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Abstract— This work demonstrates the use of feedback con-
trol, coupled with a suitable actuator design, in manufacturing
thin films whose surface morphology is characterized by a de-
sired visible light reflectance/transmittance level. The problem is
particularly important in the context of thin film manufacturing
for thin film solar cells where it is desirable to produce thin
films with precisely tailored light trapping characteristics.

I. INTRODUCTION

Thin film solar cells constitute an important and growing
component of the overall solar cell market (see, for example,
[7], [17]) owing to their reduced cost relative to silicon-
based solar cell modules as well as to the potential of using
various thin film materials which may lead to improved
light conversion efficiencies (currently on the order of 10%
for production modules.) In addition to investigating the
performance with respect to light conversion efficiency and
long-term stability of an array of materials, thin film solar
cell technology stands to benefit from optimal thin film
manufacturing (deposition) control strategies that produce
thin films with desired light reflectance and transmittance
properties. Specifically, extensive research on optical prop-
erties of thin-film, primarily silicon, solar cells has demon-
strated that the scattering properties of the thin film interfaces
directly influence the light trapping ability and the efficiency
of thin-film silicon solar cells (see, for example, [15],
[14]). Shaping the morphology of the various surfaces and
interfaces at the thin film deposition stage is therefore critical
in order to maximize the amount of light trapped within the
solar cell and converted to electrical energy. With respect
to visible light trapping by thin film solar cells, the light
scattering properties of the various surfaces/interfaces have
a complex dependence on the surface morphology interface.
While developing accurate models for predicting optical
properties of thin films is an on-going research topic, it is
well-established that the root-mean-square surface roughness
and slope at characteristic length scales that are compara-
ble to the wavelength of the visible light are key factors
that influence thin film reflectance and transmittance (e.g.,
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[4], [19]). Specifically, significant increase of conversion
efficiency with appropriately roughened interfaces has been
reported in several works [13], [12].

Over the last twenty years within the control engineering
literature, extensive efforts have been made on the modeling
and model-based feedback control of thin film deposition
processes with emphasis on the problems of film thickness,
roughness and porosity regulation. Microscopic modeling of
thin film growth is usually carried out via kinetic Monte-
Carlo (kMC) methods (see, for example, [6], [16], [3] for
results and references in this area) as well as stochastic
partial differential equations (e.g., [5], [20]). With respect to
model-based feedback control of thin film deposition, early
efforts focused on deposition spatial uniformity control on
the basis of continuum-type distributed parameter models
(e.g., [2]), while within the last ten years, most attention
has focused on control of thin film surface morphology
and microstructure. Since kMC models are not available in
closed form and cannot be readily used for feedback con-
trol design and system-level analysis, stochastic differential
equation (SDE) models (whose parameters are computed
from kMC model data) have been used as the basis for
the design of feedback controllers to regulate thin film
surface roughness (e.g., [3], [18], [8]), film porosity and
thickness [9]. In an attempt to manufacture thin film solar
cells with optimal light conversion efficiencies, we recently
initiated an effort towards modeling and control of thin film
surface morphology to optimize thin film light reflectance
and transmittance properties. To this end, we initially studied
the dynamics and lattice size dependence of surface mean
slope [10] and developed predictive control algorithms to
regulate both surface roughness and slope at an atomic
level using stochastic PDEs [22]. Taking advantage of these
analysis and controller design results, we recently [23] made
the first attempt to control thin film surface morphology at
a length scale comparable to the visible light wavelength.
Specifically, we addressed aspects of this problem with
respect to predictive controller design using a stochastic
PDE with a patterned deposition rate profile but we did
not address the challenging problem of implementing the
predictive controller on a large-lattice kinetic Monte-Carlo
simulation that can cover a significant number of visible light
wavelengths (which is on the order of 400nm−700nm).

Motivated by the above considerations, this work presents
an integrated control actuator and control algorithm design
for the regulation of deposition of thin films such that
the final thin film surface morphology is characterized by
a desired visible light reflectance/transmittance level. To



demonstrate the approach, we focus on a thin film deposition
process involving atom adsorption and surface migration
and use a large-lattice (lattice size=40,000) kinetic Monte-
Carlo simulation to describe its spatiotemporal behavior; this
allows computing surface roughness and slope at different
length-scales ranging from atomic scale to visible light wave-
length scale. Subsequently, thin film surface morphology
characteristics like roughness and slope are computed for
different characteristic length scales and it is found that
a patterned actuator design is needed to induce thin film
surface roughness and slope at visible light wavelength
spatial scales, that lead to desired thin film reflectance and
transmittance values. An Edwards-Wilkinson-type equation
is used to model the surface evolution at the visible light
wavelength spatial scale and to form the basis for feed-
back controller design within a model predictive control
framework. Simulation studies demonstrate that the proposed
controller and patterned actuator design successfully regulate
surface roughness and slope at visible light wavelength spa-
tial scales to set-point values at the end of the deposition that
yield desired levels of thin film reflectance and transmittance.
An application to a large-scale kinetic Monte-Carlo model
can be found in [11].

II. THIN FILM DEPOSITION PROCESS MODELING

In this section, a one-dimensional solid-on-solid (SOS)
on-lattice kinetic Monte Carlo (kMC) model is used to
simulate the thin film deposition process, which includes
two microscopic processes: an adsorption process, in which
particles are incorporated onto the film from the gas phase,
and a migration process, in which surface particles move
to adjacent sites. The width of the lattice is fixed so that
the lattice contains a fixed number of sites in the lateral
direction. The new particles are always deposited from the
top side of the lattice with vertical incidence; see Fig.1.
Particle deposition results in film growth in the direction
normal to the lateral direction. The direction normal to the
lateral direction is thus designated as the growth direction.
The number of sites in the lateral direction is defined as the
lattice size and is denoted by L. Periodic boundary conditions
(PBCs) are applied at the edges of the lattice in the lateral
direction. The top particles of each column are defined as
the surface particles and the positions of the centers of all
surface particles form the surface height profile. The number
of nearest neighbors of a surface particle ranges from zero
to two. A surface particle with zero nearest neighbors is
possible to migrate to one of its adjacent columns with equal
probability. A surface particle with one nearest neighbor
is possible to migrate to its adjacent column with lower
height with appropriate probability based on the migration
rate (please see Eq. 1 below). A surface particle with two
nearest neighbors can not migrate. Particles that are not on
the film surface can not migrate.

In the adsorption process, a site is randomly selected with
uniform probability among all lattice sites and a particle is
deposited on top of this site. The overall adsorption rate,
w, is expressed in the unit of layer per second. In the
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Fig. 1. Thin film growth process on a solid-on-solid one-dimensional
square lattice.

migration process, a surface particle overcomes the energy
barrier of the site and jumps to a vacant neighboring site.
The migration rate (probability) of a particle follows an
Arrhenius-type law with a pre-calculated activation energy
barrier that depends on the local environment of the particle,
i.e., the number of the nearest neighbors of the particle
chosen for a migration event. The migration rate of the ith
surface particle is calculated as follows:

rm = ν0 exp
(
−Es +niEn

kBT

)
(1)

where ν0 denotes the pre-exponential factor, ni is the number
of the nearest neighbors of the ith particle and can take the
values of 0 and 1, (rm is zero when ni = 2 since in the one-
dimensional lattice this surface particle is fully surrounded
by other particles and cannot migrate), Es is the contribution
to the activation energy barrier from the site itself, En is
the contribution to the activation energy barrier from each
nearest neighbor, kB is the Boltzmann’s constant and T is
the substrate temperature of the thin film. Since the film is
thin, the temperature is assumed to be uniform throughout
the film.

A. Surface morphology at atomic level

Thin film surface morphology, which can be expressed in
terms of surface roughness and slope, is a very important
surface property influencing the light trapping properties of
thin films. Surface roughness is defined as the root-mean-
square (RMS) of the surface height profile. Specifically, the
definition of surface roughness is given as follows:

r =

[
1
L

L

∑
i=1

(hi− h̄)2

]1/2

(2)

where r denotes surface roughness, hi, i = 1, 2, . . . , L, is
the surface height at the i-th position in the unit of layer, L
denotes the lattice size, and the surface mean height is given

by h̄ =
1
L

L

∑
i=1

hi.
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Fig. 2. Dependence of expected aggregate surface roughness on aggregation
size obtained from kMC simulations; t f = 1000 s.

In addition to surface roughness, another quantity that also
determines the surface morphology is the surface mean slope.
In this work, the surface mean slope is defined as the RMS
of the surface gradient profile as follows:

m =

[
1
L

L

∑
i=1

h2
s,i

]1/2

(3)

where m denotes the RMS slope and hs,i is the surface slope
at the i-th lattice site, which is a dimensionless variable. The
surface slope, hs,i is computed as follows:

hs,i =
hi+1−hi

1
(4)

Since the unit of height is layer and the distance between two
adjacent particles (the diameter of particles) always equal to
one layer, the denominator of hs,i is always one. Due to the
use of PBCs, the slope at the boundary lattice site (i = L) is
computed as the slope between the last lattice site (hL) and
the first lattice site (h1).

To investigate the open-loop properties of surface mor-
phology, a set of kMC simulations is carried out at differ-
ent w with T = 480 K and L = 40000. In particular, the
continuous-time Monte Carlo (CTMC) method is used in
the kMC simulations. In this method, a list of events is con-
structed and an event is selected randomly with its respective
probability. After the execution of the selected event, the
list is updated based on the new lattice configuration. The
following values are used for the parameters of the migration
rate of Eq. 1, ν0 = 1013s−1 , Es = 1.2 eV and En = 0 eV.

B. Aggregate surface morphology and spatial deposition
rate profile

One of the most important application of our work is
to simulate and control the deposition process of thin film
solar cells in order to improve solar cell efficiency via
enhanced light trapping. However, the wavelength of visible
light (400nm−700nm) is much larger than the diameter of
silicon atoms (∼ 0.25 nm) and thus, it is necessary to define
an aggregate surface morphology at length scales comparable
to visible light wavelength.
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Fig. 3. Dependence of expected aggregate surface slope on aggregation
size obtained from kMC simulations; t f = 1000 s.

Specifically, the aggregate surface morphology is com-
puted similarly to the atomic surface morphology, but on
the basis of the aggregate surface height profile, h∆,i, which
is defined as follows:

h∆,i = (hi∆+1 +hi∆+2 + · · ·+h(i+1)∆)/∆, i = 0,1, . . . ,L/∆−1
(5)

where h∆,i denotes the averaged surface height over the
length scale of ∆ sites, ∆ denotes the aggregation size, i.e.,
the number of lattice sites used to calculate the aggregate
surface height, and L/∆ denotes the number of aggregate
sites of size ∆ included in the spatial domain of the process.
For the wavelength of visible light and silicon thin-film solar
cells, the corresponding ∆ is around 400; this follows from
the fact that 0.25nm ·400 = 100nm, which is a length scale
comparable to visible light wavelength. The definition of
aggregate surface roughness and slope is given as follows:

r∆ =

[
1
L

L/∆

∑
i=1

(
h∆,i− h̄∆

)2

]1/2

,

m∆ =

[
1
L

L/∆

∑
i=1

(
h∆,i−h∆,i+1

∆

)2
]1/2

.

(6)

The dynamics of the aggregate surface roughness and
slope are dependent on the characteristic length scale, ∆. To
investigate this dependence, kMC simulations with En = 0
eV and L = 40000 were carried out. The expected aggre-
gate surface roughness square,

〈
r2

∆(t)
〉
, and the expected

aggregate surface slope square,
〈
m2

∆(t)
〉
, are calculated from

the aggregate surface height profile from kMC simulations
for different aggregation lengths. The simulation duration is
t f = 1000 s and 100 independent simulations were carried
out to calculate the expected values of aggregate surface
roughness and slope. Fig. 2 and Fig. 3 show the profiles
of aggregate surface roughness square and slope square
for different characteristic length scales, ∆. It is clear that
the larger the characteristic length scale, the smaller the
aggregate roughness and slope square. Furthermore, Fig. 3
shows that as the aggregation size increases, the aggregate
slope square decreases very fast; a much weaker dependence



is observed for aggregate roughness in Fig. 2. From these
results, we see that the corresponding aggregate slope square
for ∆ = 400 is very small (

〈
m2

∆
〉

ss ∼ 10−5). This close-to-
zero value of aggregate slope square reveals a smoothly
changing surface profile with respect to characteristic length
scales that are comparable to visible light wavelength. The
smoothness of the surface profile persists at larger lattice
sizes as well, due to the very weak lattice-size dependence
of the mean slope square. This small aggregate slope square
at large characteristic length scales is partly because the
operating conditions are spatially uniform throughout the
entire deposition process, i.e., the same deposition rate
and substrate temperature are applied throughout the spatial
domain. Thus, a spatially non-uniform deposition rate profile
is necessary for the purpose of optimizing thin film light
reflectance/transmittance by manipulation of film aggregate
surface roughness and slope at length scales comparable to
visible light wavelength; this conclusion is also consistent
with recent experimental data [12]. To this end, we introduce
a patterned in space deposition rate profile, which is defined
as follows:

w(x) = w0 +Asin
(

2kπ
L

x
)

, A≤ w0 (7)

where x is a position along the lattice, w0 is the mean de-
position rate, A is the magnitude of the patterned deposition
profile, k is the number of sine waves along the entire lattice,
and L is the lattice size. Referring to the difference between
w and w0, it is necessary to point out that w0 is the mean
deposition rate of the patterned deposition rate profile, w(x),
while the w used in subsection II-A is a spatially-uniform
deposition rate.

The dynamics of aggregate surface morphology with pat-
terned deposition rate profile is studied by carrying out a
series of simulations at different mean deposition rates w0
with L = 40000, ∆ = 400, T = 480K, k = 5 and A = 0.1w0.
The evolution profiles are shown in Fig. 4 and Fig. 5. The
introduction of patterned deposition rate profiles significantly
changes the dynamic profiles of aggregate surface morphol-
ogy. Both aggregate roughness and aggregate slope can be
increased by 10000 times by manipulating A compared to
the aggregate surface morphology achieved with a uniform
deposition rate profile. Thus, the introduction of a patterned
deposition rate profile substantially expands the range of
surface morphology values that can be obtained and makes
light trapping optimization at length scales comparable to
visible light wavelength possible.

III. CLOSED-FORM MODELING

A. Edward-Wilkinson equation of aggregate surface height

Given the complexity of the deposition process and the
need to control surface roughness and slope at spatial scales
comparable to the wavelength of visible light, the direct
computation of a closed-form model, describing the surface
height evolution and is suitable for controller design, from
the microscopic deposition mechanisms is a very difficult (if
not impossible) task. Therefore, a hybrid modeling approach
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Fig. 4. Evolution of expected aggregate surface roughness with respect
to time for different mean deposition rates (unit of w0 is layer/s) obtained
from kMC simulations. Patterned deposition with k = 5 and A = 0.1w0.
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Fig. 5. Evolution of expected aggregate surface slope with respect to time
for different mean deposition rates (unit of w0 is layer/s) obtained from
kMC simulations. Patterned deposition with k = 5 and A = 0.1w0.

should be used in which a basic closed-form modeling
structure is used and the model parameters are computed
such that the predictions of key variables from the closed-
form model are close (in a least-square sense) to the one of
the kinetic Monte-Carlo model for a broad set of operating
conditions. To this end, we use an Edward-Wilkinson(EW)-
type equation, which is a second-order stochastic PDE to
describe the aggregate surface height evolution and compute
its parameters from kMC data. The choice of the EW-
equation is motivated by the fact that it has been used in
many deposition processes that involve a thermal balance
between adsorption (deposition) and migration (diffusion)
[1]. Specifically, a one-dimensional EW-type equation is used
to describe the evolution of aggregate surface height profile:

∂h∆
∂ t

= w(x, t)+ c2
∂ 2h∆
∂x2 +ξ (x, t) (8)

subject to the following periodic boundary conditions

h∆(0, t) = h∆(L, t),
∂h∆
∂x

(0, t)=
∂h∆
∂x

(L, t) (9)

and the initial condition h∆(x,0) = h0
∆(x), where x ∈ [0,L] is

the spatial coordinate, t is the time, h∆(x, t) is the aggregate



surface height and ξ (x, t) is a Gaussian white noise with zero
mean and the following covariance:

〈
ξ (x, t)ξ (x′, t ′)

〉
= σ2δ (x− x′)δ (t− t ′) (10)

where δ (·) denotes the Dirac delta function. In Eq. 8, the
parameters c2 and σ2, corresponding to diffusion effects and
stochastic noise respectively, depend on the deposition rate
w(x, t). In the case of a patterned deposition rate profile
(control actuation), the term w(x, t) is of the form:

w(x, t) = w0(t)+A(t)sin
(

2kπ
L

x
)

(11)

where w0(t) is the mean deposition rate, A(t) is the mag-
nitude of patterned deposition rate, and k is the number of
sine waves between 0 and L. Referring to the EW equation
of Eq. 8, there are two model parameters, c2 and σ2 that
must be determined as functions of the mean deposition
rate w0 and of the patterned deposition rate magnitude A.
These parameters affect the dynamics of aggregate surface
roughness and slope and can be estimated by fitting the
predicted evolution profiles for aggregate surface roughness
and slope from the EW equation to profiles of aggregate
surface roughness and slope from kMC simulations. Least-
square methods are used to estimate the model parameters,
c2 and σ2, so that the EW-model predictions are close in a
least-square sense to the kMC simulation data. Based on c2
and σ2 values obtained from these fitting results, polynomial
functions are chosen to estimate c2 and σ2 values at different
w0 with the least-square method. Specifically, a fourth order
polynomial function with respect to w0 is chosen to estimate
c2 and a linear function is chosen to estimate σ2, and the
expressions are given as follows:

c2(w) = ac2 w4 +bc2 w3 + cc2 w2 +dc2w+ ec2 , (12)

σ2 = aσ2w+bσ2

where ac2 , bc2 , cc2 , dc2 , ec2 , aσ2 and bσ2 are time-invariant
fitting model parameters. Due to space limitations, further
details of the parameter estimation are omitted.

B. MPC formulation and simulations

We consider the problem of regulation of aggregate sur-
face roughness and slope to desired levels within a model
predictive control framework. Due to the stochastic nature
of the variables, the expected values of aggregate surface
roughness and slope,

〈
r2

∆(t)
〉

and
〈
m2

∆(t)
〉
, are chosen as

the control objectives. The mean deposition rate, w0, and
magnitude of patterned deposition rate, A, are chosen as
the manipulated inputs; the substrate temperature is fixed at
T = 480K during all closed-loop simulations. To account for
a number of practical considerations, several constraints are
added to the control problem. In particular, since w(x)≥ 0,
the constraint 0 ≤ A ≤ w0 is imposed to ensure w(x, t) > 0,
∀(x, t). To ensure the validity of the closed-form process
model, there is a constraint on the range of variation of the
mean deposition rate. Another constraint is imposed on the
rate of change of the mean deposition rate to account for

actuator limitations. The control action at time t is obtained
by solving a finite-horizon optimal control problem. The cost
function in the optimal control problem includes penalty on
the deviation of

〈
r2

∆
〉

and
〈
m2

∆
〉

from their respective set-
point values. Different weighting factors are assigned to the
aggregate surface roughness and slope. Aggregate surface
roughness and slope have very different magnitudes, (

〈
r2

∆
〉

ranges from 102 to 104 and
〈
m2

∆
〉

ranges from 10−5 to 10−2).
Therefore, relative deviations are used in the formulation of
the cost function to make the magnitude of the two terms
comparable in the cost function. The optimization problem
is subject to the dynamics of the aggregate surface height of
Eq. 8. The optimal w0 and A values are calculated at each
sampling time by solving a finite-dimensional optimization
problem in a receding horizon fashion. Specifically, the MPC
problem at time t is formulated as follows:

min
w0,A

(qr2

[
r2

set −
〈
r2

∆(t f )
〉

r2
set

]2

+qm2

[
m2

set −
〈
m2

∆(t f )
〉

m2
set

]2

)

(13)

where

〈
r2

∆(t f )
〉

=
1
L

L/(2∆)

∑
n=1

2

∑
p=1

〈
z2

p,n(t f )
〉
, (14)

〈
m2

∆(t f )
〉

=
L/(2∆)

∑
n=1

2

∑
p=1

(
Kp,n

〈
z2

p,n(t f )
〉)

(15)

〈
z2

p,n(t f )
〉

= var(zp,n(t f ))+
〈
zp,n(t f )

〉2 (16)
〈
zp,n(t f )

〉
= eλn(t f−t) 〈zp,n(t)

〉
+

wp

λn
(eλn(t f−t)−1) (17)

var(zp,n(t f )) = e2λn(t f−t) var(zp,n(t))+σ2(w)
e2λn(t f−t)−1

2λn
(18)

λn =−4c2(w)π2

L2 n2 (19)

subject to:

wmin ≤ w0 ≤ wmax, |w0(t)−w0(t−dt)| ≤ δwmax, (20)

w = w0 +Asin
(

kπx
L

)
, 0≤ A≤ w0 (21)

and the fitting model of Eq.12, where t is the current time,
dt is the sampling time, qr2 and qm2 are the weighting
penalty factors for the deviations of

〈
r2

∆
〉

and
〈
m2

∆
〉

from
their respective set-points at the ith prediction step, wmin and
wmax are the lower and upper bounds on the mean deposition
rate, respectively, and δwmax is the limit on the rate of change
of the mean deposition rate. The optimal control actions are
obtained from the solution of the multivariable optimization
problem of Eq. 13, and are applied to the deposition process
model over dt (i.e., either the EW equation model or the
kMC model) during the time interval (t, t + dt). At time
t + dt, a new measurement of aggregate surface roughness
and slope is received by the controller and the MPC problem
of Eq. 13 is solved for the next set of control actions. An
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interior point method optimizer, IPOPT [21], is used to solve
the optimization problem in the MPC formulation.

Simultaneous regulation of aggregate surface roughness
and slope has been investigated. The weighting factor of
aggregate slope square, qm2 , is kept at 1, and the weighting
factor of aggregate roughness square, qr2 , ranges from 10−2

to 103. Fig. 6 shows the values of expected aggregate
roughness and slope at the end of simulations as a function of
qr2/qm2 . It can be seen that the expected value of aggregate
roughness approaches its set-point as qr2 increases at the
cost of larger deviation of the aggregate slope from its set-
point. Finally, we demonstrate an application of the proposed
modeling and control framework to improve thin film solar
cell performance. Fig. 7 shows how films with different re-
flectance values can be produced by simultaneous regulation
of film surface aggregate roughness and aggregate slope.
Specifically, the weighting factor of aggregate slope square,
qm2 , is kept at 1, and the weighting factor of aggregate
roughness square, qr2 , ranges from 10−2 to 103, and the
resulting aggregate roughness and slope are used to compute
the light reflectance of the thin film according to [4]. It
is clear that films with different reflectance values can be
generated by regulating aggregate surface roughness and
slope; please see the small circles in Fig. 7.
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