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Abstract 

Development of quality estimation models using near infrared spectroscopy (NIRS) and multivariate 

analysis has been accelerated as a Process Analytical Technology (PAT) tool in the pharmaceutical 

industry. Although linear regression methods such as partial least squares (PLS) are widely used, they 

may not be able to achieve high estimation accuracy because physical and chemical properties of a 

measuring object have a complex effect on NIR spectra.  In this research, locally weighted PLS (LW-

PLS) which utilizes a newly defined similarity between samples is proposed to estimate active 

pharmaceutical ingredient (API) content in granules for tableting. In addition, a statistical wavelength 

selection method which quantifies the effect of API content and other factors on NIR spectra is proposed. 

LW-PLS and the proposed wavelength selection method were applied to real process data provided by 

Daiichi Sankyo Co., Ltd., and the estimation accuracy was improved by 38.6 % in root mean square 

error of prediction (RMSEP) compared to the conventional PLS using all wavelengths. The results 

clearly show that the proposed calibration modeling technique is useful for API content estimation and 

is superior to the conventional one. 
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Introduction 

In the pharmaceutical industry, in order to improve 

production efficiency, Quality by Design (QbD) and 

Process Analytical Technology (PAT) have been 

discussed and the documents on QbD and PAT (FDA, 

2004a, b; ICH, 2005a, b, 2008) were published by Food 

and Drug Administration (FDA) and International 

Conference on Harmonisation of Technical 

Requirements for Registration of Pharmaceuticals for 

Human Use (ICH). QbD is a concept that intends to 

assure drug quality not by a test but by process 

designing, monitoring and control. PAT is a system for 

designing, analyzing, and controlling manufacturing  
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through timely measurements (i.e., during processing) of 

critical quality and performance attributes of raw and in-

process materials and processes with the goal of ensuring 

final product quality (FDA, 2004b). After the documents 

were published, online process monitoring and control 

technologies have attracted much attention. Near infrared 

spectroscopy (NIRS) is a powerful online monitoring 

method because of its noninvasiveness and short 

measuring time; the researches on estimation of many 

kinds of material attribute such as blend uniformity, 

content uniformity and coating thickness by using NIR 

spectra have been actively conducted (Roggo et al., 2007; 

Reich, 2005). In this paper, the estimation objective is 

active pharmaceutical ingredient (API) content in granules 

for tableting, which is generally not measured. If API 



  

 

 

content in granules can be estimated by using a PAT tool, 

the operation condition of the following processes can be 

changed to make API content in the final products satisfy 

the specification. 

Most of the past researches used linear regression 

methods such as partial least squares (PLS) to construct 

estimation models (Moes et al., 2008; Berthiaux et al., 

2006; Cogdill et al., 2005; Wu et al., 2009; Li and 

Worosila, 2005; Berntsson et al., 2002; Sulub et al., 2009; 

Virtanen et al., 2007). However, linear models may not be 

able to estimate material attributes accurately because 

physical and chemical properties of a measuring object 

have a complex effect on NIR spectra, which are inputs of 

estimation models. Another key issue is how to cope with 

changes in process characteristics. In the chemical industry, 

model maintenance is recognized as the most important 

problem concerning soft-sensors (Kano and Ogawa, 2010). 

This problem is quite important not only in the chemical 

industry but also in other industries including the 

pharmaceutical industry. In this research, LWR is 

investigated to cope with changes in process 

characteristics as well as nonlinearity. In LWR (Cleveland 

and Devlin, 1988), a local model is constructed by 

prioritizing samples in a database according to the 

similarity between a query sample and them. In general, 

the similarity is defined on the basis of the Euclidean 

distance or the Mahalanobis distance (Cleveland and 

Devlin, 1988; Centner and Massart, 1998). In addition, the 

similarity which takes account not only of the distance 

between samples but also of the estimates of output 

derived by a global model (Wang et al., 1994; Chang et al., 

2001) and the similarity based not only on the distance but 

also on the correlation among samples (Fujiwara et al., 

2009, 2010) have been proposed. 

In this research, in order to construct high 

performance estimation models, a new similarity measure 

is proposed and locally weighted partial least squares 

(LW-PLS) models are constructed. In the proposed 

method, LW-PLS models are first constructed by using the 

conventional similarity based on the Euclidean distance, 

then the LW-PLS models are reconstructed by using the 

new similarity based on the weighted Euclidean distance. 

The absolute values of the regression coefficients of the 

first LW-PLS models are used as the weights for input 

variables. Furthermore, a statistical wavelength selection 

method which quantifies the effect of API content and 

other factors on NIR spectra is proposed. In the present 

situation, wavelengths are selected by using engineering 

knowledge and by trial and error. Such conventional 

approaches are time-consuming and not theoretically well-

supported. Although advanced methods such as genetic 

algorithm (Jouen-Rimbauda and Massart, 1995; Arakawa 

et al., 2011), interval PLS (Nørgaard et al., 2000), and 

moving window PLS (Jiang et al., 2002) have been 

proposed, these methods are computationally intensive 

because they need iterative calculations. The proposed 

method can select important wavelengths quickly without 

iterative calculations. 

Locally Weighted PLS 

The nth sample of input and output variables is denoted 

by 

 T21 ,,, nMnnn xxx x     (1) 

 T21 ,,, nLnnn yyy y     (2) 

where M is the number of input variables, L is the number 

of output variables and superscript T denotes the transpose 

of a vector or matrix. MNX  and LNY  are the 

input and output variable matrices whose nth rows are xn
T 

and yn
T
, respectively. N is the number of samples. 

In LW-PLS, X and Y are stored in a database. When an 

output estimation is required for a query sample xq, the 

similarity ωn between xq and xn is calculated and a local 

PLS model is constructed by weighting samples with a 

similarity matrix NNΩ  defined by  

)(diag ωΩ       (3) 

 T21 ,,, N ω     (4) 

where diag(a) denotes a diagonal matrix whose diagonal 

elements are a. 

It is important to appropriately define the similarity to 

achieve the high estimation accuracy by using LW-PLS. In 

the past researches, many kinds of the similarities have 

been proposed (Cleveland and Devlin, 1988; Centner and 

Massart, 1998; Wang et al., 1994; Chang et al., 2001; 

Fujiwara et al., 2009, 2010). The proposed method utilizes 

a new similarity measure based on the weighted Euclidean 

distance  

   qnqnnd xxΘxx 
T

   (5) 

where MMΘ  is a weighting matrix. 

)(diag θΘ       (6) 

 T21 ,,, M θ     (7) 

) ,2, 1, = ( Mmθm   is defined as the absolute value of the 

mth variable’s regression coefficient of an LW-PLS model 

in which the normal Euclidean distance  

   qnqnnd xxΘxx 
T

 )( IΘ   (8) 

is used to construct the model. In this research, the 

following similarity 

)exp(



d

n
n

σ

d
     (9) 

is investigated, where dσ  is standard deviation of nd and ϕ 

is a localization parameter; the similarity decreases steeply 

when ϕ is small and gradually when ϕ is large. When 

 =  , LW-PLS becomes equivalent to conventional PLS. 

This definition is inspired by the work of Shigemori et al. 

(Shigemori et al., 2011), in which θm is defined as the 

absolute value of the mth variable’s regression coefficient 

of a global multiple linear regression model. 



  

 

The output estimate L
q ŷ  is calculated as follows. 

 

1. Set 1i  , 1mθ  , 0y q
ˆ and determine the number of 

latent variables R. 

2. Set 1 =r . 

3. Calculate the similarity matrix Ω  by using Eqs. (5), (6), 

(7), and (9). 

)(diag ωΩ       (10) 

 T21 ,,, N ω     (11) 

4. Calculate Xr, Yr and xqr 

 MNr xxx ,,, 21 1XX     (12) 

 LNr yyy ,,, 21 1YY     (13) 

 T21 ,,, Mqqr xxx  xx    (14) 






N

n

n

N

n

nmnm xx

11

     (15) 






N

n

n

N

n

nlnl yy

11

     (16) 

where 
N

N 1  is a vector of ones. 

5. Derive the rth latent variable of X1 

rrr wXt       (17) 

where wr is the eigenvector of rrrr ΩXYΩYX
TT

 which 

corresponds to the maximum eigen value. 

6. Derive the rth loading vector of X1 

rr

rr

r
Ωtt

ΩtX
p

T

T

      (18) 

and the regression coefficient vector 

rr

rr

r
Ωtt

ΩtY
q

T

T

      (19) 

7. Derive the rth latent variable of xq1 

rqrqrt wx
T      (20) 

8. If 2 =i change qŷ  to rqrq t qy ˆ . 

9. If 2 =i  and Rr  = , finish estimation. Otherwise, set 

 and , , T
1

T
1 rrrrrrrr t qYYptXX  

rqrqrqr t T
1 pxx  . 

10. If Rr  = , go to the next step. Otherwise, set 1 = rr  

and return to step 6. 

11. Set θm as the absolute value of the mth variable’s 

regression coefficient of the LW-PLS model which is 

constructed at steps 1 ~ 10 and return to step 2. 

The estimation accuracy may be improved by updating Ω  

more than once; however, it makes the computational load 

heavier. Therefore, Ω  is updated only once in this paper. 

Statistical Wavelength Selection 

The estimation accuracy strongly depends on the 

wavelength selection when spectra data are used as model 

inputs (Andersen and Bro, 2010). Therefore, it is crucial to 

select an appropriate subset of wavelengths to optimize the 

model performance. In this research, a statistical 

wavelength selection method is proposed under the 

assumption that spectra data are obtained from multiple 

lots with different API content. This assumption is 

generally satisfied in practice. The concept of the proposed 

method is that the selected wavelengths must have the 

following two features: small absorbance variance in the 

same lot and large absorbance variance between different 

lots. Thus, each wavelength is evaluated by the ratio of 

between-lots variance to within-lot variance. 

The nth measurement of absorbance at the mth 

wavelength in the kth lot is denoted by  nmkx  

) ,2, 1,, ,2, 1,, ,2, 1, = ( KkMmNn k   , where Nk, 

M and K denote the number of samples in the kth lot, the 

number of wavelengths and the number of lots, 

respectively. In addition, the absorbance matrix of the kth 

lot is denoted by  



















MkNkN

Mkk

k

kk
xx

xx







1

111

X    (21) 

The proposed statistical wavelength selection procedure is 

as follows. 

 

1. Calculate mean and variance of nmkx  at the mth 

wavelength in the kth lot. 





kN

n

nmk
k

mk x
N

x

1

*

1
    (22) 
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
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2
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1
V   (23) 

2. Select the wavelengths at which the following condition 

is satisfied. 

 

 

 
λ

x

x
η

K

k
nmkn

mkk 

 1

*

V

V
    (24) 
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x

1

2
****

1

1
V   (25) 






K

k

mkm x
K

x

1

***

1
    (26) 

where λ denotes a threshold for wavelength selection.  

When the effect of the difference in API content in the 

same lot on the spectra is negligible,  nmkn xV  indicates 

the effect of the factors other than API content on the 

spectra. Therefore, the wavelengths with small within-lot 

variance  nmkn xV  should be selected. In addition, 

 mkk x*V  indicates the effect of API content on the spectra 

and the wavelengths with large between-lots variance 

 mkk x*V  should be selected. From the above discussions, 

the suitable wavelengths for estimation can be selected on 

the basis of η.  



  

 

 

Application to real process data 

Experimental 

The target drug products consist of six components. 

Nineteen blending experiments were conducted with 

different API content using a 3 L scale V-blender (Tsutsui 

Scientific Instruments Co., Ltd.). After each blending 

experiment, the granules for tableting were taken out and 

200 mg of the granules were set in vials, NIR spectra 

(2203 points in 800 ~ 2500 nm) were measured with MPA 

(BrukerOptics K. K.), and API content was measured with 

Alliance Waters 2690 Separations Module (Waters 

Corporation). The overview of the experimental data is 

shown in Table 1. In this study, the data of lots from 1 to 8 

are the calibration set, the data of lots from 9 to 16 are the 

test set, and the data of lots 17 and 18 are the prediction set. 

Data Analysis 

The procedure of the data analysis is as follows. 

1. Preprocessing 

Apply first order differential using Savitsky-Golay filter 

(Savitzky and Golay, 1964) and Standard Normal 

Variate (SNV) to NIR spectra data. By differentiating 

spectra, the effect of the noise on NIR spectra can be 

reduced. SNV can correct the variance in light path 

length caused by changes in the particle size and density 

(Barnes et al., 1989). In this application, the window size 

and the polynomial order in Savitsky-Golay filter were 

117 and 5, respectively.  

2. Wavelength selection 

Use absorbance at all wavelengths or at the wavelengths 

selected by the proposed method as model inputs. 

Table 1. Experimental data 

Lot number 
Number of 

samples 

Mean of API 

content [%] 

1 90 68.1 

2 86 83 

3 100 88.7 

4 20 97.4 

5 10 98.6 

6 90 107.7 

7 90 113.8 

8 90 128.3 

9 100 73.9 

10 10 94 

11 10 96.8 

12 10 98.3 

13 10 98.8 

14 10 99.5 

15 10 100.1 

16 90 122.9 

17 10 96 

18 10 100 

 

Table 2. Search range of the parameters 

Parameter Search range 

ϕ 
0.2, 0.5, 0.8, 1.1, 1.4, 1.7, 2, 2.3, 2.6, 2.9, 

3.2, 3.5, 3.8, 4.1, 4.4, 4.7, 5, 10, 20, 30, 50 

λ 0, 1, 2, 3, 4, 5, 10, 15, 20 

R 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 

 

3. Model construction 

Construct estimation models by using conventional PLS, 

LW-PLS without updating Ω  (LW-PLS 1) or LW-PLS 

with updating Ω  (LW-PLS 2). 

Six estimation models were constructed with respect to the 

selections in steps 2 and 3. Model parameters in each 

model, i.e. the localization parameter ϕ, the threshold for 

wavelength selection λ and the number of latent variables 

R, were determined by using the calibration set (data of 

lots from 1 to 8) and the test set (data of lots from 9 to 16). 

API content of the test set was estimated by using the 

calibration set with different parameter sets, then the 

parameter set which derived the minimum estimation error 

was selected. The search range of the parameters is shown 

in Table 2. 

Results and Discussion 

Table 3 shows the selected parameters, root mean 

square error of parameter tuning (RMSE) and root mean 

square error of prediction (RMSEP). Model validation 

results are shown in Fig. 1. When conventional PLS was 

used (cases 1 and 2), RMSEPs were the same because the 

proposed wavelength selection method selected all 

wavelengths. The proposed wavelength selection method 

selected wavelengths, which had index η larger than 10, 

when LW-PLS 1 (case 4) and LW-PLS 2 (case 6) were 

used. The index η and preprocessed API spectrum are 

shown in Fig. 2 (top). In addition,  mkk x*V  and 

  

K

k
nmkn x

1
V  in Eq (24) are shown in Fig. 2 (bottom). 

Absorbance values of API spectra do not have a 

correlation with η because η takes account not only of the 

effect of API content on NIR spectra but also of the effect 

of other factors on NIR spectra. The wavelengths around 

1910 and 1970 nm were not selected although peak 

absorbance values of API and  mkk x*V , the effect of API 

content on NIR spectra, were large. This is because 

  

K

k
nmkn x

1
V , the effect of other factors on NIR spectra, 

was also large at these wavelengths. On the contrary, the 

wavelengths around 1120 and 1190 nm were selected 

although peak absorbance values of API and  mkk x*V  

were small. By using the proposed wavelength selection 

method, RMSEP was improved by 28.7% when LW-PLS 

1 was used (cases 3 and 4) and by 33.1% when LW-PLS 2 

was used (cases 5 and 6). Moreover, LW-PLS 2 (cases 5 

and 6) was superior to PLS and LW-PLS 1 (cases 1 ~ 4).  



  

   

Table 3. Comparison of the calibration modeling techniques 

 

 

 

 

 

 

 

 

 

With the proposed wavelength selection method (cases 2, 

4 and 6), LW-PLS 2 derived 7.4% and 38.6% less RMSEP 

than PLS (case 2) and LW-PLS 1 (case 4), respectively. 

The results of the case study demonstrate the usefulness of 

the proposed wavelength selection method and LW-PLS 2. 

 

 

Figure 1.   Results of model validation. (left-

top) case 1: PLS with all wavelengths, (right-

top)case 2: PLS with the proposed wavelengths, 

(middle-top) case 3: LW-PLS 1 with all 

wavelengths, (middle-top) case 4: LW-PLS 1 

with the proposed wavelengths, (left-bottom) 

case 5: LW-PLS 2with all wavelengths, and 

(right-bottom) case 6: LW-PLS 2 with the 

proposed wavelengths. 

 

 

 

 
 

Figure 2.   Wavelength selection index η and 

preprocessed API spectra and (bottom) 

    

K

k
nmknmkk xandx

1
* V  V  

Conclusions 

Locally weighted partial least squares (LW-PLS), 

which utilized the similarity based on the weighted 

Euclidean distance, was proposed to estimate API content 

in a blending process. The regression coefficients of the 

LW-PLS model using the normal Euclidean distance are 

used as weights for input variables. Moreover, a statistical 

wavelength selection method which quantified the effect of 

API content and other factors on NIR spectra was 

proposed. By using the proposed methods, the estimation 

accuracy was improved by 38.6 % in RMSEP compared to 

the conventional PLS using all wavelengths. The results 

clearly show that the proposed calibration modeling 

technique is useful for API content estimation and is 

superior to the conventional one. 
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