values that ui,
i = j − 1, . . . , 1 will take when the optimization problems
of the LMPCs are designed. In order to make a decision,
LMPC j, j = m, . . . , 2 must assume trajectories for ui,
i = j−1, . . . , 1, along the prediction horizon. To this end, an
explicit nonlinear control law h(x) which can stabilize the
closed-loop system asymptotically is used. In order to inherit
the stability properties of the controller h(x), a Lyapunov
function based constraint is incorporated in each LMPC to
guarantee a given minimum contribution to the decrease
rate of the Lyapunov function V (x). Specifically, the design
of LMPC j, j = 1, . . . , m, is based on the following
optimization problem:

min
uj∈S(∆)

J(tk) (37a)

s.t. ˙̃x(t) = f(x̃(t)) +
m∑

i=1

gi(x̃(t))ui (37b)

ui(t) = hi(x̃(tk+l)), i = 1, . . . , j − 1,

∀t ∈ [tk+l, tk+l+1), l = 0, ..., N − 1 (37c)
ui(t) = u∗s,i(t|tk), i = j + 1, . . . , m (37d)

uj(t) ∈ Uj (37e)
x̃(tk) = x(tk) (37f)
∂V (x(tk))

∂x
gj(x(tk))uj(tk)

≤ ∂V (x(tk))
∂x

gj(x(tk))hj(x(tk)). (37g)

In the optimization problem of Eq. 37, u∗s,i(t|tk) denotes
the optimal future input trajectory of ui obtained by LMPC i
evaluated before LMPC j. The constraint of Eq. 37c defines
the value of the inputs evaluated after uj (i.e., ui with i =
1, . . . , j − 1); the constraint of Eq. 37d defines the value of
the inputs evaluated before uj (i.e., ui with i = j+1, . . . ,m);
the constraint of Eq. 37g guarantees that the contribution of
input uj to the decrease rate of the time derivative of the
Lyapunov function V (x) at the initial evaluation time (i.e.,
at tk), if uj = u∗s,j(tk|tk) is applied, is bigger than or equal
to the value obtained when uj = hj(x(tk)) is applied. This
constraint allows proving the closed-loop stability properties
of this DMPC [82], [80].

2) Iterative DMPC: In [80], a Lyapunov-based iterative
DMPC algorithm shown in Figure 9 was proposed for
coupled nonlinear systems. The implementation strategy of
this iterative DMPC is as follows:
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1. At tk, all the LMPCs receive the state measurement
x(tk) from the sensors and then evaluate their future
input trajectories in an iterative fashion with initial
input guesses generated by h(·).

2. At iteration c (c ≥ 1):

2.1. Each LMPC evaluates its own future input trajec-
tory based on x(tk) and the latest received input
trajectories of all the other LMPCs (when c = 1,
initial input guesses generated by h(·) are used).

2.2. The controllers exchange their future input tra-
jectories. Based on all the input trajectories, each
controller calculates and stores the value of the
cost function.

3. If a termination condition is satisfied, each controller
sends its entire future input trajectory corresponding to
the smallest value of the cost function to its actuators;
if the termination condition is not satisfied, go to Step
2 (c ← c + 1).

4. When a new measurement is received, go to Step 1
(k ← k + 1).

Note that at the initial iteration, all the LMPCs use h(x)
to estimate the input trajectories of all the other controllers.
Note also that the number of iterations c can be variable
and it does not affect the closed-loop stability of the DMPC
architecture presented in this subsection. For the iterations
in this DMPC architecture, there are different choices of the
termination condition. For example, the number of iterations
c may be restricted to be smaller than a maximum iteration
number cmax (i.e., c ≤ cmax) and/or the iterations may be
terminated when the difference of the performance or the
solution between two consecutive iterations is smaller than
a threshold value and/or the iterations maybe terminated
when a maximum computational time is reached. In order to
proceed, we define x̂(t|tk) for t ∈ [tk, tk+N ) as the nominal
sampled trajectory of the system of Eq. 2 associated with
the feedback control law h(x) and sampling time ∆ starting
from x(tk). This nominal sampled trajectory is obtained by
integrating recursively the following differential equation:

˙̂x(t|tk) = f(x̂(t|tk)) +
m∑

i=1

gi(x̂(t|tk))hi(x̂(tk+l|tk)),

∀τ ∈ [tk+l, tk+l+1), l = 0, . . . , N − 1. (38)



Based on x̂(t|tk), we can define the following variable:

un,j(t|tk) = hj(x̂(tk+l|tk)), j = 1, . . . ,m,

∀τ ∈ [tk+l, tk+l+1), l = 0, . . . , N − 1.(39)

which will be used as the initial guess of the trajectory of
uj .

The design of the LMPC j, j = 1, . . . , m, at iteration c
is based on the following optimization problem:

min
uj∈S(∆)

J(tk) (40a)

s.t. ˙̃x(t) = f(x̃(t)) +
m∑

i=1

gi(x̃(t))ui (40b)

ui(t) = u∗,c−1
p,i (t|tk), ∀i 6= j (40c)

uj(t) ∈ Uj (40d)
x̃(tk) = x(tk) (40e)
∂V (x(tk))

∂x
gj(x(tk))uj(tk)

≤ ∂V (x(tk))
∂x

gj(x(tk))hj(x(tk)) (40f)

where u∗,c−1
p,i (t|tk) is the optimal input trajectories at itera-

tion c− 1.
In general, there is no guaranteed convergence of the

optimal cost or solution of an iterated DMPC to the optimal
cost or solution of a centralized MPC for general nonlin-
ear constrained systems because of the non-convexity of
the MPC optimization problems. However, with the above
implementation strategy of the iterative DMPC presented in
this section, it is guaranteed that the optimal cost of the
distributed optimization of Eq. 40 is upper bounded by the
cost of the Lyapunov-based controller h(·) at each sampling
time.

Note that in the case of linear systems, the constraint of
Eq. 40f is linear with respect to uj and it can be verified
that the optimization problem of Eq. 40 is convex. The input
given by LMPC j of Eq. 40 at each iteration may be defined
as a convex combination of the current optimal input solution
and the previous one, for example,

uc
p,j(t|tk) =

m,i 6=j∑

i=1

wiu
c−1
p,j (t|tk) + wju

∗,c
p,j(t|tk) (41)

where
m∑

i=1

wi = 1 with 0 < wi < 1, u∗,cp,j is the current

solution given by the optimization problem of Eq. 40 and
uc−1

p,j is the convex combination of the solutions obtained at
iteration c− 1. By doing this, it is possible to prove that the
optimal cost of the distributed LMPC of Eq. 40 converges
to the one of the corresponding centralized control system
[11], [143], [26].

3) DMPC based on agent negotiation: We review next a
line of work on DMPC algorithms which adopt an iterative
approach for constrained linear systems coupled through the
inputs [87], [88]. Figure 10 shows a scheme of this class of
controllers. Note that there is one agent for each subsystem

x1

xMx

u1

uMu

Agent 1

Agent Mx

SystemController

Fig. 10. DMPC based on agent negotiation.

and that the number of controlled inputs may differ from the
number of subsystems.

In this class of controllers, the controllers (agents, in
general) do not have any knowledge of the dynamics of any
of its neighbors, but can communicate freely among them
in order to reach an agreement. The proposed strategy is
based on negotiation between the agents. At each sampling
time, following a given protocol, agents make proposals to
improve an initial feasible solution on behalf of their local
cost function, state and model. These proposals are accepted
if the global cost improves the cost corresponding to the
current solution.

The cooperative DMPCs use the following implementation
strategy:

1. At k, each one of the controllers receives its local state
measurement xi(k) from its sensors and ud is obtained
shifting the decided input trajectory at time step k−a.

2. At iteration c (c ≥ 1):
2.1. One agent evaluates and sends a proposal to its

neighbors.
2.2. Each neighbor evaluates the cost increment of

applying the proposal instead of the current solu-
tion ud and sends this cost increment to the agent
making the proposal.

2.3. The agent making the proposal evaluates the total
increment of the cost function obtained from the
information received and decides the new value
of ud.

2.4. The agent making the proposal communicates the
decision to its neighbors.

3. If a termination condition is satisfied, each controller
sends its entire future input trajectory to its actuators;
if the termination condition is not satisfied, go to Step
2 (c ← c + 1).

4. When a new measurement is received, go to Step 1
(k ← k + 1).

Several proposals can be evaluated in parallel as long as they
do not involve the same set of agents; that is, at any given
time an agent can only evaluate a single proposal.

In order to generate a proposal, agent i minimizes its
own local cost function Ji solving the following optimization



problem:

min
u(k),...,u(k+N−1)

Ji(k) (42)

subject to Eq. (5) with wi = 0 and, for j = 0, . . . , N − 1,

ul(k + j) ∈ Ul , l ∈ nprop (43)

ul(k + j) = ul(k + j)d ,∀l /∈ nprop (44)
xi(k + j) ∈ Xi , j > 0 (45)
xi(k + N) ∈ Xfi (46)

where the Ji(k) cost function depends on the predicted
trajectory of xi and the inputs which affect it. In this
optimization problem, agent i optimizes over a set nprop of
inputs that affect its dynamics. The rest of inputs are set to
the currently accepted solution ul(k + j)d.

Each agent l who is affected by the proposal of agent i
evaluates the predicted cost corresponding to the proposed
solution. To do so, the agent calculates the difference be-
tween the cost of the new proposal and the cost of the
current accepted proposal. This information is sent to agent
i, which can then evaluate the total cost of its proposal,
that is, J(k) =

∑
i Ji(k), to make a cooperative decision

on the future inputs trajectories. If the cost improves the
currently accepted solution, then ul(k+j)d = ul(k+j)∗ for
all l ∈ nprop, else the proposal is discarded.

With an appropriate design of the objective functions,
the terminal region constraints and assuming that an initial
feasible solution is at hand, this controller can be shown
to provide guaranteed stability of the resulting closed-loop
system.

C. Distributed optimization

Starting from the seminal contributions reported
in [101], [49], many efforts have been devoted to develop
methods for the decomposition of a large optimization
problem into a number of smaller and more tractable ones.
Methods such as primal or dual decomposition are based
on this idea; an extensive review of this kind of algorithms
can be found in [11]. Dual decomposition has been used
for DMPC in [125], while other augmented lagrangian
formulations were proposed in [113] and applied to the
control of irrigation canals in [116] and to traffic networks,
see [14], [39]. In the MPC framework, algorithms based on
this approach have also been described in [67], [20], [21].
A different gradient-based distributed dynamic optimization
method was proposed in [136], [137] and applied to an
experimental four tanks plant in [6]. The method of [136],
[137] is based on the exchange of sensitivities. This
information is used to modify the local cost function of
each agent adding a linear term which partially allow to
consider the other agents’ objectives.

In order to present the basic idea underlying the appli-
cation of the popular dual decomposition approach in the
context of MPC, consider the set of systems of Eq. 3 in nom-
inal conditions (wi = 0) and the following (unconstrained)
problem

min
u(k),...,u(k+N−1)

J(k) =
m∑

i=1

Ji(k) (47)

where

Ji(k) =
N−1∑

j=0

[‖xi(k+j)‖2Qi
+‖ui(k+j)‖2Ri

]+‖xi(k+N)‖2Pi

(48)
Note that the problem is separable in the cost function

given by Eq. 47, while the coupling between the subproblems
is due to the dynamics of Eq. 3. Define now the “coupling
variables” νi =

∑
j 6=i Aijxj and write Eq. 3 as

xi(k + 1) = Aiixi(k) + Biui(k) + νi(k) (49)

Let λi be the Lagrange multipliers, and consider the La-
grangian function:

L(k) =
m∑

i=1

[Ji(k)+
N−1∑

l=0

λi(k+l)(νi(k+l)−
∑

j 6=i

Aijxj(k+l))]

(50)
For the generic vector variable ϕ, let ϕ̄i(k) =

[ϕ
′
i(k) , . . . , ϕ

′
i(k +N − 1)]

′
and ϕ̄ = [ϕ̄

′
1 , . . . , ϕ̄

′
m]

′
. Then,

by relaxation of the coupling constraints, the optimization
problem of Eq. 47 can be stated as

max
λ̄(k)

min
ū(k),ν̄(k)

L(k) (51)

or, equivalently

max
λ̄(k)

m∑

i=1

J̃i(k) (52)

where, letting Āji be a block-diagonal matrix made by N
blocks equal to Aji,

J̃i(k) = min
ūi(k),ν̄i(k)

[Ji(k)+ λ̄
′
i(k)ν̄i(k)−

∑

j 6=i

λ̄
′
j(k)Ājix̄i(k))]

(53)
At any time instant, this optimization problem is solved

according to the following two-step iterative procedure:
1) for a fixed λ̄, solve the set of m independent min-

imization problems given by Eq. 53 with respect to
ūi(k), ν̄i(k);

2) given the collective values of ū, ν̄ computed at the
previous step, solve the maximization problem given
by Eq. 52 with respect to λ̄.

Although the decomposition approaches usually require
a great number of iterations to obtain a solution, many
efforts have been devoted to derive efficient algorithms, see
for example in [11], [112]. Notably, as shown for example
in [35], the second step of the optimization procedure can
be also performed in a distributed way by suitably exploiting
the structure of the problem.
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Fig. 11. A distributed MPC configuration for the alkylation of benzene
with ethylene process.

D. Alkylation of benzene with ethylene process example
(Cont’)

Figure 11 shows a distributed control configuration for the
alkylation process. In this design, three distributed MPCs
are designed to manipulate the three different sets of control
inputs and communicate through the plant-wide network to
exchange information and coordinate their actions. Specif-
ically, the first controller (MPC 1) is used to compute the
values of Q1, Q2 and Q3, the second distributed controller
(MPC 2) is used to compute the values of Q4 and Q5,
and the third controller (MPC 3) is used to compute the
values of F4 and F6. This decomposition of the control
loops is motivated by physical considerations: namely, one
MPC (3) is used to manipulate the feed flow of ethylene
into the process, another MPC (2) is used to manipulate
the heat input/removal (Q1, Q2 and Q3) to the first three
reactors where the bulk of the alkylation reactions takes
place and the third MPC (3) is used to manipulate the heat
input/removal to the separator and the fourth reactor (Q4 and
Q5) that processes the recycle stream from the separator.
Either sequential or iterative communication architectures
can be used in this DMPC design.

VI. DECOMPOSITIONS FOR DMPC

An important and unresolved in its generality issue in
DMPC is how to decompose the total number of control ac-
tuators into small subsets, each one of them being controlled
by a different MPC controller. There have been several ideas
for how to do this decomposition based on plant layout con-
siderations as well as via time-scale considerations. Below,
we review some of these decompositions.

A. Decomposition into subsystems and multirate DMPC

Partitioning and decomposition of a process into several
subsystems is an important topic. The recent work [60]
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Fig. 12. Multirate DMPC architecture (solid line denotes fast state sampling
and/or point-to-point links; dashed line denotes slow state sampling and/or
shared communication networks).

describes the design of a network-based DMPC system
using multirate sampling for large-scale nonlinear systems
composed of several coupled subsystems. A schematic of
the plant decomposition and of the control system is shown
in Fig. 12. In the context of the alkylation of benzene
with ethylene process example, this decomposition means
that each reactor or separator has its own MPC controller,
i.e., MPC 1 is used to manipulate Q1, MPC 2 is used to
manipulate Q2 and F4 and so on. Specifically, in [60], the
states of each local subsystem are assumed to be divided
into fast sampled states and slowly sampled states. Further-
more, the assumption is made that there is a distributed
controller associated with each subsystem and the distributed
controllers are connected through a shared communication
network. At a sampling time in which slowly and fast sam-
pled states are available, the distributed controllers coordinate
their actions and predict future input trajectories which,
if applied until the next instant that both slowly and fast
sampled states are available, guarantee closed-loop stability.
At a sampling time in which only fast sampled states are
available, each distributed controller tries to further optimize
the input trajectories calculated at the last instant in which the
controllers communicated, within a constrained set of values
to improve the closed-loop performance with the help of the
available fast sampled states of its subsystem.

B. Hierarchical and multilevel MPC

In the process industry, the control structure is usually
organized in a number of different layers. At the bottom
level, standard PI-PID regulators are used for control of
the actuators, while at a higher layer MPC is usually ap-
plied for set-point tracking of the main control variables.
Finally, at the top of the hierarchy, optimization is used for
plantwide control with the scope of providing efficient, cost-
effective, reliable, and smooth operation of the entire plant.
An extensive discussion of hierarchical, multilayer control is
beyond the scope of this review, and reference is made to
the wide literature in the field, with particular reference to
the excellent and recent survey papers [149], [40]. Recent
results on the design of two-level control systems designed



p(x, z)

MPC
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Fig. 13. A schematic of a composite control system using MPC in the
slow time-scale.

with MPC and allowing for reconfiguration of the control
structure have also been reported in [122], [155]. As an
additional remark, it is worth mentioning that a recent stream
of research is devoted to the so-called economic MPC, with
the aim to directly use feedback control for optimizing
economic performance, rather than simply stabilizing the
plant and maintaining steady operation, see e.g. [127], [34],
[58].

In a wider perspective, hierarchical and multilayer struc-
tures are useful for control of very large scale systems
composed by a number of autonomous or semi-autonomous
subsystems, which must be coordinated to achieve a com-
mon goal. Examples can be found in many different fields,
such as robotics [8], [152], transportation networks [114],
voltage control in energy distribution networks [115], con-
trol of irrigation canals [116], [161], and automation of
baggage handling systems [147]. The design of multilayer
structures according to a leader-follower approach for net-
worked control has been considered in [7]. In any case,
the design of multilayer structures requires multi-level and
multi-resolution models, which, according to [149], can
be obtained according to a functional, temporal or spatial
decomposition approach.

C. MPC of Two-Time-Scale Systems

Most chemical processes involve physico-chemical phe-
nomena that occur in distinct (slow and fast) time scales.
Singular perturbation theory provides a natural framework
for modeling, analyzing and controlling multiple time-scale
processes. While there has been extensive work on feedback
control of two-time-scale processes within the singular per-
turbation framework (e.g., [72]), results on MPC of two-
time-scale systems have been relatively recent [153], [19].
Below, we discuss some of these results pertaining to the
subject of decentralized/distributed MPC.

1) Slow time-scale MPC: Specifically, in [19], MPC was
considered in the context of nonlinear singularly perturbed
systems in standard form with the following state-space
description:

ẋ = f(x, z, ε, us, w), x(0) = x0

εż = g(x, z, ε, uf , w), z(0) = z0

(54)

where x ∈ Rn and z ∈ Rm denote the vector of state
variables, ε is a small positive parameter, w ∈ Rl denotes the

vector of disturbances and us ∈ U ⊂ Rp and uf ∈ Ṽ ⊂ Rq

are two sets of manipulated inputs. Since the small parameter
ε multiplies the time derivative of the vector z in the system
of Eq. 2, the separation of the slow and fast variables in
Eq. 2 is explicit, and thus, we will refer to the vector x as
the slow states and to the vector z as the fast states. With
respect to the control problem formulation, the assumption
is made that the fast states z are sampled continuously and
their measurements are available for all time t (for exam-
ple, variables for which fast sampling is possible usually
include temperature, pressure and hold-ups) while the slow
states x are sampled synchronously and are available at
time instants indicated by the time sequence {tk≥0} with
tk = t0 + k∆, k = 0, 1, . . . where t0 is the initial time
and ∆ is the sampling time (for example, slowly sampled
variables usually involve species concentrations). The set
of manipulated inputs uf is responsible for stabilizing the
fast dynamics of Eq. 2 and for this set the control action
is assumed to be computed continuously, while the set of
manipulated inputs us is evaluated at each sampling time
tk and is responsible for stabilizing the slow dynamics and
enforcing a desired level of optimal closed-loop performance.
The explicit separation of the slow and fast variables in the
system of Eq. 2 allows decomposing it into two separate
reduced-order systems evolving in different time-scales. To
proceed with such a two-time-scale decomposition and in
order to simplify the notation of the subsequent development,
we will first address the issue of stability of the fast dynam-
ics. Since there is no assumption that the fast dynamics of
Eq. 2 are asymptotically stable, we assume the existence of a
“fast” feedback control law uf = p(x, z) that renders the fast
dynamics asymptotically stable. Substituting uf = p(x, z) in
Eq. 2 and setting ε = 0 in the resulting system, we obtain:

dx

dt
= f(x, z, 0, us, w) (55a)

0 = g(x, z, 0, p(x, z), w) (55b)

Assuming that the equation g(x, z, 0, p(x, z), w) = 0 pos-
sesses a unique root

z = ĝ(x,w) (56)

we can construct the slow subsystem:

dx

dt
= f(x, ĝ(x,w), 0, us, w) =: fs(x, us, w) (57)

Introducing the fast time scale τ =
t

ε
and the deviation

variable y = z − ĝ(x,w), we can rewrite the nonlinear
singularly perturbed system of Eq. 2 as follows:

dx

dτ
= εf(x, y + ĝ(x,w), ε, us, w)

dy

dτ
= g(x, y + ĝ(x,w), ε, uf , w)− ε

∂ĝ

∂w
ẇ

−ε
∂ĝ

∂x
f(x, y + ĝ(x,w), ε, us, w)

(58)
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Fig. 14. A schematic of a composite control system using MPC in both
the fast and slow time-scales.

Setting ε = 0, we obtain the following fast subsystem:

dy

dτ
= g(x, y + ĝ(x,w), 0, uf , w) (59)

where x and w can be considered as “frozen” to their initial
values. The fast subsystem can be made asymptotically stable
uniformly in x ∈ Rn and w ∈ Rl with the appropriate
design of uf = p(x, z). MPC is used to compute the
control action us in the slow time-scale. A schematic of
the proposed control system structure is shown in Fig. 13.
Specifically, an LMPC of the type of Eq. 16 was used
in [103] which guarantees practical stability of the closed-
loop system and allows for an explicit characterization of
the stability region to compute us. The LMPC is based on
the Lyapunov-based controller h(x). Using stability results
for nonlinear singularly perturbed systems, the closed-loop
system is analyzed and sufficient conditions for stability have
been derived [19].

2) Fast/Slow MPC design: In addition to the development
of the composite control system of Fig. 13, the singular
perturbation framework of Eq. 54 can be also used to develop
composite control systems where an MPC controller is used
tin the fast time scale. In this case, a convenient way from a
control problem formulation point of view is to design a fast-
MPC that uses feedback of the deviation variable y in which
case uf is only active in the boundary layer (fast motion of
the fast dynamics) and becomes nearly zero in the slow time-
scale. The resulting control architecture in this case is shown
in Figure 14 where there is no need for communication
between the fast MPC and the slow MPC; in this sense,
this control structure can be classified as decentralized.
Specifically, referring to the singularly perturbed system of
Eq. 58, the cost can be defined as

J = Js + Jf

=
∫ N∆s

0

[
xT (τ̃)Qsx(τ̃) + uT

s (τ̃)Rsus(τ̃)
]
dτ̃

+
∫ N∆f

0

[
yT (τ̃)Qfy(τ̃) + uT

f (τ̃)Rfuf (τ̃)
]
dτ̃

(60)
where Qs, Qf , Rs, Rf are positive definite weighting
matrices, ∆s is the sampling time of us and ∆f is the
sampling time of uf . The fast MPC can be then formulated

as follows

min
uf∈S(∆f )

Jf (61a)

s.t.
dy

dτ
= g(x, y + g̃(x, 0), 0, uf , 0) (61b)

uf ∈ V̄ (61c)
stability constraints (61d)

where z = g̃(x, 0) is the solution of the equation
g(x, z, 0, 0, 0) = 0. The slow MPC is designed on the basis
of the system of Eq. 57 with w = 0 and ĝ(x,w) = g̃(x).
Such a two-time-scale DMPC architecture takes advantage
of the time-scale separation in the process model and does
not require communication between the two MPCs yet can
ensure closed-loop stability and near optimal performance
in the sense of computing control actions that minimize
J = Js + Jf as ε → 0.

VII. DISTRIBUTED STATE ESTIMATION AND
ASYNCHRONOUS/DELAYED SAMPLING

A. Distributed state estimation

Many algorithms for distributed state estimation have
already been proposed in the literature. Among them, we can
recall the early contributions reported in [57], [126], aimed
at reducing the computational complexity of centralized
Kalman filters. In [108], a solution based on reduced-order
and decoupled models for each subsystem was proposed,
while subsystems with overlapping states were considered
in the fully distributed schemes of [70], [142], [141] and in
[151], where an all-to-all communication among subsystems
was required. The problem of distributed estimation for
sensor networks where each sensor measures just some of the
system outputs and computes the estimate of the overall state
have been studied in [5], [17], [66], [120] and in [41], [42],
[43], where the Moving Horizon Estimation (MHE) approach
has been used to cope with constraints on noise and state
variables. Finally, MHE algorithms for linear constrained
systems decomposed into interconnected subsystems without
overlapping states have been described in [44], [45].

B. Asynchronous and Delayed Feedback

Previous work on MPC design for systems subject to
asynchronous or delayed feedback has primarily focused on
centralized MPC designs [16], [133], [135], [63], [79], [107],
[84], [54], [123], [48]. In a recent work [51], the issue of
delays in the communication between distributed controllers
was addressed. In addition to these works, control and
monitoring of complex distributed systems with distributed
intelligent agents were studied in [148], [27], [121].

Below, we review a recent iterative DMPC scheme [83],
[81], taking into account asynchronous and delayed measure-
ments explicitly in its formulation and providing determin-
istic closed-loop stability properties.



C. Iterative DMPC with Asynchronous, Delayed Feedback

We assume that feedback of the state of the system of
Eq. 2, x(t), is available at asynchronous time instants ta
where {ta≥0} is a random increasing sequence of times;
that is, the intervals between two consecutive instants are
not fixed. The distribution of {ta≥0} characterizes the time
the feedback loop is closed or the time needed to obtain
a new state measurement. In general, if there exists the
possibility of arbitrarily large periods of time in which
feedback is not available, then it is not possible to provide
guaranteed stability properties, because there exists a non-
zero probability that the system operates in open-loop for
a period of time large enough for the state to leave the
stability region. In order to study the stability properties in
a deterministic framework, we assume that there exists an
upper bound Tm on the interval between two successive time
instants in which the feedback loop is closed or new state
measurements are available, that is:

max
a
{ta+1 − ta} ≤ Tm. (62)

Furthermore, we also assume that there are delays in the
measurements received by the controllers due to delays in
the sampling process and data transmission. In order to
model delays in measurements, another auxiliary variable
da is introduced to indicate the delay corresponding to the
measurement received at time ta, that is, at time ta, the mea-
surement x(ta−da) is received. In order to study the stability
properties in a deterministic framework, we assume that the
delays associated with the measurements are smaller than
an upper bound D. Both assumptions are reasonable from
process control and networked control systems perspectives
[156], [157], [111], [104] and allow us to study deterministic
notions of stability. This model of feedback/measurements
is of relevance to systems subject to asynchronous/delayed
measurement samplings and to networked control systems,
where the asynchronous/delayed feedback is introduced by
data losses/traffic in the communication network connecting
the sensors/actuators and the controllers.

In the presence of asynchronous/delayed measurements,
the iterative DMPC presented in Section V-B.2 cannot
guarantee closed-loop stability and both the implementation
strategy and the formulation of the distributed controllers has
to take into account the occurrence of asynchronous/delayed
measurements. Specifically, we take advantage of the system
model both to estimate the current system state from a
delayed measurement and to control the system in open-loop
when new information is not available. To this end, when a
delayed measurement is received, the distributed controllers
use the system model and the input trajectories that have been
applied to the system to get an estimate of the current state
and then based on the estimate, MPC optimization problems
are solved to compute the optimal future input trajectory that
will be applied until new measurements are received. The
implementation strategy for the iterative DMPC design is as
follows:

1. When a measurement x(ta − da) is available at ta,

all the distributed controllers receive the state mea-
surement and check whether the measurement provides
new information. If ta − da > maxl<a tl − dl, go to
Step 2. Else the measurement does not contain new
information and is discarded, go to Step 3.

2. All the distributed controllers estimate the current state
of the system xe(ta) and then evaluate their future
input trajectories in an iterative fashion with initial
input guesses generated by h(·).

3. At iteration c (c ≥ 1):
3.1. Each controller evaluates its own future input

trajectory based on xe(ta) and the latest received
input trajectories of all the other distributed con-
trollers (when c = 1, initial input guesses gener-
ated by h(·) are used).

3.2. The controllers exchange their future input tra-
jectories. Based on all the input trajectories, each
controller calculates and stores the value of the
cost function.

4. If a termination condition is satisfied, each controller
sends its entire future input trajectory corresponding to
the smallest value of the cost function to its actuators;
if the termination condition is not satisfied, go to Step
3 (c ← c + 1).

1) When a new measurement is received (a ← a+1), go
to Step 1.

In order to estimate the current system state xe(ta) based
on a delayed measurement x(ta − da), the distributed con-
trollers take advantage of the input trajectories that have been
applied to the system from ta−da to ta and the system model
of Eq. 2. Let us denote the input trajectories that have been
applied to the system as u∗d,i(t), i = 1, . . . ,m. Therefore,
xe(ta) is evaluated by integrating the following equation:

ẋe(t) = f(xe(t)) +
m∑

i=1

gi(xe(t))u∗d,i(t),∀t ∈ [ta − da, ta)

(63)
with xe(ta − da) = x(ta − da).

Before going to the design of the iterative DMPC, we
need to define another nominal sampled trajectory x̌(t|ta)
for t ∈ [ta, ta +N∆), which is obtained by replacing x̂(t|ta)
with x̌(t|ta) in Eq. 38 and then integrating the equation with
x̌(ta|ta) = xe(ta). Based on x̌(t|ta), we define a new input
trajectory as follows:

ue
n,j(t|ta) = hj(x̌(ta + l∆|ta)), j = 1, . . . , m,

∀t ∈ [ta + l∆, ta + (l + 1)∆), l = 0, . . . , N − 1(64)

which will be used in the design of the LMPC to construct
the stability constraint and used as the initial input guess for
iteration 1 (i.e., u∗,0d,i = ue

n,i for i = 1, . . . , m).
Specifically, the design of LMPC j, j = 1, . . . , m, at

iteration c is based on the following optimization problem:

min
uj∈S(∆)

J(ta) (65a)

s.t. ˙̃xj(t) = f(x̃j(t)) +
m∑

i=1

gi(x̃j(t))ui(t) (65b)



ui(t) = u∗,c−1
d,i (t|ta),∀i 6= j (65c)∥∥∥uj(t)− u∗,c−1

d,j (t|ta)
∥∥∥ ≤ ∆uj ,

∀τ ∈ [ta, ta + ND,a∆) (65d)
uj(t) ∈ Uj (65e)

x̃j(ta) = xe(ta) (65f)
∂V (x̃j(t))

∂x̃j

(
1
m

f(x̃j(t)) + gj(x̃j(t))uj(t)
)

≤ ∂V (x̌(t|ta))
∂x̌

(
1
m

f(x̌(t|ta)) + gj(x̌(t|ta))ue
n,j(t|ta)

)
,

∀t ∈ [ta, ta + ND,a∆) (65g)

where ND,a is the smallest integer satisfying ND,a∆ ≥ Tm+
D−da. The optimal solution to this optimization problem is
denoted u∗,cd,j(a|ta) which is defined for t ∈ [ta, ta + N∆).
Accordingly, we define the final optimal input trajectory
of LMPC j of Eq. 65 as u∗d,j(t|tk) which is also defined
for t ∈ [ta, ta + N∆). Note again that the length of the
constraint ND,a depends on the current delay da, so it may
have different values at different time instants and has to be
updated before solving the optimization problems.

The manipulated inputs of the closed-loop system under
the above iterative DMPC for systems subject to delayed
measurements are defined as follows:

ui(t) = u∗d,i(t|ta), i = 1, . . . , m, ∀t ∈ [ta, ta+q) (66)

for all ta such that ta − da > maxl<a tl − dl and for
a given ta, the variable q denotes the smallest integer
that satisfies ta+q − da+q > ta − da. Recent work has
also addressed the problem of communication disruptions
between the distributed controllers [59].

VIII. FUTURE RESEARCH DIRECTIONS

In this section, we discuss various topics for future re-
search work in the area of DMPC; the list is not intended to
be exhaustive and it is certainly based on our experiences,
biases and hopes.

A. DMPC: Loop Partitioning and Decompositions

While there have been several suggestions for how to
partition the loops in a DMPC system (i.e., what specific con-
trol actuators each MPC will manipulate) based on physical
arguments, insight into process dynamic behavior like, for
example, two-time-scale behavior [74], [65], or plant layout
considerations like one controller per plant unit, there is no
general framework for computing optimal (in a certain well-
defined sense) input (control actuator) decompositions for
DMPC. Undoubtedly, this problem is very hard in its full
generality, however, even solutions for large-scale systems
of specific structure, like linear systems [106], [1] or well-
defined parts of a chemical plant flowsheet, could be very
useful. Research in this direction should go hand-in-hand
with the development of optimal communication strategies
between the distributed controllers so that controller evalu-
ation time, communication network usage and closed-loop
stability, performance and robustness are optimized.

B. Distributed State Estimation and DMPC

Most of the available DMPC schemes rely on the assump-
tion of availability of measurements of the complete state
vector. However, it is possible that a distributed controller in
a large-scale control system may not have access to all the
measurements or that measurements of all the process states
are not available. In this case, in the design of the distributed
controllers, we need to take into account that different
distributed controllers may have access to measurements of
different parts of the process states, so that methods for
DMPC with partial state measurements are required. Future
research in this direction should take advantage of the avail-
able distributed state estimation schemes reviewed in section
VII of this paper and should look at how best the combina-
tion of a DMPC algorithm with centralized/distributed state
estimators can be addressed. One approach is to design a
different state observer for each controller (i.e., distributed
state estimation), while an alternative approach is to design
a centralized observer that sends the estimated state to all
the distributed controllers. In this context, the integration of
the state estimation schemes with the DMPC algorithms so
that desired levels of stability, performance and robustness
are attained in the closed-loop system should be rigorously
studied.

C. Economic DMPC and distributed optimization

Most industrial process control applications are based on
hierarchical control schemes in which first the operation
point of the plant is determined based on economic, safety
and environmental considerations (usually using steady state
models), and then process control systems are used to drive
the plant to this steady state (usually using dynamic models).
There have been some recent advances in integrating eco-
nomic optimization and process control in a single MPC us-
ing centralized approaches, for example the MPC for tracking
schemes proposed in [30], [47], [77] and the MPC schemes
based directly on an economic cost function proposed in [34],
[62], [58]. It is clear that, for large scale systems, DMPC
may be an appropriate path to tackle the resulting economic
optimization problem. Furthermore, DMPC stands to benefit
from distributed optimization schemes that are tailored to
handle DMPC optimization problems in an optimal fashion
accounting for control-loop decomposition, plant variable
interaction patterns and controller communication strategies.
Research in this direction may start from the extension to
the distributed case of well-known techniques for centralized
MPC, such as the multiple shooting method.

D. DMPC and Hybrid systems

Hybrid systems constitute an important class of mathemat-
ical models that explicitly account for the intricate coupling
between continuous dynamics and discrete events. While
there has been extensive work over the last fifteen years on
analysis and control of hybrid systems (see, for example,
[10], [25] and the references therein), distributed MPC of
hybrid systems is a research topic that has received no
attention. In the context of chemical process control and



operations, due to changes in raw materials, energy sources,
product specifications and market demands, and abrupt ac-
tuator and sensor faults, it is possible to describe process
behavior with classes of switched nonlinear systems that
involve differential equation models whose right-hand-side is
indexed with respect to different modes of operation. From
a controller design standpoint, in order to achieve closed-
loop stability, discrete mode transition situations should be
carefully accounted for in the control problem formulation
and solution. In order to achieve mode transitions in an
optimal setting and accommodate input/state constraints,
distributed model predictive control (MPC) framework can
be employed, particularly in cases where the computational
complexity of a centralized MPC may significantly increase
as the number of operational modes, control inputs and states
increases.

E. Monitoring and reconfigurability of DMPC

Monitoring and reconfiguration of DMPC is an important
research topic. DMPC systems offer a vast set of possibilities
for reconfiguration in the event of sensor and actuator
faults to maintain the desired closed-loop performance. In
a recent set of papers [23], [22], a data-based monitoring
and reconfiguration system was developed for a distributed
model predictive control system in the presence of control
actuator faults. In addition to a monitoring method, appropri-
ate DMPC reconfiguration (fault-tolerant control) strategies
were designed to handle the actuator faults and maintain the
closed-loop system state within a desired operating region.
There is certainly a lot more to be done in the context of
DMPC monitoring and fault-tolerance.

Furthermore, in addition to its importance in the context
of DMPC fault-tolerance, reconfigurability of DMPC could
provide flexibility to the control system and could be ex-
plored in the context of other areas as follows.

During steady-state operation, it is not necessary to con-
tinuously transmit among the distributed estimation/control
agents. In fact, in the case where one system does not receive
any new information (and can be sure that no transmission
faults have occurred), it can be assumed that the other agents
basically maintain their previous state. This reduction of
the information transmitted can be particularly significant in
sensor networks with local power supply in order to have
significant energy savings, which could guarantee a longer
“life” of the sensors and/or of the actuators.

For similar reasons, future research efforts could deal with
the so-called “plug and play” control as well as with DMPC
scalability. In nominal operating conditions, the control sys-
tem assumes a minimal configuration, while in perturbed
conditions sensors and/or actuators are added. The challenge
here is to avoid the redesign of the overall control system,
in particular for the elements not directly dynamically con-
nected with the additional sensors and actuators. The reader
may refer to [105], [145], [71], [155] for some references on
“plug and play” control.

In addition, moving from industrial plants to very large-
scale systems, such as transportation or distribution net-

works, or to the so-called “System-of-Systems” (i.e., very
large-scale infrastructures of interacting subsystems, which
are by themselves composed of large-scale and complex
systems; see, for example, [93]), with operational and man-
agerial independence, it is clear that the problem of recon-
figuration of the control system is fundamental to cope with
changing requirements. For these systems, also the problem
of partitioning and clustering is a very important one (recent
work can be found in [118]). In general, there is a substantial
lack of methodologies for appropriate temporal and spatial
partitions and for the development of consistent multi-level,
multi-scale models for DMPC design.

F. Applications

DMPC has a lot to offer in the context of industrial process
control practice. As plants become increasingly automated
with advanced model-based control systems and the adoption
of advanced communication networks together with the as-
sociated sensors and actuators continuous to broaden, DMPC
could provide the framework for the design of the next-
generation, distributed model-based control systems. But the
impact of DMPC could go well-beyond industrial process
control practice and could become the method of choice
for the design of control systems for the individual com-
ponenets/subsystems of large-scale, heterogenous distributed
networks (like, for example, “smart grid”-type networks
where numerous renewables-based energy generation sys-
tems are coupled with the electric grid and “smart” loads). It
is our hope that this paper will contribute towards developing
further DMPC theory and practice.
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