

AN IMPROVEMENT-BASED MILP OPTIMIZATION
APPROACH TO COMPLEX AWS SCHEDULING

1Adrián M. Aguirre, 1Carlos A. Méndez*, 2Gloria Gutierrez and 2Cesar De Prada
1INTEC (UNL-CONICET), Güemes 3450, 3000 Santa Fe, Argentina

2Universidad de Valladolid, c/ Real de Burgos s/n, 47011 Valladolid, Spain

Abstract

The Automated Wet-etch Station (AWS) is one of the most critical stages of a modern semiconductor
manufacturing system (SMS), which has to simultaneously deal with many complex constraints and
limited resources. Due to its inherent complexity, real-world automated wet-etch station scheduling
problems are very difficult to solve using traditional mathematical formulations. Thus, heuristic, meta-
heuristics and simulation-based methods have been reported in literature to provide feasible solutions
with reasonable CPU times.
This work presents a novel hybrid MILP-based decomposition strategy that combines the benefits of a
rigorous MILP (Mixed Integer Linear Programming) continuous-time formulation with the flexibility of
dynamic heuristic procedures. The schedule generated provides near-optimal dynamic solutions to
challenging industrial-sized automated wet-etch station scheduling problems with moderate
computational cost. Also, this methodology provides more than a 10% of improvement in comparison
with the best results reported in literature for the most complex problem instances analyzed.

Keywords

Hybrid decomposition approach, MILP-based strategies, Large-scale scheduling problems,
Semiconductor Manufacturing System (SMS), Wafer fabrication, Modeling and Optimization.

Introduction

*email address: cmendez@intec.unl.edu.ar

The solution of real-world scheduling problems has
greatly attracted the attention of the research and industrial
community for many years. In particular, the permutation
flowshop sequencing problem (PFSP) is one of the most
widely known production scheduling problems in
literature, in which a set of jobs (i=1,2,…,N) has to be
processed on every machine j, following a predefined
sequence, as illustrated in Figure 1.

In this kind of problems, each job is performed
through a sequence of units j=1,2,3,…,M, during a fixed
processing time, where every machine j can only perform
one job at a time, i.e. it is a unary resource where job
preemptions are not allowed. Permutation flowshop
sequencing problems are usually focused on finding the

best processing job sequence that minimizes the
completion time of the last job in the schedule, which is
widely known as the makespan (MK) criterion.

Figure 1. Permutation Flowshop Sequencing
Problem Scheme (PFSP)

This work is focusing in a critical process in the
semiconductor manufacturing industry, commonly known
as Automated Wet-Etch Station (AWS). Flowshop process
operations in the AWS are characterized by a major
increase in complexity compared to the original PFSP. The
automated wet-etch station is a complex operating system
in which many process constraints and limited resources
must be simultaneously considered. This station involves a
series of successive stages of chemical and water baths and
shared automated lot transfer devices, which have to be
perfectly coordinated in order to ensure that mixed
intermediate storage (MIS) policies, such as zero-wait
(ZW) and non-intermediate storage (NIS), are strictly
satisfied in every bath (Ku and Karimi, 1990). Thus, the
efficient and coordinated operation of this stage will
reduce the total processing time required to complete all
the jobs in the semiconductor production system,
providing, at the same time, a better utilization of critical
limited resources.

Due to the nature of the binary sequencing decisions
needed to achieve the optimal solution, this kind of
flowshop sequencing problems becomes an inherently NP-
hard problem. Moreover, industrial-scale AWS scheduling
problems have been difficult to solve up to optimality in a
reasonable computational time using traditional solvers
and methods. Consequently, the application of exact
methods, such as Mixed Integer Linear Programming
(MILP) approaches, has become prohibitive for these
kinds of problems, and its applicability has been restricted
to relatively small-sized cases (see Ruiz and Maroto, 2005
and Méndez et al., 2006).

Over the past years, different contributions have been
reported to achieve suitable solutions to challenging AWS
scheduling problems with an acceptable computational
effort. Most of these approaches were based on heuristic
and meta-heuristic methodologies (Ruiz and Maroto,
2005), avoiding the utilization of mixed integer
mathematical formulations in large-sized cases. Geiger et
al. (1997) were the first ones in developing a heuristic
algorithm based on Tabu Search (TS), with the main goal
of finding a near-optimal production schedule to the AWS.
Subsequently, Bhushan and Karimi (2003) introduced a
slot-based MILP mathematical model to solve short-term
scheduling problems, minimizing the makespan in an
AWS station. Later, Bhushan and Karimi (2004) evaluated
the proper combination of different algorithms and meta-
heuristics such as Simulated Annealing (SA) and Geiger’s
Tabu Search procedures to identify the best strategy for
optimizing operations in the AWS. Most recent
approaches to address the resource-constrained flowshop
scheduling problem of the AWS were developed based on
a Constraint Programming (CP) formulation (Zeballos,
Castro and Méndez, 2011) and a MILP continuous-time
mathematical model (Aguirre, Méndez and Castro, 2011).
The former contribution combines a CP model that
handles the complex production restrictions imposed by
AWS station with an efficient domain-search strategy to
reduce the high combinatorial complexity of the model.

The latter approach relies on a robust MILP model for the
scheduling of AWS operations (Aguirre, Méndez and
Castro, 2011). This method provides an optimal solution
for job sequence and timing and a detailed activity
program for the robot with the aim to minimize the
makespan criterion.

In order to exploit the inherent benefits of these
techniques and the robustness of exact methods, a novel
hybrid two-stage MILP-based decomposition strategy is
proposed here to provide an efficient and near-optimal
solution to complex industrial-scale flowshop scheduling
problems with modest computational effort. The solution
strategy combines heuristic techniques with a rigorous
mathematical formulation, making it possible to generate
and gradually improve a solution, in an iterative way. This
methodology joins the advantages of a rigorous MILP
continuous-time formulation with the flexibility of
heuristic procedures, such as decomposition-aggregation
and improvement-based techniques. Additional
information of these methods are presented in Méndez et
al. (2006) and in Castro et al. (2009).

Problem Statement

The automated wet-etch operation is carried out in
very complex station in the wafer fabrication process of
semiconductor manufacturing industries. It performs the
cleaning of semiconductor wafer lots by using a sequence
of immersion baths. The automated wet-etch station is
composed by several types of successive immersion baths
“j”, chemical (jodd) and water baths (jeven) arranged in an
alternate way. In chemical baths (jodd=1,3,5,…,M-1),
wafers are etched during a predefined period of time to
then being purged in the de-ionized water in rinse baths
(jeven=2,4,6,…,M). The exposure time on chemical baths
must be fulfilled strictly, because wafers may be easily
damaged by the overexposure to reagents. In water baths,
a minimum residence time is only enforced. This kind of
operational constraints are commonly known as Zero-Wait
(ZW) and Local Storage (LS) policies (Ku and Karimi,
1990; Méndez et al., 2006). Thus, AWS provides a
complex manufacturing environment in which Mixed
Intermediate Storage policies (MIS) must be ensured
(Bhushan and Karimi, 2003).

This station may have different lineal configurations
of immersion baths. The structure of the common AWS is
composed by an Input Buffer (j=0) and an Output Buffer
(j=M+1) in both extreme points and a series of immersion
baths are arranged between these points. These baths are
typically structured in a row in which the first bath is
chemical and the last one is a water bath (see Figure 2).

In addition, automated material-handling devices, like
robots, are used as shared resources for transferring wafer
lots between consecutive baths (Aguirre, Méndez and
Castro, 2011). The scheduling problem of these robots in
the AWS has adopted increasing importance in real-life
operations in recent years. Strict conditions must be
enforced to provide a feasible activity program of each

robot in the system: a) every robot should be used as a
unary shared resource for transferring lots between baths;
b) each transfer task has a fixed transportation time and the
robots cannot delay the delivery task more than this known
time; c) robots only can transfer one wafer lot at a time, to
guarantee the non-intermediate storage policy (NIS)
followed in the system and; d) robots collisions and
deadlocks are undesirable conditions that have to be
avoided in the system.

Figure 2. Automated Wet-etch Station (AWS)
process scheme

The problem to be faced in this work corresponds to
the scheduling of a set of wafer lots or jobs, from
i=1,2,…,N, in M stages or baths, in a serial flowshop
multiproduct batch process with strict storage policies (SPj

= NIS,LS,ZW) in every stage and a single shared resource
(r = Robot) with finite capacity for the material movement,
as depicted in the Gantt Chart shown in Fig. 3.

Figure 3. Flowshop AWS scheduling problem
for N jobs in M baths in a single robot

Next section describes the development and the
application of a hybrid MILP-based decomposition
strategy to the AWS scheduling problem in industrial
applications. In turn, the best job sequence and timing for
the processing operations as well as the detailed pick-up
and delivery activity program for the robot are determined
with the main objective of minimizing the total time
required to perform all the wafer lots in the system (MK).

The MILP mathematical Model

In this section, a modified version of a previous
continuous-time formulation developed by Aguirre,
Méndez and Castro (2011), which relies on the general

precedence concept is introduced. The model used here
incorporates additional constraints that permit to
decompose the whole problem into different independents
sub-problems that can be solved in a sequential manner.
Each sub-problem corresponds to a simplified scheduling
problem, where a proper MILP formulation is developed
for decision-making on timing (Eqs. 1-4), job sequencing
(Eqs. 5-6) and transfer operations (Eqs. 7-8). Specific
binary variables (X(i,i') and Y(i,j,i',j')) for job's sequencing
and transfer sequencing decisions and continuous
variables (Ts(i,j), Tf(i,j)) for the start time and the completion
time of a job i in a bath j, are used in the model to achieve
a correct synchronization of processing and transportation
activities. Timing information for these activities are
provided by parameters t(i,j) and πj, which represent the
processing time of job i in a bath j and the transfer time of
every job defined between consecutive baths j-1 and j.
Also, big-M constraints are represented with a large
parameter MT in equations (5) to (8).

Job's and transfer's sequencing-timing constraints for the
full-space AWS scheduling problem (Aguirre et al., 2011)

),(),(),(jijiji tTsTf 

 oddJjNi  ,...1 ZWSPj ,
 (1)

),(),(),(jijiji tTsTf 

 evenJjNi  ,...1 LSSPj ,
 (2)

jjiji TfTs  )1,(),(
)1(:,...1  jJjNi NISSPj ,

 (3)

jjiTs ),(1,...1  jNi (4)
)1()',()1,'(),(iiTjjiji XMTsTs   

 JjiiIii ),'(:', (5)

)',()1,(),'(iiTjjiji XMTsTs   

 JjiiIii ),'(:', (6)
)1()',',,(),()','(jijiTjjiji YMTsTs  

)1'1'(:',),'(:',  jjjjJjjiiIii

 (7)

)',',,(')','(),(jijiTjjiji YMTsTs  
)1'1'(:',),'(:',  jjjjJjjiiIii

 (8)

Additional timing constraints for partial predefined
processing sequence.

Let’s suppose that the position in the processing sequence
of a given job i is known beforehand and assume that
Position(i) defines the order of a job i in the current
processing sequence. Then, we can predefine and fix the
value of the sequencing variables X related to every pair of
jobs that have been already sequenced in the system. The

corresponding value of the sequencing variable X(i,i’) can
be easily determined as indicated in equation (9).














otherwise

iPositioniPositionif

iPositioniPositionif

X ii

10

)]()'([0

)]()'([1

)',(

 (9)

Therefore, if jobs i and i’ are already scheduled and
Position(i’) < Position(i), job i’ will be processed before
job i in the production sequence, i.e. X(i,i’)=1 in equations
(5) and (6). On the other hand, if Position(i’) > Position(i),
then X(i,i’)=0 and job i’ will be executed after job i in the
processing sequence. Anyway, if we do not know a prior
information about the position of jobs i and i’ in the job’s
sequence then variable X(i,i’) will adopt values 0-1
depending on the sequencing and timing decisions of the
model provided in equations (5) and (6).

Additional sequencing transfers constraints for the partial
reduction of the problem size.

It is easy to demonstrate that not all pair of transfers
needs to be explicitly sequenced in the system. For
example, for pair of transfers (i,j)-(i’,j’) and (i,j)-(i’,j’’)
that satisfies the condition stating that Position(i’) >
Position(i) in the recipe order and j’ ≥ j+1 or j-
[Position(i’)-Position(i)] ≤ j’’, then we can assure that
transfer (i,j) will be always executed before than both
transfers (i’,j’) and (i’,j’’) respectively. In contrast, for
transfers (i,j)-(i’’,j’) and (i,j)-(i’’,j’’), if Position(i’’) <
Position(i) in the recipe order and j+[Position(i)-
Position(i’’)] ≥ j’ or j’’≤ j-1, then transfers (i,j) will be
executed always after transfer (i’’,j’) and (i’’,j’’) in the
transfer sequence (see Fig. 4). However, if any of these
cases are applied then the value of the sequencing transfer
variable Y(i,j,i’,j’) will be determined by the model in
equations (7) and (8) by adopting values 0-1 respectively.
In consequence, the behavior of the variable Y(i,j,i’,j’) for any
pair of transfer (i,j) and (i’,j’), can be easily predetermined
as stated by equation (10).














otherwise

jjjiPositioniPositionjiPositioniPositionif

jjjiPositioniPositionjiPositioniPositionif

jiji
Y

10

)]1'()'))()'(([()]()'([0

)]1'()'))'()(([()]()'([1

)',',,(

 (10)

To incorporate the knowledge about transfer
sequencing variables in the model it is only necessary to
add the equation expressed below (Eq. 11) in the domain
of equations (7) and (8) related to every pair of transfers
satisfying the conditions stated above (see Eqs. 12-13).






otherwise

EqinConditions
V jiji 1

)]10(.[0
)',',,(

 (11)

)1()',',,(),()','(jijiTjjiji YMTsTs  

1,',),'(:',)',',,( jijiVJjjiiIii

 (12)

)',',,(')','(),(jijiTjjiji YMTsTs  

1,',),'(:',)',',,( jijiVJjjiiIii

 (13)

Figure 4. Pre-sequenced transfers decisions

Also, another way to reduce much more the search
space of the problem without losing good quality solutions
is trying to fix certain transfer decisions, of the already
inserted jobs in the system, by applying the following
expression (see Eq. 14). As it is presented before this
condition can be incorporated into the model in equations
(12) and (13) by the parameter V(i,j,i’,j’) expressed in
equation (15). Thus, tts(i,j) provides an additional
information to the model representing the initial time of
the already inserted transfer (i,j) in the system.
















otherwise

ttsttsjiPositioniPositionjiPositioniPositionif

ttsttsjiPositioniPositionjiPositioniPositionif

Y jiji

jiji

jiji

10

)]()'))()'(([()]()'([0

)]()'))'()(([()]()'([1

)','(),(

)','(),(

)',',,(

 (14)






otherwise

EqinConditions
V jiji 1

)]14(.[0
)',',,(

 (15)

Last equations demonstrate that it is possible to reduce
the combinatorial complexity of the whole system,
eliminating unnecessary model decisions that can be
defined beforehand. But, we can also improve the model
convergence by exploiting the particular problem structure
without any prior knowledge about the order of jobs in the
system. This is done by combining the sequencing variable
X(i,i’) for jobs with the sequencing variable Y(i,j,i’,j’) for
transfers in one expression (see Eqs. 16-17).

)',()',',,(iijiji XY 
)1'(:',),'(:',  jjJjjiiIii (16)

)',()',',,(iijiji XY 
)1'(:',),'(:',  jjJjjiiIii (17)

Objective Function.

The objective function aims at generating a schedule
with the minimum total time required to complete all the
jobs in the system. This criterion is defined by a
continuous variable called makespan (MK) (see Eq. 18).

),(jiTsMK 
 1,  MjIi (18)

Hybrid MILP-based decomposition strategy

The procedure introduced in this work relies on the
MILP model developed by Aguirre, Méndez and Castro
(2011), the dynamic and reactive scheduling methods and
the heuristic reduction techniques, such as decomposition-
aggregation techniques and improvement-based
techniques, summarized in a review paper presented by
Méndez et al. (2006) and in Castro et al. (2009). Also,
some concepts presented in Kopanos et al. (2010)
regarding a two-stage decomposition solution strategy for
solving real-world scheduling problems in multi-product
multi-stage batch process, are also considered in our work.

The proposed hybrid algorithm aims towards
achieving the whole solution of the original AWS
scheduling problem in a sequential manner. In this
procedure, a heuristic-based two-stage decomposition
strategy divides the whole problem into two sub-problems
that must be iteratively solved. In the first stage, the best
permutation job sequence p is determined, ignoring the
limited transportation resources, whereas in the second
stage the job’s transfers schedule is provided in order to
generate the detailed activity program for the robot, based
on the previous predefined production sequence (Fig. 5).

Figure 5. Hybrid decomposition strategy

Thus, a reduced size problem is faced in every stage
by using a multi-stage optimization-based decomposition
strategy. Therefore, the proposed solution strategy
consists on a constructive step followed by a local
improvement step, in where a proper continuous-time

MILP formulation is developed to reach an optimal
schedule solution in each stage.

The constructive step method is a decomposition-
aggregation technique, in which an initial solution is
generated in an iterative way by inserting, one-by-one, the
jobs from the set of non-sequenced jobs. In the
constructive step, a feasible production schedule p is
generated in an iterative form, by selecting one job at a
time by following a heuristic criterion. The insertion of the
selected job is driven by the MK criterion; taking into
account the already inserted jobs. For this, a reduced MILP
model is solved by fixing the sequencing decisions for the
already inserted jobs in the system (see Fig. 5 and Table
1). After the constructive step, a feasible solution of the
production schedule of the system is provided.

In the improvement step, the feasible solution
previously obtained is progressively enhanced by selecting
a job to be taken out from the schedule, to be then
reinserted in the schedule of the remaining non-released
jobs. A suitable MILP is solved by choosing the job to be
rescheduled in each iteration (see Fig. 5 and Table 1).

Table 1. MILP-based models for every step of the
solution strategy proposed

STEP MILP-based Model

Constructive Job Schedule Equations (1-6, 9 & 18)

Improvement Job Schedule Equations (1-6, 9 & 18)

Constructive Transfer Schedule Equations (1-15 & 18)

Improvement Transfer Schedule Equations (1-18)

Results

In this section, some different examples are proposed
to illustrate the behaviour of the hybrid solution strategy
proposed above. These examples are derived from data
provided by Bhushan and Karimi (2004), also appeared in
Aguirre, Méndez and Castro (2011), regarding processing
and transfer times. The problems tested are from different
MxN configuration of the first M baths and N jobs in the
AWS station. These settings determine the problem size,
which is closely linked with the model structure, according
to all decisions and restrictions involved (see Table 2).

Table 2. Comparison of different models statistics in real-life problem instances

Baths x Jobs ORM-MILP ORM-CP BK RCURM-MILP ORM-Hybrid

MxN BV CV MK CPUs CV MK CPUs MK BV CV MK CPUs MK CPUs

12x8 4396 201 170.6a 180 - - - - 4368 229 171.3a 1.4 170.6a 13.61

12x10 7056 251 202.2a 3600d 811 199b 3440d - 7020 296 197.2a 7.8 198.2a 24.42

12x12 10362 301 222a 3600d - - - - 10296 367 215.8a 2655 222.6a 100.8

12x15 16485 376 NFSa 3600d 1216 273.2b 949d - 16380 481 NFSa 3600d 268.2a 866.8

12x20 29830 501 NFSa 3600d - - - - 29640 691 NFSa 3600d 330.6a 3600d

12x25 47100 626 NFSa 3600d 2026 443.4b 493.37d 478.6c 46800 926 NFSa 3600d 396.3a 3600d
BV = Binary Variables. CV = Continuous Variables. MK = Makespan. NFS = No feasible solution found. CPUs = Computational time in seconds.
Results obtained by using: (a) GAMS with Gurobi 6.0 in an Intel PC Core 2 Quad parallel processing in 4 threads, (b) ILOG with CPLEX 9.1 in an
AMD Athlon 64 X2 Dual Core 2.2GHz processor with 1GB of RAM. (c) No time reported. (d) Termination criterion (3600sec.).

Table 2 describes the principal results obtained by
different solution approaches for many real-life scheduling
problems presented above. The comparison comprises an
full-space mathematical formulation (MILP) for the entire
problem ORM (One Robot Model), a two-stage MILP-
based approach called RCURM (Resource Constrained
Unlimited Robot Model) and the ORM model by using
both Constraint Programming procedure (CP) from
Zeballos et al., (2011) and our Hybrid MILP-based
solution strategy. The RCURM approach was introduced
before by Bhushan and Karimi (2003). This two-stage
procedure is based on: i) solve the first model, called URM
(Unlimited Robot Model), for the original problem without
robot restrictions and then ii) solve the second model,
which was named ORM (One Robot Model), by
introducing robot restrictions in a single robot. The
solutions reported in Table 2 demonstrate that our
proposed approach provides better results than full-space
ORM (MILP/CP) models and RCURM-MILP procedure
with shortest CPU time.

For industrial-sized cases, the exact methods turned
out to be unmanageable due to the high number of binary
decisions. So, for this kind of problems, both the heuristic-
based approaches and the hybrid approaches are needed.

In the last case, the solution of the heuristic approach
developed by Bhushan and Karimi (2004), here named
BK, has been improved by the CP approach (Zeballos et
al., 2011) and also by the hybrid solution strategy
proposed in this work. The solution found by the CP
approach is better than the best solution in 7.4%. Finally,
our solution approach can even improve the CP solution of
443.4 units, obtaining an important reduction in the MK
(>10%) with an acceptable computational effort
(3600sec.). As a conclusion, our method is comparable
with the best approaches existing in literature, providing
even better results for large-size problems with a
reasonable computational cost.

Conclusions

A novel hybrid decomposition strategy based on a
MILP continuous-time formulation has been presented to
solve large-scale scheduling problems arising in AWS of
the semiconductor industry. In contrast to typical
scheduling solution techniques, this strategy lies on an
exact method to sequentially generate and improve a
detailed schedule of production activities and transfer
operations, assuring the stringent intermediate storage
policies of the system.

Furthermore, it has been demonstrated that the
proposed model can effectively solve the whole problem
by using the proposed MILP-based decomposition
technique, in which the entire problem is divided into two
sub-problems and the results of the first one are used to
solve the second one in a sequential manner. In this case,
the schedule of production activities is first generated to
then incorporate the detailed schedule of transfer

operations, fixing the previously defined production
sequence. Also, it has been clearly illustrated that each
sub-problem can be solved with a two-stage
decomposition strategy, where the solution is generated,
and then gradually improved, in an iterative way, by using
a simplified MILP-based algorithm in each stage.

The main contribution of this work is to provide a
robust and, at the same time, very flexible strategy for the
solution of large-scale problems in a sequential way, by
using a proper combination of heuristic procedures and
exact mathematical formulations. This methodology will
be able to face complex operative decisions on multi-
product multi-stage industrial processes with shared
resources and complex production constraints.

Acknowledgments

Financial support received from AECID under Grant
PCI-D/030927/10 and from UNL under Grant PI-66-337 is
fully appreciated.

References

Aguirre, A. M., Méndez, C. A., and Castro, P. M. (2011). A
Novel Optimization Method to Automated Wet-Etch
Station Scheduling in Semiconductor Manufacturing
Systems. Computer Chemical Engineering, In Press.

Bhushan, S., and Karimi, I.A. (2003). An MILP approach to
automated wet-etch station scheduling. Industrial and
Engineering Chemistry Research, 42(7), 1391-1399.

Bhushan, S., and Karimi, I.A. (2004). Heuristic algorithms for
scheduling an automated wet-etch station. Computers
and Chemical Engineering, 28(3), 363–379.

Castro, P.M., Harjunkoski, I., Grossmann, I.E. (2009). Optimal
Short-Term Scheduling of Large-Scale Multistage
Batch Plants. Ind. & Eng. Chem. Res.,48,11002-11016.

Geiger, C.D., Kempf, K.G., Uzsoy, R. (1997). A tabu search
approach to scheduling an automated wet etch station.
Journal of Manufacturing Systems, 16(2), 102-116.

Kopanos, G.M., Méndez, C.A., Puigjaner, L. (2010). MIP-based
decomposition strategies for large-scale scheduling
problems in multiproduct multistage batch plants: A
benchmark scheduling problem of the pharmaceutical
industry. European Journal of Oper. Res.,207,644-655

Ku, H., and Karimi, I.A. (1990). Completion time algorithm for
serial multiproduct batch processes with shared storage.
Computers and Chemical Engineering, 14, 49-69.

Méndez, C.A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., Fahl,
M. (2006). State-of-the-art review of optimization
methods for short-term scheduling of batch processes.
Computers and Chemical Engineering, 30, 913.

Ruiz, R. and Maroto C.A. (2005). A comprehensive review and
evaluation of permutation flowshop heuristics.
European Journal of Operational Res., 165, 479-494.

Zeballos, L. J., Castro, P. M., Méndez, C. A. (2011). An
integrated constraint programming scheduling approach
for automated wet-etch stations in semiconductor
manufacturing. Ind. and Eng. Chem. Res., 50, 1705-
1715.

