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Abstract

A new multiobjective optimization formulation deadj with simultaneous scheduling and control issues
is proposed. Objective functions featuring econommiofits and dynamic performance are deployed
because normally they are in conflict. Becausegitte continuous variables and process dynamic
behavior are involved the optimization problem iastcin terms of a Mixed-Integer Dynamic
Optimization (MIDO) problem. The Pareto front ofckaaddressed problem is computed usingsthe
technique for handling multiobjective problems. Thsults indicate that better optimal solutions ban
attained by deploying multiobjective optimizati@thniques instead of just simple merging all thget
objective functions into a single objective. Theomwsed multiobjective approach for handling
scheduling and control problems is illustrated gg@rCSTR example with nonlinear behavior.
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Introduction

With the ever world-wide increasing competition to suboptimal solutions. When both problems are solved
improve economic profits new ways of addressing thesimultaneously improved optimal solutions have been
solution of processing problems are required. Intigaar,  reported for different kinds of processing systéfisres-

in the field of process operations scheduling aontrol ~ Tlacuahuac and Grossman, 2006) ,(Terrazas-Moreal, et
problems are a clear example of processing probteats 2007). However, there are some additional waysdb g
can be benefited from using new and integrated vedys better optimal solutions: (a) using a multiobjeetiv
solving such problems. In fact, industrially schigayand  optimization approach, (b) considering a real time
control problems are normally solved in a sequéntiascheduling and control approach and (c) taking into
manner (Richards et al., 2002), (Allcock et alQ20 First account process uncertain behaviour. In this wokk w
an optimal production sequence is fixed and theetaof  explore the solution of scheduling and control feois
control actions driving the process between all twotaking into account the presence of several ohjecti
products combination (as demanded by the functions leading to the formulation of multiobjivet
sequence production) is computed. The consequehce scheduling and control  optimization  problems.
solving the scheduling and control problem alorig ey ~ Multiobjective scheduling optimization (Zhenya and
is that the natural existing interactions betweameduling lerapetritou, 2007), (Baez Senties, 2010) and obntr
and control problems are not exploited leading toproblems (Tsoukas et al., 1982), (Kerrigan et 2000),
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(Zambrano and Camacho, 2002), (Gambier, 2008)avoided and improved optimal solutions can be radthiIn
(Bemporad and Munoz de la Pena., 2009) have beedhis work a Mixed-Integer Dynamic Optimization Non-
treated separately. In this work we propose amupéition  Linear Programming (MIDO) formulation is used for
formulation to merge both problems. A recent revisv addressing simultaneous scheduling and controll@mu
scheduling and control issues can be found elsewheiThe problem to be tackled consists in computing
(Harjunkoski et al., 2009). simultaneously the best production sequence anidhalpt
Science and Engineering problems normally featurelynamic transition trajectories such that a sgirotiuction
several and contradictory design and/or operationargets are met. The objective functions consideredthe
objectives. For instance, during the design of wemi process economic profit and variables deviatiormnfr
system commonly economic performance is stressedesired steady-state values, since the systemsswoider
neglecting key issues such as the generation dealseeof continuous processing conditions. Therefore, theetBa
pollutants. So, highly profitable systems may léadarge  curve between these two objectives is attainedsendral
pollution levels. On the other hand, minimum pahit optimal solutions along this curve are shown and
concentration may require large economic inversiongliscussed. We have not addressed the selectidre dfetst
reducing system profit. It seems hard to achievanultiobjective optimal solution since this is notfialy
simultaneously large economic profits and low palht  solved problem whose consideration demands the
levels. Therefore, a trade-off between such desigintervention of an expert (Vafaeyan and ThibaudQ%2) or
objectives ought to be established. Polymerizat&attors the deployment of algorithmic methods (Grossmanal.et
are another good example of systems featuring ictinfi 1982). As far as we know no other multiobjective
design objectives. For instance, commonly in fiedicals  optimization formulations have been proposed in the
polymerization kinetics there is a trade-off betwee research literature for dealing with simultaneous
monomer conversion and molecular weight distributio scheduling and control issues.
(Maner, 1996) making hard to achieve large monomer
conversions and large molecular weight distribigion
simultaneously. Because of productivity targetsnmadly
large conversions are required, whereas for certain The problem to be solved can be formulated as
applications also large values of the molecularghiei follows: "Given is a set of products to be manuiaet in
distributions are also demanded. However, incrgasina single CSTR, product cost, inventory cost, ravienial
conversion leads to decrease molecular weight éet v cost and product demands, the problem consistdhén t
versa. Hence, a trade-off between the two desagialvles simultaneous determination of the best productigclec
must be formulated. Finally, in modern biofuel pmotion  and optimal products transitions such that eachadrtbe
systems conflicting and competing objectives alsgea optimal solutions corresponds to a point along Rlaeeto
For bioethanol production from cellulosic residuas front". For each one of the optimal solution poilusated
pretreatment process is required. In this stepogeic on the Pareto curve the major decision variables
xylose, xylane and some undesired products areefdrm corresponds to: optimal production sequence, arsoumt
We would like to design the cellulose pretreatnm@otess be manufactured of each product, production times,
in such a way such that, for instance, maximumntransition times, optimal transition trajectory anbe
concentration of xylose is obtained while simulamgy  optimal values of the control variables. Finallys a
producing minimum amounts of the undesired productsdiscussed in (Flores-Tlacuahuac and Grossman, 2066)
The above three examples are intended have used a production wheel with a cycle scheghleh
to illustrate that modern market economy and soghdiity  is a valid production strategy assuming that thedpct
issues, among other factors, demand the simultaneodemand rates are constant.
consideration of several, and often conflicting,sige
objectives and that a trade-off solution among suc
objectives must be attained so all the objectivesnget in
a certain proportion. In previous works (Flores-Tlacuahuac and Grossman,
Although a common approach to address the desigh006), (Flores-Tlacuahuac and Grossmann, 2006a) we
and operation of processing systems featuring akverhave proposed an optimization formulation able &ald
design objectives lies in merging all the objectiveto a  with scheduling and control problems using a single
single one design objective (Das and Dennis, 1991h  objective function. As mentioned above, many Sciegred
an approach has several weaknesses: (a) it reqgihiees Engineering problems commonly feature several, and
selection of weighting functions that can be difficto = sometimes conflicting, objective functions. Althdug
justify and (b) it may lead to suboptimal solutiooth  multiobjective optimization problems are sometimes
problems can be removed, to a certain extent, byeformulated as single optimization problems (Dasl a
addressing such problems as true multiobjectivegdesnd  Dennis, 1997) by proper weighting of the individual
optimization issues. Working along this line théesgon  objective functions, they should be approachedsmhded
of sometimes subjective weighting functions can beas true multiobjective optimization problems ussagne of
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the methods proposed for this aim (Chinchuluun anaf this problem is always weakly Pareto optimal &adeto
Pardalos., 2007), (Das and Dennis, 1998). Thereatare optimal if it is unique. An advantage of tlzeconstraint
least two reasons to do so: (1) The subjectivecehof  method over the weighting method to solve MOO
weighting functions is avoided and (2) Improvedimpd  problems is that thes-constraint method can find any
solutions can be attained. However, a clear digs#dge of Pareto optimal solution even for non convex prolslem
multiobjective optimization calculations is thatorf Following the &constraint approach, we separated the

complex systems, computational times can be large. original objective function and formed the next MOO
For dealing with single objective scheduling andproblem

control problems the following objective functioQ)(was  max Q=¢, (5)

deployed (Flores-Tlacuahuac and Grossman, 2006§ubject tog, < & (6)

Q= ¢1 - ¢2 (1) ’

S o ) In this way, the MOO problem has been transforméal &
where the individual objective functiogs and ¢, read as single objective optimization problem (SOO) by
follows, considering the functionp, as an additional inequality
p :%‘Q‘W _iCiS(Gi -W /T,) (2) constraint. We must emphasize thit is a little bit
! T 20, different in its present form in relationship te ibriginal
t ) form (Flores-Tlacuahuac and Grossman, 2006) bba#
2 =,[0 ZAX (1)t (3) no more the weighting factor included as part sfpast
' definition. Of course the MOO problem is also sabj®
the constraints associated to the scheduling andrdigs
behavior of the problem. Because those constrdiat®
been deeply discussed in previous works (Flores-

: Tlacuahuac and Grossman, 2006) they are not metion
target steady-states. As can be notiggdand ¢, have in the present work. We only highlight that the MOO

different measurement_unl_tqil has ec_onom_lc profit units, problem turns out to be a Mixed-Integer Dynamic
whereasd, has the units in the variabbe is measured. Optimization (MIDO) problem. To solve the MIDO
Originally (FIores—lTIacuahuac- .and Grossmap, 206) problem we use a simultaneous discretization amghroa
was transformed into a transition cost by usingr@per  (gjegler, 2010) to transform the MIDO problem indo
weighting  function.  Solving the  multiobjective jiyeq.nteger Non-Linear problem (MINLP) that cae b

optimization problem as a single objective optiMi® ¢, eq by standard techniques aimed to solve naweo
problem can lead us to obtain sub optimal solutlons,v”,\“_PS (Bonami, 2007).

Taking explicitly into account the nature of thdfelient
contributions to the objective function will helps uo
obtain better optimal solutions. In a multi objgeti Case Study.
optimization problem (MOO) there are at least two
objectives involving a set of decision variablesd an
constraints. These objectives are often conflictingsuch
situations, there will be many optimal solutions the
MOO problem, all of which are equally good in trense
that each one of them is better than the rest laast one
objective. This implies that one objective improwetsile

at least another objective becomes worse when avesn
from one optimal solution to another. The soluti@isa
MOO problem are known as the Pareto-optimal sahstio CSTR  with
and they are plotted in a diagram known as Pargteec

i=1 c i=1

where the first part of th&, term has to do with the
earnings concerning the sales of the productsrasisethe
second part represents the inventory costs @nis a
function related with the off-set or deviation frothe

In the next example, it can be distinguished a step
procedure to achieve a Pareto Diagram. This can be
outlined as follows. First we chose a range of &alafe,
and then we solved the SOO problem, which is a bixe
Integer Dynamic Optimization (MIDO) problem, juss a
described above for each valuesfThat is, each point in
the Pareto diagram represents the solution of a WMID
problem, a difficult task per se.

Smultaneous Reactions and  Input

) . Multiplicities
In this work we have used thesconstraint approach
(Haimes et al., 1971) for attaining the Pareto fron  In this example, the following set of reactions:
although some other options are also available RO A
(Chinchuluun and Rardalos., 2007). S R+R, 0B
In the &-constraint method one of the objectivépié
selected to be optimized and the othdjsafe converted R+ROf-C
into constraints. Hence, is carried out in an isothermal CSTR for manufaotyr
minimize f, (x) productsA, B, andC starting from the reactani, R,, and

4 R.. The dynamic mathematical model and kinetic rate

i : <€ = | # .
subject to fl(x)<51 . foral LNzl expressions read as follows:

whereg are upper bounds for the objectiigsj # | andN

stands for the number of objective functions. Tolktion



dc (QaCiRl _QCR) is important because it clearly states that theiestpd
B o= - (7) product demand can be met deploying shorter promess

dt _V ' times and increasing the economic profit. This falso
dC (QRZC'R2 —QCRZ) highlights the importance of the multi-objective
R o= +Q (8) AR .
dt V T optimization approach for scheduling and control
i problems: without computing the Pareto front it Vebbe
dC, — (QRaCRs _QCRa) +q (9) difficult to assess the advantage/disadvantage given
dt \% K optimal solution. The results from the Pareto fralfdw us
dac Q(CEA_CA) to pick up an optimal point featuring target belavin
A= + R (10) Figures 2 and 3 the dynamic optimal transition isffor
dt V the two points in the Pareto front are depicteccaBse in
dc, _ Q(C'B —CB) both cases the value of tipe objective function turns out
a Vv +Re (11) to be rather small the dynamic transition profieedibit

: smooth dynamic behavior.
dC. _Q(CC_CC) !

el v +Re (12)
o Table 1: Operating Conditions Leading to the

Rp = klcRi (13) Manufacture of the A, B, and C Products of the Case
Rg =k,Cr Cg, (14) Study
R. =k,C,.C 15

c =kCrCe (15) Product Demand  Product Inventory
R, =Ry~ R ~Re (16) rate (Kg/h)  Cost ($/h)  Cost ($/Kg)
R, =R (17) A 5 500 1.0

B 10 400 1.5

Ry, =~ (18) c 15 600 1.8
Q=Qy +Q;, +Qy, (19)
whereQr: , Qr. , and Qgs are the feed stream volumetric 4510 , , ,
flow rates of reactant®;, R,, and R;, respectivelyC' is the al. g |
reactant concentratiol is the product concentratio¥,is
the reactor volume, an#l;, k;,, and k; are the kinetic a2 1

constantsQ is the total feed stream volumetric flow rate. .| ,
The value of the design parameters and steady-sta
processing conditions can be found in Tables 5 @il
(Flores-Tlacuahuac and Grossman, 2006), wheree < s} : .
demand rate, product and inventory costs are shaown
Table 1. With the provided design information theole
Pareto front is attained as depicted in Figure he T
coordinates of the first and second points gr&:§.'] = 5l ]
[5x10° 25590] and ¢.,%9.%] = [2.5x10% 35250],
respectivelyIn Tables 2 and 3 the optimal scheduling and

25 -

240 4

22k -

control results for points 1 and 2 of the correspog 8 : i = = = =
Pareto front (see Figure 1) are shown. As seehdrfitst L

point of the Pareto front, the optimal producti@gsence Figure 1: Pareto curve for the case of study.

is given by: A— B — C, whereas in the second point of Coordinates for the first and second pointsare: [ ¢,"; ¢:]
the Pareto front the optimal sequence is-BA — C. = [5x10°, 25590] and [ ¢,; ¢,] = [2.5x10", 35250]

The CPU times are 1:42.6 and 0:43.1 min for th& find respectively.

second points, respectively, whereas the number of
constraints for both cases is 2831. As noticed,steond
optimal solution features a better economic pi(@#&5250)
when compared to the profit attained from the fppstnt In this work we proposed an optimization formulatio
($25590). As a matter of fact, the cyclic time (3R) of for dealing with multiobjective scheduling and awht

the second point turns out to be approximately bathe  problems. The formulation assumes that the appeshch
corresponding cyclic time (659.3 h) of the firstijoAs  problems are solved off-line and without taking oint
seen from results shown in Tables 2 and 3 the psotime  account process uncertainty. The results attaimethe

and the amount produced (w) also keep the same ratpresent work clearly demonstrates the advantages of

between the two optimal operating points. This okstion ~ deploying a multiobjective approach for the addedss
issues since full access to most of the optimalt&wsis is

Conclusions



obtained. From an optimization point of view alleth

solutions are equality good and it is up to theighes to v ”

pick up the correct one according to certain detaggets. " - —%
Moreover, no other multiobjective scheduling anchtool O T ‘f:‘fz“
optimization formulations have been proposed in the® T ;
research literature. Of course, it could be st#ted global U'; ™

optimization techniques can also handle these type
problems with the advantage of locating the bekttiom.
The point with global optimization techniques fotNWULP
problems is that by the time being they tend touireqg
large CPU times. On the contrary, multiobjective
optimization techniques are simpler to deploy ahdyt
represent a good alternative to the use of globe
optimization techniques. Moreover, global optimiaat
techniques normally feature a single objective fiomc

<, molflt

rnolft

Future work will deal with real-time scheduling and "o " " 0
control problems using model predictive control  pf——————""T] oz waspansy
techniques. Some work is in progress (Flores-Tlacae T Y Y

et al., 2011), (Zavala and Flores-Tlacuahuac, 2011)
because a multiobjective control strategy is resglifor

this purpose.
075

Figure 3: Optimal dynamic transition profiles for reactor
concentration and volumetric flow rate for the second
point of the Pareto front.

©, malft
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Figure 2: Optimal dynamic transition profiles for reactor
concentration and volumetric flow rate for the first point
of the Pareto front.

Table 2: Scheduling and Control results for the first optimal operating point. The objective function values are: ¢,'=
5x10° and ¢,'= 25590. Total cycle timeis659.3 h.

Slot Product Process time Productionrate W (Kg) Transition T start T end
(min) (Kg/min) time (min) (min) (min)
1 A 49.423 66.700 3296.519 10 0.000 59.423
2 B 92.456 71.310 6593.038 10 59.423 161.879
3 C 447.425 89.520 40053.458 50 161.879 659.034




Table 3: Scheduling and Control results for the the second optimal operating point. The objective function values are:
#,°= 2.5x10" and ¢,°= 35250. Total cycletimeis327.8 h.

Slot Product Process time Production rate W (KQg) Transition T start T end
(min) (Kg/min) time (min) (min) (min)
1 B 45.969 71.310 3278.079 10 0.000 55.969
2 A 24573 66.700 1639.039 10 55.969 90.543
3 C 227.265 89.520 20344.778 10 90.543 327.808
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