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Abstract 

The Automated Wet-etch Station (AWS) is one of the most critical stages of a modern semiconductor 
manufacturing system (SMS), which has to simultaneously deal with many complex constraints and 
limited resources. Due to its inherent complexity, real-world automated wet-etch station scheduling 
problems are very difficult to solve using traditional mathematical formulations. Thus, heuristic, meta-
heuristics and simulation-based methods have been reported in literature to provide feasible solutions 
with reasonable CPU times.  
This work presents a novel hybrid MILP-based decomposition strategy that combines the benefits of a 
rigorous MILP (Mixed Integer Linear Programming) continuous-time formulation with the flexibility of 
dynamic heuristic procedures. The schedule generated provides near-optimal dynamic solutions to 
challenging industrial-sized automated wet-etch station scheduling problems with moderate 
computational cost. Also, this methodology provides more than a 10% of improvement in comparison 
with the best results reported in literature for the most complex problem instances analyzed. 
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The solution of real-world scheduling problems has 
greatly attracted the attention of the research and industrial 
community for many years. In particular, the permutation 
flowshop sequencing problem (PFSP) is one of the most 
widely known production scheduling problems in 
literature, in which a set of jobs (i=1,2,…,N) has to be 
processed on every machine j, following a predefined 
sequence, as illustrated in Figure 1. 

In this kind of problems, each job is performed 
through a sequence of units j=1,2,3,…,M, during a fixed 
processing time, where every machine j can only perform 
one job at a time, i.e. it is a unary resource where job 
preemptions are not allowed. Permutation flowshop 
sequencing problems are usually focused on finding the 

best processing job sequence that minimizes the 
completion time of the last job in the schedule, which is 
widely known as the makespan (MK) criterion.  

 

 
 

Figure 1. Permutation Flowshop Sequencing                  
Problem Scheme (PFSP) 



  
 

This work is focusing in a critical process in the 
semiconductor manufacturing industry, commonly known 
as Automated Wet-Etch Station (AWS). Flowshop process 
operations in the AWS are characterized by a major 
increase in complexity compared to the original PFSP. The 
automated wet-etch station is a complex operating system 
in which many process constraints and limited resources 
must be simultaneously considered. This station involves a 
series of successive stages of chemical and water baths and 
shared automated lot transfer devices, which have to be 
perfectly coordinated in order to ensure that mixed 
intermediate storage (MIS) policies, such as zero-wait 
(ZW) and non-intermediate storage (NIS), are strictly 
satisfied in every bath (Ku and Karimi, 1990). Thus, the 
efficient and coordinated operation of this stage will 
reduce the total processing time required to complete all 
the jobs in the semiconductor production system, 
providing, at the same time, a better utilization of critical 
limited resources. 

Due to the nature of the binary sequencing decisions 
needed to achieve the optimal solution, this kind of 
flowshop sequencing problems becomes an inherently NP-
hard problem. Moreover, industrial-scale AWS scheduling 
problems have been difficult to solve up to optimality in a 
reasonable computational time using traditional solvers 
and methods. Consequently, the application of exact 
methods, such as Mixed Integer Linear Programming 
(MILP) approaches, has become prohibitive for these 
kinds of problems, and its applicability has been restricted 
to relatively small-sized cases (see Ruiz and Maroto, 2005 
and Méndez et al., 2006). 

Over the past years, different contributions have been 
reported to achieve suitable solutions to challenging AWS 
scheduling problems with an acceptable computational 
effort. Most of these approaches were based on heuristic 
and meta-heuristic methodologies (Ruiz and Maroto, 
2005), avoiding the utilization of mixed integer 
mathematical formulations in large-sized cases. Geiger et 
al. (1997) were the first ones in developing a heuristic 
algorithm based on Tabu Search (TS), with the main goal 
of finding a near-optimal production schedule to the AWS. 
Subsequently, Bhushan and Karimi (2003) introduced a 
slot-based MILP mathematical model to solve short-term 
scheduling problems, minimizing the makespan in an 
AWS station. Later, Bhushan and Karimi (2004) evaluated 
the proper combination of different algorithms and meta-
heuristics such as Simulated Annealing (SA) and Geiger’s 
Tabu Search procedures to identify the best strategy for 
optimizing operations in the AWS. Most recent 
approaches to address the resource-constrained flowshop 
scheduling problem of the AWS were developed based on 
a Constraint Programming (CP) formulation (Zeballos, 
Castro and Méndez, 2011) and a MILP continuous-time 
mathematical model (Aguirre, Méndez and Castro, 2011). 
The former contribution combines a CP model that 
handles the complex production restrictions imposed by 
AWS station with an efficient domain-search strategy to 
reduce the high combinatorial complexity of the model. 

The latter approach relies on a robust MILP model for the 
scheduling of AWS operations (Aguirre, Méndez and 
Castro, 2011). This method provides an optimal solution 
for job sequence and timing and a detailed activity 
program for the robot with the aim to minimize the 
makespan criterion. 

In order to exploit the inherent benefits of these 
techniques and the robustness of exact methods, a novel 
hybrid two-stage MILP-based decomposition strategy is 
proposed here to provide an efficient and near-optimal 
solution to complex industrial-scale flowshop scheduling 
problems with modest computational effort. The solution 
strategy combines heuristic techniques with a rigorous 
mathematical formulation, making it possible to generate 
and gradually improve a solution, in an iterative way. This 
methodology joins the advantages of a rigorous MILP 
continuous-time formulation with the flexibility of 
heuristic procedures, such as decomposition-aggregation 
and improvement-based techniques. Additional 
information of these methods are presented in Méndez et 
al. (2006) and in Castro et al. (2009).  

Problem Statement 

The automated wet-etch operation is carried out in 
very complex station in the wafer fabrication process of 
semiconductor manufacturing industries. It performs the 
cleaning of semiconductor wafer lots by using a sequence 
of immersion baths. The automated wet-etch station is 
composed by several types of successive immersion baths 
“j”, chemical (jodd) and water baths (jeven) arranged in an 
alternate way. In chemical baths (jodd=1,3,5,…,M-1), 
wafers are etched during a predefined period of time to 
then being purged in the de-ionized water in rinse baths 
(jeven=2,4,6,…,M). The exposure time on chemical baths 
must be fulfilled strictly, because wafers may be easily 
damaged by the overexposure to reagents. In water baths, 
a minimum residence time is only enforced. This kind of 
operational constraints are commonly known as Zero-Wait 
(ZW) and Local Storage (LS) policies (Ku and Karimi, 
1990; Méndez et al., 2006). Thus, AWS provides a 
complex manufacturing environment in which Mixed 
Intermediate Storage policies (MIS) must be ensured 
(Bhushan and Karimi, 2003). 

This station may have different lineal configurations 
of immersion baths. The structure of the common AWS is 
composed by an Input Buffer (j=0) and an Output Buffer 
(j=M+1) in both extreme points and a series of immersion 
baths are arranged between these points. These baths are 
typically structured in a row in which the first bath is 
chemical and the last one is a water bath (see Figure 2). 

In addition, automated material-handling devices, like 
robots, are used as shared resources for transferring wafer 
lots between consecutive baths (Aguirre, Méndez and 
Castro, 2011). The scheduling problem of these robots in 
the AWS has adopted increasing importance in real-life 
operations in recent years. Strict conditions must be 
enforced to provide a feasible activity program of each 



  

robot in the system: a) every robot should be used as a 
unary shared resource for transferring lots between baths; 
b) each transfer task has a fixed transportation time and the 
robots cannot delay the delivery task more than this known 
time; c) robots only can transfer one wafer lot at a time, to 
guarantee the non-intermediate storage policy (NIS) 
followed in the system and; d) robots collisions and 
deadlocks are undesirable conditions that have to be 
avoided in the system.  

 

Figure 2. Automated Wet-etch Station (AWS) 
process scheme 

The problem to be faced in this work corresponds to 
the scheduling of a set of wafer lots or jobs, from 
i=1,2,…,N, in M stages or baths, in a serial flowshop 
multiproduct batch process with strict storage policies (SPj  

= NIS,LS,ZW) in every stage and a single shared resource 
(r = Robot) with finite capacity for the material movement, 
as depicted in the Gantt Chart shown in Fig. 3. 

  

 

Figure 3. Flowshop AWS scheduling problem 
for N jobs in M baths in a single robot 

Next section describes the development and the 
application of a hybrid MILP-based decomposition 
strategy to the AWS scheduling problem in industrial 
applications. In turn, the best job sequence and timing for 
the processing operations as well as the detailed pick-up 
and delivery activity program for the robot are determined 
with the main objective of minimizing the total time 
required to perform all the wafer lots in the system (MK). 

The MILP mathematical Model 

In this section, a modified version of a previous 
continuous-time formulation developed by Aguirre, 
Méndez and Castro (2011), which relies on the general 

precedence concept is introduced. The model used here 
incorporates additional constraints that permit to 
decompose the whole problem into different independents 
sub-problems that can be solved in a sequential manner. 
Each sub-problem corresponds to a simplified scheduling 
problem, where a proper MILP formulation is developed 
for decision-making on timing (Eqs. 1-4), job sequencing 
(Eqs. 5-6) and transfer operations (Eqs. 7-8). Specific 
binary variables (X(i,i') and Y(i,j,i',j'))  for job's sequencing 
and transfer sequencing decisions and continuous 
variables (Ts(i,j), Tf(i,j)) for the start time and the completion 
time of a job i in a bath j, are used in the model to achieve 
a correct synchronization of processing and transportation 
activities. Timing information for these activities are 
provided by parameters t(i,j) and πj, which represent the 
processing time of job i in a bath j and the transfer time of 
every job defined between consecutive baths j-1 and j. 
Also, big-M constraints are represented with a large 
parameter MT in equations (5) to (8). 

Job's and transfer's sequencing-timing constraints for the 
full-space AWS scheduling problem (Aguirre et al., 2011) 
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Additional timing constraints for partial predefined 
processing sequence.  

Let’s suppose that the position in the processing sequence 
of a given job i is known beforehand and assume that 
Position(i) defines the order of a job i in the current 
processing sequence. Then, we can predefine and fix the 
value of the sequencing variables X related to every pair of 
jobs that have been already sequenced in the system. The 



  
 
corresponding value of the sequencing variable X(i,i’) can 
be easily determined as indicated in equation (9). 
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Therefore, if jobs i and i’ are already scheduled and 
Position(i’) < Position(i), job i’ will be processed before 
job i in the production sequence, i.e. X(i,i’)=1 in equations 
(5) and (6). On the other hand, if Position(i’) > Position(i), 
then X(i,i’)=0 and job i’ will be executed after job i in the 
processing sequence. Anyway, if we do not know a prior 
information about the position of jobs i and i’ in the job’s 
sequence then variable X(i,i’) will adopt values 0-1 
depending on the sequencing and timing decisions of the 
model provided in equations (5) and (6). 

Additional sequencing transfers constraints for the partial 
reduction of the problem size.  

It is easy to demonstrate that not all pair of transfers 
needs to be explicitly sequenced in the system. For 
example, for pair of transfers (i,j)-(i’,j’) and (i,j)-(i’,j’’) 
that satisfies the condition stating that Position(i’) > 
Position(i)  in the recipe order and  j’ ≥ j+1 or  j-
[Position(i’)-Position(i)] ≤  j’’, then we can assure that 
transfer (i,j) will be always executed before than both 
transfers (i’,j’) and (i’,j’’) respectively. In contrast, for 
transfers (i,j)-(i’’,j’) and (i,j)-(i’’,j’’), if Position(i’’) < 
Position(i)  in the recipe order and j+[Position(i)-
Position(i’’)] ≥  j’ or  j’’≤  j-1, then transfers (i,j) will be 
executed always after transfer (i’’,j’) and (i’’,j’’) in the 
transfer sequence (see Fig. 4). However, if any of these 
cases are applied then the value of the sequencing transfer 
variable Y(i,j,i’,j’) will be determined by the model in 
equations (7) and (8) by adopting values 0-1 respectively. 
In consequence, the behavior of the variable Y(i,j,i’,j’) for any 
pair of transfer (i,j) and (i’,j’), can be easily predetermined 
as stated by equation (10). 
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To incorporate the knowledge about transfer 
sequencing variables in the model it is only necessary to 
add the equation expressed below (Eq. 11) in the domain 
of equations (7) and (8) related to every pair of transfers 
satisfying the conditions stated above (see Eqs. 12-13). 
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Figure 4. Pre-sequenced transfers decisions 

Also, another way to reduce much more the search 
space of the problem without losing good quality solutions 
is trying to fix certain transfer decisions, of the already 
inserted jobs in the system, by applying the following 
expression (see Eq. 14). As it is presented before this 
condition can be incorporated into the model in equations 
(12) and (13) by the parameter V(i,j,i’,j’) expressed in 
equation (15). Thus, tts(i,j) provides an additional 
information to the model representing the initial time of 
the already inserted transfer (i,j) in the system.  
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Last equations demonstrate that it is possible to reduce 
the combinatorial complexity of the whole system, 
eliminating unnecessary model decisions that can be 
defined beforehand. But, we can also improve the model 
convergence by exploiting the particular problem structure 
without any prior knowledge about the order of jobs in the 
system. This is done by combining the sequencing variable 
X(i,i’) for jobs with the sequencing variable Y(i,j,i’,j’) for 
transfers in one expression (see Eqs. 16-17). 
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Objective Function.  

The objective function aims at generating a schedule 
with the minimum total time required to complete all the 
jobs in the system. This criterion is defined by a 
continuous variable called makespan (MK) (see Eq. 18). 
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Hybrid MILP-based decomposition strategy 

The procedure introduced in this work relies on the 
MILP model developed by Aguirre, Méndez and Castro 
(2011), the dynamic and reactive scheduling methods and 
the heuristic reduction techniques, such as decomposition-
aggregation techniques and improvement-based 
techniques, summarized in a review paper presented by 
Méndez et al. (2006) and in Castro et al. (2009). Also, 
some concepts presented in Kopanos et al. (2010) 
regarding a two-stage decomposition solution strategy for 
solving real-world scheduling problems in multi-product 
multi-stage batch process, are also considered in our work. 

The proposed hybrid algorithm aims towards 
achieving the whole solution of the original AWS 
scheduling problem in a sequential manner. In this 
procedure, a heuristic-based two-stage decomposition 
strategy divides the whole problem into two sub-problems 
that must be iteratively solved. In the first stage, the best 
permutation job sequence p is determined, ignoring the 
limited transportation resources, whereas in the second 
stage the job’s transfers schedule is provided in order to 
generate the detailed activity program for the robot, based 
on the previous predefined production sequence (Fig. 5). 

 

 

Figure 5. Hybrid decomposition strategy 

Thus, a reduced size problem is faced in every stage 
by using a multi-stage optimization-based decomposition 
strategy.  Therefore, the proposed solution strategy 
consists on a constructive step followed by a local 
improvement step, in where a proper continuous-time 

MILP formulation is developed to reach an optimal 
schedule solution in each stage. 

The constructive step method is a decomposition-
aggregation technique, in which an initial solution is 
generated in an iterative way by inserting, one-by-one, the 
jobs from the set of non-sequenced jobs. In the 
constructive step, a feasible production schedule p is 
generated in an iterative form, by selecting one job at a 
time by following a heuristic criterion. The insertion of the 
selected job is driven by the MK criterion; taking into 
account the already inserted jobs. For this, a reduced MILP 
model is solved by fixing the sequencing decisions for the 
already inserted jobs in the system (see Fig. 5 and Table 
1). After the constructive step, a feasible solution of the 
production schedule of the system is provided. 

In the improvement step, the feasible solution 
previously obtained is progressively enhanced by selecting 
a job to be taken out from the schedule, to be then 
reinserted in the schedule of the remaining non-released 
jobs. A suitable MILP is solved by choosing the job to be 
rescheduled in each iteration (see Fig. 5 and Table 1). 

Table 1. MILP-based models for every step of the 
solution strategy proposed 

STEP MILP-based Model 

Constructive Job Schedule Equations (1-6, 9 & 18) 

Improvement Job Schedule Equations (1-6, 9 & 18) 

Constructive Transfer Schedule Equations (1-15 & 18) 

Improvement Transfer Schedule Equations (1-18) 

Results 

In this section, some different examples are proposed 
to illustrate the behaviour of the hybrid solution strategy 
proposed above. These examples are derived from data 
provided by Bhushan and Karimi (2004), also appeared in 
Aguirre, Méndez and Castro (2011), regarding processing 
and transfer times. The problems tested are from different 
MxN configuration of the first M baths and N jobs in the 
AWS station. These settings determine the problem size, 
which is closely linked with the model structure, according 
to all decisions and restrictions involved (see Table 2). 

Table 2. Comparison of different models statistics in real-life problem instances 

Baths x Jobs ORM-MILP ORM-CP BK RCURM-MILP ORM-Hybrid 

MxN BV CV MK CPUs CV MK CPUs MK BV CV MK CPUs MK CPUs 

12x8 4396 201 170.6a 180 - - - - 4368 229 171.3a 1.4 170.6a 13.61 

12x10 7056 251 202.2a 3600d 811 199b 3440d - 7020 296 197.2a 7.8 198.2a 24.42 

12x12 10362 301 222a 3600d - - - - 10296 367 215.8a 2655 222.6a 100.8 

12x15 16485 376 NFSa 3600d 1216 273.2b 949d - 16380 481 NFSa 3600d 268.2a 866.8 

12x20 29830 501 NFSa 3600d - - - - 29640 691 NFSa 3600d 330.6a 3600d 

12x25 47100 626 NFSa 3600d 2026 443.4b 493.37d 478.6c 46800 926 NFSa 3600d 396.3a 3600d 
BV = Binary Variables. CV = Continuous Variables. MK = Makespan. NFS = No feasible solution found. CPUs = Computational time in seconds. 
Results obtained by using: (a) GAMS with Gurobi 6.0 in an Intel PC Core 2 Quad parallel processing in 4 threads, (b) ILOG with CPLEX 9.1 in an 
AMD Athlon 64 X2 Dual Core 2.2GHz processor with 1GB of RAM. (c) No time reported. (d) Termination criterion (3600sec.). 



  
 
 

Table 2 describes the principal results obtained by 
different solution approaches for many real-life scheduling 
problems presented above. The comparison comprises an 
full-space mathematical formulation (MILP) for the entire 
problem ORM (One Robot Model), a two-stage MILP-
based approach called RCURM (Resource Constrained 
Unlimited Robot Model) and the ORM model by using 
both Constraint Programming procedure (CP) from 
Zeballos et al., (2011) and our Hybrid MILP-based 
solution strategy. The RCURM approach was introduced 
before by Bhushan and Karimi (2003). This two-stage 
procedure is based on: i) solve the first model, called URM 
(Unlimited Robot Model), for the original problem without 
robot restrictions and then ii) solve the second model, 
which was named ORM (One Robot Model), by 
introducing robot restrictions in a single robot. The 
solutions reported in Table 2 demonstrate that our 
proposed approach provides better results than full-space 
ORM (MILP/CP) models and RCURM-MILP procedure 
with shortest CPU time. 

For industrial-sized cases, the exact methods turned 
out to be unmanageable due to the high number of binary 
decisions. So, for this kind of problems, both the heuristic-
based approaches and the hybrid approaches are needed.  

In the last case, the solution of the heuristic approach 
developed by Bhushan and Karimi (2004), here named 
BK, has been improved by the CP approach (Zeballos et 
al., 2011) and also by the hybrid solution strategy 
proposed in this work. The solution found by the CP 
approach is better than the best solution in 7.4%. Finally, 
our solution approach can even improve the CP solution of 
443.4 units, obtaining an important reduction in the MK 
(>10%) with an acceptable computational effort 
(3600sec.). As a conclusion, our method is comparable 
with the best approaches existing in literature, providing 
even better results for large-size problems with a 
reasonable computational cost. 

Conclusions 

A novel hybrid decomposition strategy based on a 
MILP continuous-time formulation has been presented to 
solve large-scale scheduling problems arising in AWS of 
the semiconductor industry. In contrast to typical 
scheduling solution techniques, this strategy lies on an 
exact method to sequentially generate and improve a 
detailed schedule of production activities and transfer 
operations, assuring the stringent intermediate storage 
policies of the system. 

Furthermore, it has been demonstrated that the 
proposed model can effectively solve the whole problem 
by using the proposed MILP-based decomposition 
technique, in which the entire problem is divided into two 
sub-problems and the results of the first one are used to 
solve the second one in a sequential manner. In this case, 
the schedule of production activities is first generated to 
then incorporate the detailed schedule of transfer 

operations, fixing the previously defined production 
sequence. Also, it has been clearly illustrated that each 
sub-problem can be solved with a two-stage 
decomposition strategy, where the solution is generated, 
and then gradually improved, in an iterative way, by using 
a simplified MILP-based algorithm in each stage.  

The main contribution of this work is to provide a 
robust and, at the same time, very flexible strategy for the 
solution of large-scale problems in a sequential way, by 
using a proper combination of heuristic procedures and 
exact mathematical formulations. This methodology will 
be able to face complex operative decisions on multi-
product multi-stage industrial processes with shared 
resources and complex production constraints. 
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