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Abstract 

Robust counterpart optimization techniques are studied in this paper. Different uncertainty sets, 
including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined 
interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; 
combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric 
relationship is discussed. Robust counterpart optimization formulations induced by those different 
uncertainty sets are derived. For those robust formulations, their corresponding probability bounds on 
constraint violation are derived based on the distributional information of the uncertainty (i.e., bounded 
or unbounded uncertainty, with or without known probability distribution function). The tightness of the 
different probability bounds and the conservatism of different robust counterpart optimization 
formulations are illustrated through a case study. 
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In many optimization applications, the problem data is 
assumed to be known with certainty. However, that is 
seldom the case in practice. Very often, the realistic data 
are subject to uncertainty due to their random nature, 
measurement errors or other reasons. Since the solution of 
an optimization problem often exhibits high sensitivity to 
the data perturbations as illustrated by Ben-Tal and 
Nemirovski (2000), ignoring the data uncertainty could 
lead to solutions which are suboptimal or even infeasible 
for practical applications. 

Robust optimization belongs to an important 
methodology for dealing with optimization problems with 
data uncertainty. In this type of method, a deterministic 
data set is defined within the uncertain space, and the best 
solution which is feasible for any realization of the data 
uncertainty in the given set is computed through the 
solution of the robust counterpart optimization problem. 
One major motivation for studying robust optimization is 
that in many applications the data set is an appropriate 
notion of parameter uncertainty, e.g., for applications in 
which infeasibility cannot be accepted at all (e.g., design 
of engineering structures like bridges (Ben-Tal & 
Nemirovski, 1997)), and for those cases that the parameter 
uncertainty is not stochastic, or if no distributional 
information is available. 

One of the earliest papers on robust counterpart 
optimization is related to the work of Soyster (1973), who 
considered simple perturbations in the data and aimed at 
finding a reformulation of the original linear programming 
problem such that the resulting solution would be feasible 
under all possible perturbations.  This approach, however, 
is the most conservative one since it ensures feasibility 
against all potential realizations. Thus, it is highly 
desirable to provide a mechanism to allow tradeoff 
between robustness and performance. To address the issue 
of over-conservatism in worst-case models, Ben-Tal and 
Nemirovski (2000)  and El-Ghaoui and co-workers (El-
Ghaoui et al., 1998; ElGhaoui & Lebret, 1997) 
independently proposed the ellipsoidal set based robust 
counterpart formulation for dealing with parameter 
uncertainty within linear and quadratic programming 
problems. ElGhaoui and Lebret (1997) studied the robust 
solutions to the uncertain least-squares problems, and El-
Ghaoui et al. (1998) studied uncertain semidefinite 
problems. Ben-Tal and Nemirovski (1999) showed that 
when the uncertainty sets for a linear constraint are 
ellipsoids, the robust formulation turns out to be a conic 
quadratic problem. 

The robust optimization formulation introduced for 
linear programming problems with uncertain linear 



  
 

 

coefficients was extended by Lin et al. (2004) and Janak et 
al. (2007) to mixed integer linear optimization (MILP) 
problems under uncertainty. They developed the theory of 
the robust optimization framework for general mixed-
integer linear programming problems and considered both 
bounded and several known probability distributions. The 
robust optimization framework is later extended by 
Verderame and Floudas (2009) who studied both 
continuous (general, bounded, uniform, normal) and 
discrete (general, binomial, Poisson) uncertainty 
distributions and applied the framework to operational 
planning problems. The work was further compared with 
the conditional-value risk based method in (Verderame & 
Floudas, 2010). 

In this paper, we systematically study the robust 
counterpart optimization problem. The general idea of 
robust optimization is introduced first in next section. 
Several different uncertainty sets are presented, followed 
by the formulation of the robust counterpart model. 
Probability bounds on constraint violation are introduced 
based on the distribution of the uncertainty. Finally, a case 
study is given to illustrate the robust counterpart 
optimization and their probabilistic bounds. 

Robust Counterpart Optimization  

In set induced robust optimization, the uncertain data 
are assumed to be varying in a given uncertainty set, and 
the aim is to choose the best solution among those 
“immunized” against data uncertainty, that is, candidate 
solutions that remain feasible for all realizations of the 
data from the uncertainty set. 

In general, consider the following linear optimization 
problem with uncertainty in the left hand side (LHS) 
constraint coefficients, right hand side (RHS) and 
objective function coefficients: 
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where 
j
x  can be either a continuous or an integer variable. 

Note that the objective and RHS uncertainty can be 
transformed into LHS uncertainty as follows: 
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So, without loss of generality, we focus on the following 
general i-th constraint of a (mixed integer) linear 
optimization problem considering only LHS uncertainty: 

ij j i
j

a x b£å       (3) 

and 
ij
a  are subject to uncertainty. Define the uncertainty 

as follows 

 ˆ    
ij ij ij ij i
a a a j Jx= + " Î ,   (4) 

where 
ij
a  represent the nominal value of the parameters, 

îj
a  represent positive constant perturbations, 

ij
x  represent 

independent random variables which are subject to 

uncertainty and 
i
J  represents the index subset that 

contains the variables whose coefficients are subject to 
uncertainty. 

Constraint (3) can be rewritten by grouping the 
deterministic part and the uncertain part for the LHS of (3) 
as follows: 
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In the set induced robust optimization method, the aim is 
to find solutions that remain feasible for any x  in the 

given uncertainty set U  so as to immunize against 
infeasibility, that is, 
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Uncertainty Sets 

The formulation of robust counterpart optimization 
model is connected with the selection of the uncertainty 
set U . In the sequel, several different uncertainty sets are 
introduced. For the sake of simplicity, we eliminate the 
constraint index i  in the random vector x . 
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Polyhedral Uncertainty Set 
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“Box+Polyhedral” Uncertainty Set  
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“Box+Ellipsoidal+Polyhedral” Uncertainty Set  
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where Y , W , G  are the adjustable parameter controlling 
the size of the uncertainty sets. Note that the 



  

 

“box+ellipsoidal”, “box+polyhedral” and 
“box+ellipsoidal+polyhedral”  uncertainty sets are the 
intersection between ellipsoid and box, the intersection 
between the polyhedral and box, the intersection between 
the ellipsoidal, polyhedral and box set, respectively. 

As 1Y = , the above set (10) defines the intersection 
between interval and ellipsoid, which is referred as 
“interval+ellipsoidal” uncertainty set in this paper. This 
type of uncertainty set is important for bounded 
uncertainty since it makes no sense to construct an 
uncertainty set exceeding the bounded uncertain space. 
For this kind of uncertainty set, when 1W = , the ellipsoid 

is exactly inscribed by the box; when 
i
JW = , the 

ellipsoid is circumscribed by the box (i.e., the intersection 
between the box and ellipsoid is exactly the box). Figure 1 
illustrates the geometry of this uncertainty set for the case 
that the dimension of the uncertain parameter space is 2 

(i.e., | | 2
i
J = ). 

 
Figure 1. The “interval+ellipsoidal” uncertainty set 

 
As 1Y = , the above set (11) defines the intersection 

between the interval and polyhedral set, which is referred 
as “interval+polyhedral” uncertainty set. For this 
uncertainty set, when 1G = , the polyhedron is exactly 
inscribed by the box and the intersection between the 
polyhedron and the box is exactly the polyhedron; when 

i
JG = , the intersection between the polyhedron and the 

box is exactly the box, as shown in Figure 2. 

 
Figure 2. The “interval + ellipsoidal” uncertainty set 

Robust Counterpart Optimization Formulations 

For constraint (5), its robust counterpart optimization 
formulation (6) is derived for different uncertainty sets 
introduced above as follows. 
 
Property 1 If the set U  is the box uncertainty set (7), then 
the corresponding robust counterpart constraint (6) is 
equivalent to the following constraints:  
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Property 2 If the set U is the ellipsoidal uncertainty set 
(8), then the corresponding robust counterpart constraint 
(6) is equivalent to the following constraint:  

2 2ˆ
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Property 3 If the set U is the polyhedral uncertainty set 
(9), then the corresponding robust counterpart constraint 
(6) is equivalent to the following constraints  

ˆ ,
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Property 4 If the set U  is the “box+ellipsoidal” 
uncertainty set (10), then the corresponding robust 
counterpart constraint (6) is equivalent to the following 
constraints:  

2 2ˆ ˆ
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Notice that when 1Y =  (i.e., the set U  is defined as 
“interval+ellipsoidal” uncertainty set), the corresponding 
“interval+ellipsoidal” based robust counterpart 
optimization formulation reduces to the robust counterpart 
formulation proposed by Ben-Tal and Nemirovski (2000) 
(i.e., a special case of the combined adjustable box and 
adjustable ellipsoidal based robust counterpart). 
 
Property 5 If the set U is the “box+polyhedral” 
uncertainty set (11), then the corresponding robust 
counterpart constraint (6) is equivalent to the following 
constraints:  
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Notice that when 1Y =  (i.e., the set U  is defined as 
the “interval+polyhedral” uncertainty set), the 
corresponding robust counterpart optimization formulation 
reduces to the robust counterpart proposed by Bertsimas 
and Sim (2004).  
 
Property 6 If the set U  is the 
“interval+ellipsoidal+polyhedral” uncertainty set (12), 
then the corresponding robust counterpart constraint (6) is 
equivalent to the following constraints: 

2
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For detailed proofs for the above properties, the reader is 
directed to the paper (Li et al., 2011). 

Probabilistic Guarantee  

In the uncertainty set induced robust counterpart 
optimization framework, the uncertainty set is defined by 
the decision maker. If the uncertainty set covers the whole 
uncertain space containing all the possible realizations of 
uncertain parameters, then it is sure that the robust 
solution (if it exists) is feasible for any realizations of 
uncertainty (i.e. the probabilistic guarantee on constraint 
satisfaction is 1). However, in reality, the uncertainty set is 
not necessarily defined to cover the whole uncertain space 
because the decision maker might allow for a certain 
degree of constraint violation. For instance, it is 
impossible to define a finite set to cover unbounded 
uncertainty space. 

In those cases where the uncertainty set does not 
cover the whole uncertainty space, the following question 
naturally arises: Before we solve a robust optimization 
problem, what size of the uncertainty set is necessary to 
ensure that the degree of constraint violation does not 
exceed a certain level? Upon solution of the robust 
optimization problem, what is the degree of constraint 
violation? The answers to those questions are related to 
the probabilistic guarantee on the constraint satisfaction, 
or the upper bound on the probability of constraint 
violation.  

In general, two different types of methodologies can 
be used in evaluating the probabilistic guarantees.  The 
first type of methods derives the probability using the 
uncertainty set information before we solve the problem 
(or in other words, from the robust counterpart constraint 
since the robust counterpart is derived from the 
uncertainty set) and the bound is called a priori probability 
bound. The second method derives the probability directly 
from the robust counterpart optimization solution, which 
can also be viewed as checking the probability of 
constraint violation, and the bound is also called a 
posteriori bound. For both methodologies, different 
probability bounds can be derived with different levels of 
uncertainty information. 

For constraint (3), we define the probability of 
constraint violation as  

ˆPr
i

vio
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In this paper, we introduce the following probability 
bounds for robust counterpart constraint (13)-(17) without 
giving the proof, which can be referred from (Li & 
Floudas, 2011). Specifically, we study the case 1Y =  for 
robust counterpart optimization formulation (16) and (17). 
 
Lemma 1 For every robust counterpart constraint (13)-
(17), if it is satisfied, then the following relationship, 

which represents an upper bound on the probability that 
the original constraint is violated, holds: 

Pr
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where the parameter D  and d  are defined as follows: 
1) For box based robust counterpart (13) 

D = Y , 1,   
j i
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i
jj J
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2) For ellipsoid based robust counterpart (14)  
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3) For polyhedron based robust counterpart (15),   

D = G , 1,   
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4) For “interval+ellipsoidal” based robust counterpart (16) 
with 1Y = , 
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j Jd £ " Î , 2 1
i
jj J
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Î
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5) For “interval+polyhedral” based robust counterpart (17) 
with 1Y = ,   

D = G , 0 1,   
j i

j Jd£ £ " Î    (25) 

 

Theorem 1 If { }
ij j J

x
Î

 are independent and subject to a 

bounded and symmetric probability distribution supported 
on [-1,1]. Then: 
1) for the box, ellipsoidal, and “interval+ellipsoidal” 
uncertainty sets induced robust counterparts, we have the 
following bound B1: 

( )2

2expvioP D£ -     (26) 

2) for the box, ellipsoidal, polyhedral, 
“interval+ellipsoidal” and “interval+polyhedral” 
uncertainty sets induced robust counterparts, we have the 
following bound B2: 
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2
exp
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where D  represents the adjustable parameter for the 
different uncertainty sets as detailed in Lemma 1. 
 

A tighter bound ( , )
i

B J D  proposed by Bertsimas 

and Sim (2004) for the “interval+polyhedral” based robust 
counterpart is also valid for all the five robust counterparts 

since it is a valid upper bound for { }Pr
i
j jj J
x d

Î
³ Då  

and the condition in (25) is satisfied by the conditions in 
(21)-(24), thus we have the following bound B3 for the 
five robust counterparts: 
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Theorem 2 If { }
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symmetric probability distribution, then we have the 
following bound B4: 
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where D  represents the adjustable parameter for the 
different uncertainty sets as detailed in Lemma 1. 
 
The above bounds are a priori probabilistic guarantees 
derived from uncertainty set information. We can also 
evaluate the a posteriori probabilistic guarantees based on 
the robust counterpart optimization solutions. 
 

Theorem 3 If the uncertain parameters { }
ij j J

x
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independent and subject to a bounded probability 
distribution supported on [-1,1], and the robust counterpart 

solution is *x  with *( ) 0
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Theorem 4 If the uncertain parameters { }
ij j J

x
Î

 are 

independent and the robust counterpart solution is *x , 
then for any 0q > , we have the following bound B6: 
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Case Study 

In this section, we compare the solution of the 
different robust counterpart optimization models and also 
the tightness of the different probability bounds through 
the following case study. 
 
Example 1 Consider the following optimization problem 
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In the above problem, 
1 2
,a a   are uncertain coefficients and 

they are defined by ˆ ,   1,2
j j j j
a a a jx= + = , where 

1 2
[  ] [10 20]a a = , ˆ 0.1

j j
a a= , and 

1 2
,x x  are independent 

uncertain parameters. 
Five different robust counterpart formulations are 

solved for different D  values which satisfy the 

relationship: 
i
JG = Y , 

i
JW = Y , and the results are 

shown in Figure 3. Comparing the three dashed lines 
which represent the results of the box, ellipsoidal and 
polyhedral set based solutions, for every Y  value, the box 
set based solution is always better (larger for 

maximization problem in this case) than the ellipsoidal set 
based solution and the polyhedral set based solution is the 
worst. Comparing the red and blue solid line representing 
the “interval+ellipsoidal” and “interval+polyhedral” set 
based solutions, the red line is always above the blue line 
until the two lines overlap, this shows that the 
“interval+ellipsoidal” set induced model is less 
conservative than the “interval+polyhedral” set induced 
model from the worst case scenario point of view. 
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Figure 3. Robust solution comparison 
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Figure 4. Probability bounds’ tightness 

comparison 
 
Different probability bounds are plotted in Figure 4. 

Note that B5 and B6 and obtained by first solving the 
robust optimization problem and then evaluating the 
probability bounds. Comparing the probability bounds B1, 
B2, B3, which do not use the probability distribution 
function or the robust solution, it is seen that for the 
ellipsoidal and "interval+ellipsoidal" model, bound B1 is 
the tightest bound. For polyhedral and 
"interval+polyhedral" model, bound B3 is the tightest 
bound. Comparing the probability bound B4 and the 
probability bound B6, although both of them use the 
probability distribution information of the uncertainty, 
bound B6 is tighter than B4 since B6 further uses the 
specific robust counterpart solution to evaluate the 
probability of constraint violation. Comparing the 
probability bound B5 and B6, B6 is tighter than B5 since it 



  
 

 

takes into consideration the detailed probability 
distribution information of the uncertainty. Furthermore, 
bound B6 is applicable to not only bounded uncertainties 
but also unbounded general uncertainties. On the other 
hand, bound B5 is only valid for bounded uncertainty.  

In the process of assigning a parameter value for a 
specific uncertainty set, the above different probability 
bounds provide us the capability to select the tightest 
possible bound expression so as to define the size of the 
uncertainty set better and to avoid overly conservative 
solutions. 

Summary 

Set induced robust counterpart optimization 
techniques are studied in this paper. Several important 
uncertainty sets are studied, including those studied in the 
literature and also several new ones proposed in this work. 
New uncertainty sets such as the adjustable box, 
ellipsoidal, polyhedral and “interval + ellipsoidal + 
polyhedral” set are introduced and their relationship with 
some well known uncertainty sets presented in the 
literature is discussed. The relationships between those 
different uncertainty sets are discussed, and useful insights 
are gained for their corresponding robust counterpart 
models. We also derive probability bounds for constraint 
violation of the robust solution for five different set 
induced robust counterpart formulations. Probabilistic 
guarantees are derived for both bounded and unbounded 
uncertainty, with and without detailed probability 
distribution information. Numerical study is performed to 
illustrate the tightness of different probability bounds and 
the conservatism of different robust formulations. The 
insights gained provide the basis for the application of the 
robust counterpart optimization in practical problems. 
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