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Abstract 

An overview of multi-parametric programming and control is presented with emphasis on historical 

milestones, novel developments in the theory of multi-parametric programming and explicit MPC as well 
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Multi-parametric programming is an important 

optimization tool for systematically analyzing the effect of 

varying parameters and/or uncertainties in mathematical 

programming problems. Its importance is widely 

recognized and many significant advances have emerged in 

the last ten years both in the theory and practice of multi-

parametric programming, especially in engineering 

(Pistikopoulos, 2009). A significant milestone is its 

adoption in model-based control and specifically Model 

Predictive Control, which has created a new field of 

research in control theory and applications - the field of 

explicit/multi-parametric MPC or explicit MPC control. 

In an optimization framework (Figure 1a) with an 

objective function to minimize, a set of constraints to 

satisfy and a number of bounded parameters affecting the 

solution, multi-parametric programming obtains: 

 The objective function and the optimization 

variables as functions of the parameters 

(Figure 1c), and 

 The space of parameters (known as critical 

regions) where these functions are valid 

(Figure 1b). 

i.e. the exact mapping of the optimal solution profile in the 

space of parameters (Figure 2). The optimization can then 

be replaced by its optimal solution mapping and the 

optimal solution for a given value of the parameters can be 

computed efficiently by performing simple function 

evaluations, without the need to solve the optimization. 

The advantage to replace optimization by simple and 

efficient computations has given multi-parametric 

programming wide spread recognition and has triggered 

significant advances in its theory and applications. In the 

context of model predictive control (MPC – online 

optimization) multi-parametric programming can be used 

to obtain the optimal control inputs as explicit functions of 

the system state variables/process data. This is the notion 

of explicit/multi-parametric MPC or explicit MPC – also 

known as “MPC-on-a-chip” technology. Key advances in 

the various areas of multi-parametric programming are 

summarized in Table 1 while for a complete list of 

references and a full overview of multi-parametric 

programming see Pistikopoulos, 2009 and the forthcoming 

review paper by Pistikopoulos et al. 2012. The advances of 

multi-parametric programming and its applications in 



  
 

advanced model-based control are the subjects of a two 

volume book (Pistikopoulos et al., 2007a, 2007b). 

In this paper, we overview multi-parametric 

programming, explicit/multi-parametric MPC and the 

MPC-on-a-chip concept and we briefly present recent 

advances in the theory and applications of multi-parametric 

programming and explicit MPC. First, a comprehensive 

framework for multi-parametric programming and control 

for real-time control of process systems is presented. Then 

some recent theoretical advances in multi-parametric 

programming and control are presented. Finally, we 

describe a number of recent applications of explicit MPC 

in the area of fuel cell, pressure swing adsorption and other 

applications. 

 

 

Figure 1. Multi-parametric programming: (a) 
problem formulation, (b) critical regions, (c) 

explicit solution 

 

 

Figure 2. Optimal solution mapping of multi-
parametric programming 

 

Towards fast MPC 

Traditional Model Predictive Control (MPC) aims to 

provide a sequence of control actions/inputs over a future 

time horizon, which seeks to optimize the controller 

performance based upon the predicted states of the system 

(Rawlings and Mayne, 2009, Lee, 2011, Morari, 2011). 

This is achieved by repetitively solving an on-line 

optimization problem, which describes the (past, present, 

future) behavior of the system.  MPC problems are 

typically formulated as the following optimization 

problem: 
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where x and u are the vectors of state and control/inputs 

variables, respectively;   and ψ are the vectors of state 

and output equations respectively; Ny, Nu are the 

prediction/output and control/input horizons, respectively; 

Q and R are weights on deviations of the state and control 

variables, and k denotes a time interval. The basic idea of 

MPC is illustrated in Figure 3, where at the current time 

interval k, the optimization problem is solved to minimize 

the state and control deviations from the set point, by 

implementing the optimal values of the control/input 

variables. Note that only the first control element is 

implemented and this sequence is repeated at the next time 

interval, for the new state measurements or estimates, until 

the desired or set point values are obtained. 

 

 

Figure 3. Model Predictive Control 
implementation. 

 

The key advantage of MPC is that it is model-based 

and it can take into account the constraints on the state and 

control variables. However, a key limitation is the 

(potentially high) computational effort involved due to the 

repetitive solution of the underlying optimization problem 

of the MPC, which may limit its implementation to 

processes with “slow” dynamics (Pistikopoulos, 2009, Lee, 

2011). Adding to this, MPC is an implicit control method 

i.e. the optimal control values are only determined 

numerically at the current state values without any a priori 

knowledge of the governing control laws. 

 



  

 

Table 1.Milestones in multi-parametric 
programming 

 

 

Explicit/multi-parametric MPC (also explicit MPC or 

mp-MPC), on the other hand, is an advanced control 

method that uses multi-parametric programming methods 

to solve the online optimization problem of MPC and 

obtain the exact mapping of the optimal control variables 

as functions of the state variables (see Figure 1c). Thereby, 

the online optimization problem involved in MPC is 

replaced with simple function evaluations that require a 

smaller online computational effort. This advantage has 

made it possible for MPC to be implemented on the 

simplest of computational hardware such as microchips 

thus making mp-MPC suitable for fast control applications 

such as portable devices and embedded control systems. 

The concept of replacing the online optimization via the 

exact mapping of its optimal solution, has become known 

as “online optimization via off-line optimization” while the 

ability of multi-parametric MPC to be implemented on the 

simplest possible hardware has become known as the 

“MPC-on-a-Chip” technology. These concepts as well 

as the framework for the design and implementation of 

explicit MPC are illustrated in Figure 4. A number of 

key developments in explicit/multi-parametric MPC is 

shown in Table 2 while a thorough review and listing of 

publications is given Pistikopoulos, 2009 and in the 

forthcoming Pistikopoulos et al., 2011. 

 

 

Figure 4. MPC-on-a-chip concept. 

The key advantages of MPC-on-chip implementation 

are that (i) it is computationally efficient since it requires 

simple function evaluations, (ii) it does not require any on-

line optimization software, (iii) its explicit form makes mp-

MPC ideal for safety critical applications, and (iv) allows 

for advanced model-based controllers to be implemented 

in portable and/or embedded devices. This has paved the 

way for many advanced control applications in chemical, 

energy, automotive, aeronautical, biomedical systems, 

amongst others. 

Framework for multi-parametric programming & explicit 

MPC 

A comprehensive framework for the systematic design 

and off-line validation and testing of multi-parametric 

programming and robust explicit MPC was presented in 

Pistikopoulos (2009) is shown in Figure 5. This framework 

features four key steps which are presented next: 

 

Step 1:  development of a detailed “high-fidelity” 

mathematical model of the process, 

Step 2:  development of a reduced-order/ approximating 

model suitable for explicit MPC design, 

Step 3:  design of robust explicit MPC controller 

Step 4:  implementation and validation/testing of the 

designed controller on the “high-fidelity” model 

 

Step 1 involves the development of a “”high-fidelity” 

mathematical model that provides a detailed description of 

the real system operation - this mathematical model is 

mainly for performing detailed simulations and 

optimization studies. Step 2 involves the development of 

an approximating model for the system at hand, which is 

derived by using model order-reduction or system 

identification methods. This step is important in order to 

arrive at a suitable MPC formulation that can be solved by 

the available multi-parametric programming and control 

Field Contributors 

Multi-Parametric 

Linear Programming 

(mp-LP) 

Gass and Saaty (1955); Gal and 

Nedoma (1972); Gal (1995); 

Acevedo and 

Pistikopoulos (1997a); Dua et al. 

(2002) 

Multi-Parametric 

Quadratic 

Programming (mp-

QP) 

Townsley and Candler (1972); 

Propoi and Yadykin (1978); Best 

and Ding 

(1995); Dua et al. (2002); 

Pistikopoulos et al. (2002) 

Multi-Parametric 

Nonlinear 

Programming (mp-

NLP) 

Fiacco (1976); Kojima (1979); 

Bank et al. (1983); Fiacco and 

Kyparisis (1986); Acevedo and 

Pistikopoulos (1996); Dua and 

Pistikopoulos (1998) 

Multi-Parametric 

Dynamic 

Optimization (mp-

DO) 

Sakizlis et al. (2001b) 

Multi–Parametric 

Global Optimization 

(mp–GO) 

Fiacco (1990); Dua et al. (1999, 

2004a) 

Multi–Parametric 

Mixed Integer Linear 

Programming 

(mp–MILP) 

Marsten and Morin (1975); 

Geoffrion and Nauss (1977); 

Acevedo and Pistikopoulos 

(1997b); Dua and Pistikopoulos 

(2000) 

Multi–Parametric 

Mixed Integer 

Quadratic and non- 

Linear Programming 

(mp–MINLP) 

McBride and Yorkmark (1980); 

Dua and Pistikopoulos (1999); 

Dua et al. 

(2002) 



  
 

techniques. Then, in step 3 an explicit/multi-parametric 

MPC controller is designed by applying the available 

methods of multi-parametric programming and explicit 

control based on the approximate model derived in step 2. 

Finally, step 4 involves the off-line validation of the 

controller. This is done by incorporating the functional 

expression of the explicit controller into the high-fidelity 

model and then performing dynamic simulation studies to 

test/validate the controller performance. Since the 

controller is based on an approximate model of the 

process, deviations from the desired behavior may occur 

and the steps of the framework have to be repeated until a 

desired performance is obtained. The controller is then 

implemented to the system. 

All the steps of the framework in Figure 5 can be 

performed off-line before any real implementation on the 

system takes place. However, the high-fidelity model in 

step 1 is derived only once and does not use any new 

information created from the operation of the process that 

could possibly improve the model further and hence the 

controller performance. Thus the framework of Figure 5 is 

an open-loop procedure for the design of explicit 

controllers. 

 

 

Figure 5. A framework from multi-parametric 
programming & explicit MPC 

 

A closed-loop framework for the design, validation 

and on-line implementation of explicit controllers is 

presented here and shown in Figure 6. In this framework, 

the open-loop framework (in Figure 5) for multi-

parametric programming and explicit MPC is used off-line 

to derive and validate the explicit controller. However, due 

to the bidirectional link between the open-loop framework 

and the real process, real-time date available at any time 

from the real process can be used to further improve the 

model and hence the explicit control design. Additionally, 

optimization studies performed off-line on the high-fidelity 

model can lead to optimal designs and operational profiles 

which can be directly used to improve the design and 

operation of the real system. Hence a closed-loop 

framework for real-time multi-parametric programming 

and explicit MPC is established. 

Table 2. Milestones in multi-parametric Model 
Predictive Control. 

 

 

 

 

Figure 6. Closed-loop framework for multi-
parametric programming and explicit MPC 

Recent developments in multi-parametric 

programming & mp-MPC 

The recent developments in multi-parametric 

programming and explicit/multi-parametric control 

include: i) model-order reduction and explicit MPC, ii) 

multi-parametric Nonlinear Programming (mp-NLP) and 

explicit Nonlinear MPC, iii) multi-parametric Mixed-

Integer Nonlinear Programming, iv) robust explicit MPC 

and v) constrained moving horizon estimation and explicit 

Area of mp-MPC Contributors 

Multi–Parametric 

Model Predictive 

Control 

Pistikopoulos (1997, 2000); 

Bemporad et al. (2000b); 

Pistikopoulos et al. (2002); 

Bemporad et al. (2002); Johansen 

and Grancharova (2003); Sakizlis 

et al. (2003) 

Multi–Parametric 

Continuous Time 

Model Predictive 

Control 

Sakizlis et al. (2002b); Kojima 

and Morari (2004); Sakizlis et al. 

(2005) 

Hybrid Multi–

Parametric Model 

Predictive Control 

Bemporad et al. (2000a); Sakizlis 

et al. (2001a) 

Robust Multi–

Parametric Model 

Predictive Control 

Kakalis (2001); Bemporad et al. 

(2001); Sakizlis et al. (2002c, 

2004a); Faísca et al. (2008) 

Multi–Parametric 

Dynamic 

Programming 

de la Peña et al. (2004); Faísca et 

al. (2008) 

Multi-Parametric 

Non-linear Model 

Predictive control 

Johansen (2002); Bemporad 

(2003a); Sakizlis et al. (2007) 



  

MPC. In the following sections we present an overview of 

the recent developments in each of these areas. 

Model order- reduction/approximation and explicit MPC 

The main difficulty in the off-line design and on-line 

implementation of explicit MPC controllers is the 

capability to handle the expensive computations involved 

either in the off-line optimization or the online calculations 

of the controller especially in the case of large-scale 

processes. Therefore, model order-reduction methods are 

used to provide approximating reduced order models (with 

reduced number of state variables) for the large scale 

processes. The reasons for using model order-reduction 

techniques for multi-parametric programming include: 

1. the insufficient availably memory for solving 

the explicit MPC problem off-line, 

2. the desire to reduce the computational time at 

which the explicit controller is derived, and 

3. the need to reduce the size of the explicit 

solution (by deriving a smaller number of 

parameters and critical regions) in order to 

speed up the online calculations 

 In addition, since most high-fidelity mathematical models 

are too complex and cannot be used with the available 

multi-parametric programming and control methods, model 

approximations are necessary to create a model that is 

suitable for use with the existing explicit control design 

methods (Johansen, 2003 and Pistikopoulos, 2009). The 

key issue is that since reduced-order models are only 

approximations of the real process, the optimality and 

feasibility of the reduced explicit MPC controller is not 

guaranteed. In Narciso et al. (2008) a systematic method 

was developed that combines balanced truncation model 

reduction with explicit MPC techniques for linear dynamic 

systems, which ensures the optimality and feasibility of the 

explicit MPC design – this is the first reported work which 

adopted the combined model reduction and explicit MPC 

design approach for solving the above issues. 

Recently Lambert and Pistikopoulos (2011) proposed 

an approach for the combined model order-reduction and 

explicit MPC of nonlinear dynamic systems 
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with constraints on the inputs U and outputs Y. The 

proposed methodology uses dynamic integration methods 

(such as Monte-Carlo integration) and “meta-model” 

approaches (such as Legendre polynomials) to derive a 

linear discrete-time approximation of the predictions of the 

output as a function of the initial state  xt and the input 

prediction uj  

 1 2 1, , , , , 1, ,j j t Ny x u u u j N                          (3) 

over the prediction horizon N. Thus the nonlinear dynamic 

system (1) can be replaced by a set of algebraic 

expressions which only depend on the initial condition and 

the future sequence of control variables. An explicit MPC 

formulation can then be derived for the system, in which 

the future control sequences are the optimization variables 

and the initial condition is the parameter. It was shown that 

this problem can be solved as a convex mp-QP problem 

(Lambert and Pistikopoulos, 2011). 

Multi-parametric Nonlinear Programming 

The general mp-NLP problem can be stated as 

follows: 

   

 

min ,

s.t. , 0

,

x

n p

z f x

g x

x

 









 R R

                                                 (4) 

Where x is the vector of optimization variables, θ is the 

vector of parameters, f the objective function, z(θ) the 

value function and g the vector of linear inequalities. 

Developments in mp-NLP have not followed the rapid 

progress in the developments of multi-parametric linear 

programming (mp-LP) and multi-parametric mixed-integer 

linear programming (mp-MILP). Most of the work on mp-

NLP has focused on convex problems (Pistikopoulos, 

2009, Dominguez and Pistikopoulos, 2010). Previous work 

on mp-NLP was focused on the development of outer mp-

LP approximation with a prescribed error of the underlying 

mp-NLP problem (Dua and Pistikopoulos, 1998) while in 

Narciso, 2009 a geometric, vertex search-based (GVS) 

method was presented for partitioning the parameter spaces 

to obtain piecewise linear approximation of the nonlinear 

solution. 

In the recent work, novel multi-parametric Quadratic 

Approximation (mp-QA) algorithms, initially proposed by 

Johansen (2002) were developed by Dominguez and 

Pistikopoulos (2009) for the mp-NLP problem. The main 

idea, as in the previous outer approximation algorithms, is 

to alternate between a primal NLP and master mp-QP 

problem to derive the global (or an approximation with a 

specified tolerance ε) solution. However, the difference 

with outer approximation algorithms is that, where a first 

approximation of the nonlinear objective is used, the mp-

QA method uses second order (quadratic) approximations 

of the mp-NLP problem as follows: 
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Where the point of approximation 
*

cu  is determined by 

computing the centre point of a critical region, u f  and 

2

u f  are the Jacobian and Hessian matrices respectively, 

and *

,kU  is the set of feasible points found at iteration k 

for every infeasible vertex,  . In Dominguez and 



  
 
Pistikopoulos (2010) it was shown that mp-QA methods 
can obtain significant improvements in terms of quality of 
the optimal solution approximations and performance 
(number of NLP and mp-LPs/mp-QPs required to solve 
mp-NLP). Ongoing research in mp-NLP is currently 
focusing on the development of multi-parametric 
programming approximation algorithms for the general 
non-convex case.   

Multi-parametric Mixed-Integer Linear Programming 

Multi-parametric programming problems with discrete 

variables arise naturally in many engineering problems 

(Dua et al., 1999, Floudas, 1995). The general formulation 

of multi-parametric mixed-integer Nonlinear Programming 

(mp-MINLP) problems is written as follows 
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where x is the vector of continuous variables, y is the 

vector of binary variables and θ the vector of parameters. 

The general mp-MINLP problem has not yet been treated 

due to its complex nature. However, an important case of 

the above problem is the multi-parametric mixed-integer 

Linear Programming (mp-MILP) problem with 

parameters/uncertainties in both the objective functions 

and constraints, which is given as follows: 
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The mp-MILP problem with uncertainties in both the 

objective function and the left-hand (LHS) and right-hand 

side (RHS) of the inequalities, arise in many applications 

such as planning/scheduling problems, hybrid control and 

process synthesis (Faisca et al, 2009). The presence of 

uncertainties in both the objective and the constraints 

significantly increases the complexity and computational 

effort of deriving explicit solutions to (4). 

The problem with no LHS uncertainties (i.e. in A(θ)) 

was first studied in Faisca et al. 2009 and an algorithm was 

proposed which alternates between solving a Master 

MINLP problem (to obtain the binary variables) and a 

Slave mp-NLP problem (to obtain the explicit solution). 

Although the Master problem is solved to global optimality 

as a binary variable has to be calculated, it was shown that 

global optimization of the slave problem can be avoided 

and it can be solved as a simple mp-LP problem. Only 

recently a method for solving the general mp-MILP 

problem (4) was presented in Wittmann and Pistikopoulos 

(2011), which relies on a two-stage method described as 

follows. In the first stage of the method, following robust 

optimization methods (Lin et al. 2004), the general mp-

MILP problem is transformed into its Robust Counterpart 

(RC) problem by considering (4) as a robust mp-MILP 

problem where θ is the uncertainty. Then, by replacing the 

linear inequalities in (4) with the following 
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where rj = (θj
max

- θj
min

)
 
/2 and θj

N
 are the range and nominal 

value of θj thus removing the parameters from the LHS of 

the inequalities and transforming (4) into an mp-MILP 

problem with uncertainties only in the objective and the 

RHS of the constraints. Then, in the second stage the 

method of Faisca et al. (2009) is used to obtain the explicit 

solution. The advantages of the proposed method is that by 

taking the RC of the mp-MILP problem and removing the 

LHS uncertainties no additional global optimization 

procedures are required, which is computationally less 

expensive than the original problem. 

Robust Explicit/multi-parametric MPC  

There is an undisputable need for robust explicit MPC 

controllers for dynamic systems with bounded disturbances 

and model uncertainties. Explicit MPC controllers 

designed with nominal dynamic models (see equation 1 in 

section 1) cannot guarantee feasibility, in terms of 

constraint satisfaction, performance (in terms of 

optimality) and stability when disturbances and/or model 

uncertainties are present. The challenge here is the 

development of methods and algorithmic tools for the 

design of robust explicit/multi-parametric controllers 

which can guarantee constraint satisfaction and system 

stability for any value of the disturbances/uncertainties. 

Previous research efforts have mainly focused on the 

design of robust explicit MPC controllers for linear 

discrete-time dynamic systems with additive disturbances 

in the state equation of the linear model and uncertainties 

in the system matrices. 

The formulation of robust explicit MPC with model 

uncertainties is given as follows: 
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where the system matrices A, B are uncertain in that they 

are given as the sum of a nominal value A0 and an 

uncertain value ΔA. The objective is to satisfy the 

constraints in (9) for all values of ΔA. A framework for the 

design of robust explicit MPC controllers was presented 

recently in Pistikopoulos et al., 2009 and in Kouramas et 



  

al., 2012. This framework features three key steps: i) a 

dynamic programming step, in which the MPC 

optimization (9) is reformulated in a multi-stage 

optimization setting, ii) a robust reformulation step in 

which the constraints of each stage (of the multi-stage 

optimization) are reformulated to account for the worst-

effect of the uncertainty and iii) a multi-parametric 

programming step, in which each stage is solved as a 

multi-parametric Quadratic Programming problem to 

derive the control variables as explicit functions of the 

states. 

Simultaneous design of moving horizon estimation and 

explicit MPC 

In explicit/multi-parametric MPC and in general in 

any case of feedback controllers, the implementation of the 

controller relies on the assumption that the state and 

disturbance values are readily available from the system 

measurements. However, in many real applications the 

state values cannot be measured directly from the system 

and need to be obtained from the system output 

measurements with state estimation techniques (Rawlings 

and Mayne, 2009). Traditionally, in the case that no system 

constraints were considered in the problem, the controller 

and the estimator can be designed separately and then 

implemented together, following the separation principle 

(see Figure 7). However, this is not the case when 

constraints are considered in the problem, since the 

estimation error introduced in the system can significantly 

degrade system stability and result in constraint violations. 

As it is shown in Figure 7, if xe x x   is the estimation 

error, x is the real state and x̂  is the state estimate, then the 

system state constraint  ˆ
x xD x e d   might get violated 

when error variations occur. 

 

 

Figure 7. State estimation and explicit/multi-
parametric MPC 

In order to avoid this issues simultaneous methods for 

the design of estimation and MPC have been developed, 

based on robust output-feedback tube MPC methods (see 

Mayne et al., 2006, Sui et al. 2008, Rawlings and Mayne 

2009).  The main idea in this approach is to obtain the 

dynamic model equations and the bounding set of the 

estimation error as well as the state estimate dynamics, and 

use them to „robustify‟ the systems constraints in the MPC 

formulation to avoid any constraint violations. This 

approach has been successfully applied only on MPC 

problems with unconstrained estimators such as 

Luenberger observers and unconstrained Moving Horizon 

Estimators (MHE). Nevertheless, the general and more 

difficult case of constrained Moving Horizon Estimation 

(MHE) was not fully treated until only recently. In the 

work of Voelker et al., 2010 and Voelker et al., 2011 a 

method was presented for the simultaneous design of the 

general case of constrained MHE and explicit MPC based 

on multi-parametric programming. In this method the 

optimization problem involved in the constrained MHE 

problem is solved using multi-parametric programming 

techniques to derive the estimation error dynamics and 

bounds for the constrained MHE. A robust output-

feedback tube MPC methods was then established, by 

incorporating the estimation error dynamics and bounds, 

that ensures that the system constraints are not violated and 

stability is preserved. 

Explicit nonlinear MPC 

In explicit nonlinear MPC (or mp-NMPC) the optimization 
problem of the underlying MPC formulation is a mp-NLP 
problem. For this reason the developments on mp-NMPC 
controllers has always relied on the developments in mp-
NLP. the work in mp-NMPC mainly focuses on the 
development of algorithms for the approximation of the 
solution of the mp-NLP problem involved in the MPC 
formulation. Johansen (2004) presented an algorithm for 
obtaining an mp-QP - based approximation for obtaining 
the control variables as piecewise affine functions of the 
state. Sakizlis et al. (2005) presented a method for 
reformulating and solving the mp-NMPC optimization 
problem with multi-parametric global optimization 
techniques. Additionally Sakizlis et al. (2005) presented a 
multi-parametric dynamic optimization approach for 
continuous-time mp-NMPC, which is based on deriving 
the exact solution of the continuous-time control variables 
as functions of the time and state variables. Recently, 
Dominguez and Pistikopoulos (2011) presented an 
algorithm for mp-NMPC based on their algorithm for 
multi-parametric quadratic approximations (see previous 
section). In this method the state-space is partitioned into 
polyhedral sets (hyper-cubes) the union of which 
represents and approximation of the feasible set of states. 
In each hypercube an approximating mp-QP problem is 
solved to obtain a local approximating explicit solution of 
the inputs as linear piecewise functions of the state.  

MPC-on-a-chip multi-scale applications 

The significant advances in multi-parametric 

programming and explicit/multi-parametric MPC have 

been followed by a number of important applications. 

Many of these applications are ideal for the use of 

explicit/multi-parametric MPC controllers and the MPC-

on-a-chip concept, since they involve real, complex 

processes with limited available control hardware for 

advanced control applications. A detailed report of these 

applications is given in Table 3. In this section we 



  
 

overview two important applications of explicit MPC 

design on fuel cells and Pressure Swing Adsorption (PSA) 

systems for hydrogen separation. 

Fuel cell systems 

An important application for explicit/multi-parametric 

MPC is for the control of fuel cells. Fuel cells such as the 

Proton Exchange Membrane (PEM) fuel cells are popular 

alternatives for electrical power generation and especially 

for portable and automotive applications (Arce et al., 2011, 

Panos et al., 2011) where the control hardware cannot 

accommodate demanding computations. Hence, PEM fuel 

cell systems are a suitable application to which explicit 

MPC and the MPC-on-a-chip concept can bring distinct 

benefits. The control of PEM fuel cell systems have in 

general attracted a lot of attention in the relevant literature 

first due to their importance for mobile applications but 

also due to the challenging nonlinear dynamics which are 

mainly due to the complex electrochemical reactions and 

membrane characteristics. 

A typical PEM fuel cell system is shown in Figure 8 

and consists of the fuel cell stack, a compressor for the 

recirculation of hydrogen to the fuel cell and a cooling 

system for controlling the temperature of the stack. One 

objective here is to control the electrical power or voltage 

produced by the fuel cell by manipulating the fuel 

(hydrogen) and oxygen flowrates in the stack. An 

additional but very important objective is to maintain the 

stack temperature in a certain range of values in order to 

ensure efficient operation of the fuel cell and avoid 

damaging the stack. Despite being a widespread 

application for implementing and testing control 

algorithms, the explicit/multi-parametric MPC of PEM fuel 

cells has only recently attracted some attention. 
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Figure 8. PEM Fuel Cell System 

The application of multi-parametric programming and 

explicit MPC for fuel cells was performed by Arce et al., 

2009, where an explicit MPC controller was designed for 

the control of the excess oxygen ratio in a real fuel cell: the 

objective here is to maintain the excess oxygen ratio above 

a critical level in order to maintain a safe and efficient 

operation. This work was further extended in Arce et al., 

2010 and an explicit controller was designed for 

controlling the temperature of the PEM fuel cell stack by 

manipulating the voltage of the fun of the cooling system, 

in the presence of current disturbances. In Panos et al., 

2010 and Panos et al., 2011, an explicit MPC controller 

was designed for the simultaneous control of the fuel cell 

voltage and temperature. In this work instead of designing 

two different controllers to control the voltage and 

temperature separately, a single multi-variable controller 

was designed. Finally, in Ziogou et al., 2011 an explicit 

MPC controller was designed for a PEM fuel cell system 

for the power, excess oxygen and hydrogen ratio and 

temperature control of the fuel cell stack. 

All the above applications involved real PEM fuel cell 

systems which are based in University of Seville, Spain 

(Arce et al., 2009, Arce et al., 2010), Imperial College 

London, UK (Panos et al, 2011) and the Chemical Process 

Engineering Research Institute (CPERI), Greece (Ziogou 

et al., 2011). Figure 9 shows the process instrumentation 

diagram of the experimental PEM fuel cell system in 

Imperial College London. In conclusion, the results in the 

above applications showed that explicit/multi-parametric 

programming is a promising control technology for this 

type of small applications. 

 

 

 

Figure 9. Process Instrumentation Diagram for 
PEM Fuel Cell System 

PSA systems 

Another application of explicit/multi-parametric MPC 

is in the control of Pressure Swing Adsorption (PSA) 

systems. Pressure swing adsorption (PSA) is a flexible, 

albeit complex gas separation system.  PSA operation is 

not only highly nonlinear and dynamic but also poses extra 

challenges due to its periodic nature; directly attributed to 

the network of bed interconnecting valves whose active 

status keeps changing over time (Figure 10). The timing of 

these valves in turn control the duration of process steps 

that each PSA bed undergoes in one cycle. In the past, only 

a few studies have appeared in the open literature on PSA 

control even though there is an increasing interest to 

improve their operability Due to its inherent nonlinear 

nature and discontinuous operation, the design of a model 

based PSA controller, especially with varying operating 

conditions, is a challenging task and only a few studies 



  

have appeared in the literature on PSA control even though 

there is an increasing interest to improve their operability 

(Khajuria and Pistikopoulos, 2011). In Khajuria and 

Pistikopoulos (2011) an explicit multi-parametric MPC 

controller was designed for the first time, for the control of 

hydrogen purity produced in a PSA unit. In this section we 

overview this application and we present its key findings. 

The PSA system considered in this study consists of 

four beds containing activated carbon as an adsorbent. 

Each of the four beds undergoes a cyclic operation that 

comprises nine process steps as shown in Figure 10, 

separating a mixture of 70% Hydrogen H2 and 30% CH4 

into high purity H2. The control objective is to maintain the 

hydrogen purity (controlled variable) at 99.99% by varying 

the adsorption time (manipulated variable). The framework 

for multi-parametric programming and explicit MPC was 

applied for the PSA problem and its steps are shown next. 

In step 1 a first-principles mathematical model of the PSA 

system is obtained, which consists of Partial Differential 

Algebraic Equations (PDAEs). In step 2 simulations 

studies are performed to evaluate the performance of the 

PSA and obtain input-output data for performing system 

identification to obtain a reduced-order linear state-space 

system for the explicit MPC design. In step 3 an explicit 

MPC controller was designed based on multi-parametric 

Quadratic Programming methods (Pistikopoulos et al., 

2007a). The optimal profile and its critical regions for the 

explicit MPC controller is shown in Figure 11. Finally the 

controller was evaluated by directly implementing it on the 

high-fidelity model derived in the first step and performing 

simulation for a number of operating conditions such as 

nominal operating conditions and operation under 

disturbances in the PSA feed. The explicit controller 

performance is then compared to two PID controllers 

(Figure 12). It is easy to see that the PID1 violates the 

constraints on the adsorption time (denoted by the bold 

black line in Figure 12) despite its rapid steady-state 

behavior. Further retuning, represented by PID2, improves 

its behavior but keeps the adsorption time above 55s. The 

explicit MPC controller provides much superior 

performance as it achieves almost the same controller 

response time at much lower values of mean control effort. 

Fig. 12 further shows that the adsorption time trajectory 

during the response time is far away from the defined 

constraints, without requiring any re-tuning efforts. 

Therefore, it is shown that explicit/multi-parametric MPC 

is also a promising technology for medium scale processes 

such as the PSA system. 

 

 

 

Figure 10. PSA system and operation 

Other applications 

Other recent applications of explicit MPC include the 

guidance and control of unmanned air vehicles and control 

of biomedical systems such as insulin delivery for type 1 

diabetes, anesthesia and chemotherapeutical agents. Both 

applications demonstrate the importance and potential of 

the MPC-on-a-chip concept. In the case of unmanned air 

vehicles (UAVs) the objective is to navigate the aerial 

vehicle through a predetermined flight path in the presence 

of wind while ensuring that  important constraints on fuel , 

throttle and control surfaces movement are not violated 

(Voelker et al. 2009). Another challenge in this area is 

state and disturbance estimation since the measurements of 

many state variables and of the wind are not always 

available (Voelker et al., 2011). Biomedical systems and 

devices is also another area for which the MPC-on-a-chip 

concept can bring significant benefits. The main objective 

here is to derive explicit MPC controllers for the delivery 

of insulin for type 1 diabetes, anesthesia and 

chemotherapeutical agents. This has been the subject of the 

MOBILE project which is an ERC Advanced Grant project 

(Modeling, Control and Optimization of Biomedical 

Systems, ERC Advanced Grant, 2009-2013). The ability to 

derive off-line and in an explicit form the control 

performance of the device (for the delivery of the insulin, 

anesthesia or the chemotherapeutical agents), based on the 

simulated patient characteristics, allows for increased 

safety and understanding of the preclinical and clinical 

testing in the approval and implementation stages (Pefani 

et. al 2011, Zavitsanou et. al 2011, Krieger A. et al. 2011). 

 



  
 

 

Figure 11. Critical regions of the explicit MPC 
controller for the PSA system. 
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