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Abstract 

A new multiobjective optimization formulation dealing with simultaneous scheduling and control issues 
is proposed. Objective functions featuring economic profits and dynamic performance are deployed 
because normally they are in conflict. Because integer, continuous variables and process dynamic 
behavior are involved the optimization problem is cast in terms of a Mixed-Integer Dynamic 
Optimization (MIDO) problem. The Pareto front of each addressed problem is computed using the ε-
technique for handling multiobjective problems. The results indicate that better optimal solutions can be 
attained by deploying multiobjective optimization techniques instead of just simple merging all the target 
objective functions into a single objective. The proposed multiobjective approach for handling 
scheduling and control problems is illustrated using a CSTR example with nonlinear behavior. 
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With the ever world-wide increasing competition to 
improve economic profits new ways of addressing the 
solution of processing problems are required. In particular, 
in the field of process operations scheduling and control 
problems are a clear example of processing problems that 
can be benefited from using new and integrated ways of 
solving such problems. In fact, industrially scheduling and 
control problems are normally solved in a sequential 
manner (Richards et al., 2002), (Allcock et al., 2002). First 
an optimal production sequence is fixed and then a set of 
control actions driving the process between all two 
products combination (as demanded by the 
sequence production) is computed. The consequence of 
solving the scheduling and control problem along this way 
is that the natural existing interactions between scheduling 
and control problems are not exploited leading to 

suboptimal solutions. When both problems are solved 
simultaneously improved optimal solutions have been 
reported for different kinds of processing systems (Flores-
Tlacuahuac and Grossman, 2006) ,(Terrazas-Moreno et al., 
2007). However, there are some additional ways to get 
better optimal solutions: (a) using a multiobjective 
optimization approach, (b) considering a real time 
scheduling and control approach and (c) taking into 
account process uncertain behaviour. In this work we 
explore the solution of scheduling and control problems 
taking into account the presence of several objective 
functions leading to the formulation of multiobjective 
scheduling and control optimization problems. 
Multiobjective scheduling optimization (Zhenya and 
Ierapetritou, 2007), (Baez Senties, 2010) and control 
problems (Tsoukas et al., 1982), (Kerrigan et al., 2000), 



  
 

 

(Zambrano and Camacho, 2002), (Gambier, 2008), 
(Bemporad and Munoz de la Pena., 2009) have been 
treated separately. In this work we propose an optimization 
formulation to merge both problems. A recent review on 
scheduling and control issues can be found elsewhere 
(Harjunkoski et al., 2009).  

Science and Engineering problems normally feature 
several and contradictory design and/or operation 
objectives. For instance, during the design of a given 
system commonly economic performance is stressed 
neglecting key issues such as the generation and release of 
pollutants. So, highly profitable systems may lead to large 
pollution levels. On the other hand, minimum pollutant 
concentration may require large economic inversions 
reducing system profit. It seems hard to achieve 
simultaneously large economic profits and low pollutant 
levels. Therefore, a trade-off between such design 
objectives ought to be established. Polymerization reactors 
are another good example of systems featuring conflicting 
design objectives. For instance, commonly in free radicals 
polymerization kinetics there is a trade-off between 
monomer conversion and molecular weight distribution 
(Maner, 1996) making hard to achieve large monomer 
conversions and large molecular weight distributions 
simultaneously. Because of productivity targets normally 
large conversions are required, whereas for certain 
applications also large values of the molecular weight 
distributions are also demanded. However, increasing 
conversion leads to decrease molecular weight and vice-
versa. Hence, a trade-off  between the two design variables 
must be formulated. Finally, in modern biofuel production 
systems conflicting and competing objectives also arise. 
For bioethanol production from cellulosic residues a 
pretreatment process is required. In this step glucose, 
xylose, xylane and some undesired products are formed. 
We would like to design the cellulose pretreatment process 
in such a way such that, for instance, maximum 
concentration of xylose is obtained while simultaneously 
producing minimum amounts of the undesired products. 
The above three examples are intended 
to illustrate that modern market economy and sustainability 
issues, among other factors, demand the simultaneous 
consideration of several, and often conflicting, design 
objectives and that a trade-off solution among such 
objectives must be attained so all the objectives are met in 
a certain proportion. 

Although a common approach to address the design 
and operation of processing systems featuring several 
design objectives lies in merging all the objectives into a 
single one design objective (Das and Dennis, 1997), such 
an approach has several weaknesses: (a) it requires the 
selection of weighting functions that can be difficult to 
justify and (b) it may lead to suboptimal solutions. Both 
problems can be removed, to a certain extent, by 
addressing such problems as true multiobjective design and 
optimization issues. Working along this line the selection 
of sometimes subjective weighting functions can be 

avoided and improved optimal solutions can be attained. In 
this work a Mixed-Integer Dynamic Optimization Non-
Linear Programming (MIDO) formulation is used for 
addressing simultaneous scheduling and control problems. 
The problem to be tackled consists in computing 
simultaneously the best production sequence and optimal 
dynamic transition trajectories such that a set of production 
targets are met. The objective functions considered are the 
process economic profit and variables deviations from 
desired steady-state values, since the systems works under 
continuous processing conditions. Therefore, the Pareto 
curve between these two objectives is attained and several 
optimal solutions along this curve are shown and 
discussed. We have not addressed the selection of the best 
multiobjective optimal solution since this is not a fully 
solved problem whose consideration demands the 
intervention of an expert (Vafaeyan and Thibault, 2009) or 
the deployment of algorithmic methods (Grossmann et al., 
1982). As far as we know no other multiobjective 
optimization formulations have been proposed in the 
research literature for dealing with simultaneous 
scheduling and control issues.  

Problem Formulation  

The problem to be solved can be formulated as 
follows: "Given is a set of products to be manufactured in 
a single CSTR, product cost, inventory cost, raw material 
cost and product demands, the problem consists in the 
simultaneous determination of the best production cycle 
and optimal products transitions such that each one of the 
optimal solutions corresponds to a point along the Pareto 
front". For each one of the optimal solution points located 
on the Pareto curve the major decision variables 
corresponds to: optimal production sequence, amounts to 
be manufactured of each product, production times, 
transition times, optimal transition trajectory and the 
optimal values of the control variables. Finally, as 
discussed in (Flores-Tlacuahuac and Grossman, 2006) we 
have used a production wheel with a cycle schedule which 
is a valid production strategy assuming that the product 
demand rates are constant.  

Multiobjective Scheduling and Control Formulation 

In previous works (Flores-Tlacuahuac and Grossman, 
2006), (Flores-Tlacuahuac and Grossmann, 2006a) we 
have proposed an optimization formulation able to deal 
with scheduling and control problems using a single 
objective function. As mentioned above, many Science and 
Engineering problems commonly feature several, and 
sometimes conflicting, objective functions. Although 
multiobjective optimization problems are sometimes 
reformulated as single optimization problems (Das and 
Dennis, 1997) by proper weighting of the individual 
objective functions, they should be approached and solved 
as true multiobjective optimization problems using some of 



  

 

the methods proposed for this aim (Chinchuluun and 
Pardalos., 2007), (Das and Dennis, 1998). There are at 
least two reasons to do so: (1) The subjective choice of 
weighting functions is avoided and (2) Improved optimal 
solutions can be attained. However, a clear disadvantage of 
multiobjective optimization calculations is that, for 
complex systems, computational times can be large.  

For dealing with single objective scheduling and 
control problems the following objective function (Ω) was 
deployed (Flores-Tlacuahuac and Grossman, 2006): 

1 2ϕ ϕΩ = −                                                                       (1) 

where the individual objective functions ϕ1 and ϕ2 read as 
follows, 
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where the first part of the ϕ1 term has to do with the 
earnings concerning the sales of  the products, whereas the 
second part represents the inventory costs and ϕ2 is a 
function related with the off-set or deviation from the 
target steady-states. As can be noticed ϕ1 and ϕ2 have 
different measurement units. ϕ1 has economic profit units, 
whereas ϕ2 has the units in the variable xi is measured. 
Originally (Flores-Tlacuahuac and Grossman, 2006) ϕ2 

was transformed into a transition cost by using a proper 
weighting function. Solving the multiobjective 
optimization problem as a single objective optimization 
problem can lead us to obtain sub optimal solutions. 
Taking explicitly into account the nature of the different 
contributions to the objective function will help us to 
obtain better optimal solutions. In a multi objective 
optimization problem (MOO) there are at least two 
objectives involving a set of decision variables and 
constraints. These objectives are often conflicting. In such 
situations, there will be many optimal solutions to the 
MOO problem, all of which are equally good in the sense 
that each one of them is better than the rest in at least one 
objective. This implies that one objective improves while 
at least another objective becomes worse when one moves 
from one optimal solution to another. The solutions of a 
MOO problem are known as the Pareto-optimal solutions 
and they are plotted in a diagram known as Pareto curve. 
In this work we have used the  ε-constraint approach 
(Haimes et al., 1971) for attaining the Pareto front 
although some other options are also available 
(Chinchuluun and Pardalos., 2007).  

In the ε-constraint method one of the objectives (fl) is 
selected to be optimized and the others (fj) are converted 
into constraints. Hence, 
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where εj are upper bounds for the objectives fj ,  j 6= l and N 

stands for the number of objective functions. The solution 

of this problem is always weakly Pareto optimal and Pareto 
optimal if it is unique. An advantage of the ε-constraint 
method over the weighting method to solve MOO 
problems is that the ε-constraint method can find any 
Pareto optimal solution even for non convex problems. 
Following the ε-constraint approach, we separated the 
original objective function and formed the next MOO 
problem 

1max           ϕΩ =                                                            (5) 

Subject to 2ϕ ε≤                                                             (6) 

In this way, the MOO problem has been transformed into a 
single objective optimization problem (SOO) by 
considering the function ϕ2 as an additional inequality 
constraint. We must emphasize that ϕ2 is a little bit 
different in its present form in relationship to its original 
form (Flores-Tlacuahuac and Grossman, 2006) but it has 
no more the weighting factor included as part of its past 
definition. Of course the MOO problem is also subject to 
the constraints associated to the scheduling and dynamics 
behavior of the problem. Because those constraints have 
been deeply discussed in previous works (Flores-
Tlacuahuac and Grossman, 2006) they are not mentioned 
in the present work. We only highlight that the MOO 
problem turns out to be a Mixed-Integer Dynamic 
Optimization (MIDO) problem. To solve the MIDO 
problem we use a simultaneous discretization approach 
(Biegler, 2010) to transform the MIDO problem into a 
Mixed-Integer Non-Linear problem (MINLP) that can be 
solved by standard techniques aimed to solve non-convex 
MINLPs (Bonami, 2007). 

Case Study.  

In the next example, it can be distinguished a two-step 
procedure to achieve a Pareto Diagram. This can be 
outlined as follows. First we chose a range of values of ε, 
and then we solved the SOO problem, which is a Mixed-
Integer Dynamic Optimization (MIDO) problem, just as 
described above for each value of ε. That is, each point in 
the Pareto diagram represents the solution of a MIDO 
problem, a difficult task per se.  

CSTR with Simultaneous Reactions and Input 
Multiplicities 

In this example, the following set of reactions: 
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is carried out in an isothermal CSTR for manufacturing 
products A, B, and C starting from the reactants R1, R2, and 
R3. The dynamic mathematical model and kinetic rate 
expressions read as follows: 
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where QR1 , QR2 , and QR3 are the feed stream volumetric 
flow rates of reactants R1, R2, and R3, respectively. Ci is the 
reactant concentration, C is the product concentration, V is 
the reactor volume, and k1, k2, and k3 are the kinetic 
constants. Q is the total feed stream volumetric flow rate. 
The value of the design parameters and steady-state 
processing conditions can be found in Tables 5 and 6 in 
(Flores-Tlacuahuac and Grossman, 2006), whereas 
demand rate, product and inventory costs are shown  in 
Table 1. With the provided design information the whole 
Pareto front is attained as depicted in Figure 1. The 
coordinates of the first and second points are [ϕ2

1;ϕ1
1] = 

[5x10-5, 25590] and [ϕ2
2;ϕ1

2] = [2.5x10-4, 35250], 
respectively. In Tables 2 and 3 the optimal scheduling and 
control results for points 1 and 2 of the corresponding 
Pareto front (see Figure 1) are shown. As seen in the first 
point of the Pareto front, the optimal production sequence 
is given by: A → B → C, whereas in the second point of 
the Pareto front the optimal sequence is: B → A → C. 
The CPU times are 1:42.6 and 0:43.1 min for the first and 
second points, respectively, whereas the number of 
constraints for both cases is 2831. As noticed, the second 
optimal solution features a better economic profit ($35250) 
when compared to the profit attained from the first point 
($25590). As a matter of fact, the cyclic time (327.8 h) of 
the second point turns out to be approximately half of the 
corresponding cyclic time (659.3 h) of the first point. As 
seen from results shown in Tables 2 and 3 the process time 
and the amount produced (w) also keep the same ratio 
between the two optimal operating points. This observation 

is important because it clearly states that the requested 
product demand can be met deploying shorter processing 
times and increasing the economic profit. This fact also 
highlights the importance of the multi-objective 
optimization approach for scheduling and control 
problems: without computing the Pareto front it would be 
difficult to assess the advantage/disadvantage of a given 
optimal solution. The results from the Pareto front allow us 
to pick up an optimal point featuring target behavior. In 
Figures 2 and 3 the dynamic optimal transition profiles for 
the two points in the Pareto front are depicted. Because in 
both cases the value of the ϕ2 objective function turns out 
to be rather small the dynamic transition profiles exhibit 
smooth dynamic behavior. 

Table 1: Operating Conditions Leading to the 
Manufacture of the A, B, and C Products of the  Case 

Study 

Product Demand 
rate (Kg/h) 

Product 
Cost ($/h) 

Inventory 
Cost ($/Kg) 

A 5 500 1.0 
B 10 400 1.5 
C 15 600 1.8 

 

 
Figure 1: Pareto curve for the  case of study. 

Coordinates for the first and second points are: [ϕ2
1;ϕ1

1] 
= [5x10-5, 25590] and [ϕ2

2;ϕ1
2] = [2.5x10-4, 35250], 

respectively. 

Conclusions 

In this work we proposed an optimization formulation 
for dealing with multiobjective scheduling and control 
problems. The formulation assumes that the approached 
problems are solved off-line and without taking into 
account process uncertainty. The results attained in the 
present work clearly demonstrates the advantages of 
deploying a multiobjective approach for the addressed 
issues since full access to most of the optimal solutions is 



  

 

obtained. From an optimization point of view all the 
solutions are equality good and it is up to the designer to 
pick up the correct one according to certain design targets. 
Moreover, no other multiobjective scheduling and control 
optimization formulations have been proposed in the 
research literature. Of course, it could be stated that global 
optimization techniques can also handle these type of 
problems with the advantage of locating the best solution. 
The point with global optimization techniques for MINLP 
problems is that by the time being they tend to require 
large CPU times. On the contrary, multiobjective 
optimization techniques are simpler to deploy and they 
represent a good alternative to the use of global 
optimization techniques. Moreover, global optimization 
techniques normally feature a single objective function. 
Future work will deal with real-time scheduling and 
control problems using model predictive control 
techniques. Some work is in progress (Flores-Tlacuahuac 
et al., 2011), (Zavala and Flores-Tlacuahuac, 2011) 
because a multiobjective control strategy is required for 
this purpose. 

 

 

 

Figure 3: Optimal dynamic transition profiles for reactor 
concentration and volumetric flow rate for the second 

point of the Pareto front. 

  

Figure 2: Optimal dynamic transition profiles for reactor 
concentration and volumetric flow rate for the first point 

of the Pareto front. 

 

 
 
 
 
 

Table 2: Scheduling and Control results for the first optimal operating point. The objective function values are: ϕ2
1= 

5x10-5 and ϕ1
1= 25590. Total cycle time is 659.3 h. 

Slot Product Process time 
(min) 

Production rate 
(Kg/min) 

W (Kg) Transition 
time (min) 

T start 
(min) 

T end 
(min) 

1 A 49.423 66.700 3296.519 10 0.000 59.423 
2 B 92.456 71.310 6593.038 10 59.423 161.879 
3 C 447.425 89.520 40053.458 50 161.879 659.034 



  
 

 

Table 3: Scheduling and Control results for the the second optimal operating point. The objective function values are: 
ϕ2

2= 2.5x10-4 and ϕ1
2= 35250. Total cycle time is 327.8 h. 

Slot Product Process time 
(min) 

Production rate 
(Kg/min) 

W (Kg) Transition 
time (min) 

T start 
(min) 

T end 
(min) 

1 B 45.969 71.310 3278.079 10 0.000 55.969 
2 A 24.573 66.700 1639.039 10 55.969 90.543 

3 C 227.265 89.520 20344.778 10 90.543 327.808 
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