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Abstract
This contribution summarizes a methodology, based on dissipative systems theory, for the analysis and control of in-
terconnected nonlinear processes. The global objective of the proposed approach is to design decentralized feedback
controllers in such a way that plantwide stability and performance objectives are met, for a known constant interconnec-
tion structure. At a plantwide level, extensions of classical results on the stability of large-scale interconnected systems
lead to input-output constraints for each subsystems, encoded as supply rates from input ports to output ports. Then
for each subsystem, a (possibly parameterized) feedback controller is designed using nonlinear dissipative inequalities
to ensure that the aforementioned input-output constraint is met in closed-loop. After a review of dissipativity theory
for the analysis of interconnected networks, this paper focuses on the design of nonlinear feedback controllers ensuring
that each subsystems meet the interconnection constraints. In particular, this paper presents new results related to the
construction of storage functions for control affine systems, as a generalization of some physically-based approaches to
dissipative systems theory that appeared recently in the literature. Potential extensions of the proposed approach and
areas for future research are also discussed.
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Introduction

This paper considers the problem of designing decentralized
nonlinear feedback controllers in the context of plantwide
process control. In the proposed approach, the plant is
viewed as an interconnected network of physical process
units coupled with a communication network between the
controllers (Ydstie, 2002). The problem of large-scale net-
work analysis in the context of control is not new, see for ex-
ample the stability result given in (Moylan and Hill, 1978).
The problem of distributed control design has received some
attention in recent years from a graph-theoretic perspective
(Langbort et al., 2004). However, for chemical processes de-
scribed by nonlinear dynamics, design and coordination of
decentralized controllers is still an open problem. In particu-
lar, as shown in a study by Kumar and Daoutidis (2002), mass
and energy recycle flows lead to challenging problems in the
analysis of the global behavior of a plant. In the context of
both chemical process control and nonlinear systems, model

predictive control strategies have been studied to address the
problem of distributed controllers design, see for example
the contribution (Liu et al., 2009) and the review presented
by Rawlings and Stewart (2008). In essence, the general
problem of distributed control design for nonlinear process
systems leads to the problem of stabilizing local subsystems
while enforcing global plant stability and performance using
the knowledge of both physical interconnection and commu-
nication networks.

From a theoretical point of view, passive and dissipative
systems based approaches have been used extensively in the
past to study interconnections of nonlinear subsystems. Dis-
sipative systems theory provides a set of tools to address
analysis and control design problems for interconnected non-
linear systems. In particular, coordination between nonlinear
systems has been studied recently using passivity-based tech-
niques, see for example the recent book (Bai et al., 2011). In
the context of chemical process control, recent contributions
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along those lines were given in (Jillson and Ydstie, 2007) and
(Rojas et al., 2009). Analysis and controller design based
on passivity and dissipativity, two concepts introduced by
Willems (1972) and further developed by Hill and Moylan
(1976), is a central approach to nonlinear control theory, as
an input-output extension of classical Lyapunov techniques.
Those concepts were further developed in a broad range of
methods linking state-space and input-output approaches for
analysis and feedback control design for general classes of
nonlinear control systems (Sepulchre et al., 1997; van der
Schaft, 2000; Brogliato et al., 2007). Relations between pas-
sivity analysis and geometric approaches to nonlinear con-
trol design are also reviewed extensively in the literature
(Sepulchre et al., 1997; van der Schaft, 2000). In (Byrnes
et al., 1991), equivalence of control-affine nonlinear systems
to passive systems was studied using differential geometric
techniques. In recent years, analysis and controller design
based on dissipativity properties proved to be especially use-
ful for mechanical and electrical systems, and in particular,
for applications where a storage function can be related to the
concept of a stored energy function (van der Schaft, 2000).
Many applications and extensions of passivity and dissipativ-
ity approaches were proposed in the context of process con-
trol, as reviewed for example in (Hangos et al., 2004) and
(Bao and Lee, 2007). In practice however, for example in
the context of nonlinear chemical processes, the choice of a
suitable dissipative representation (storage function and sup-
ply rate) for each interconnected subsystem is still an open
question.

The main contribution of the present paper is the con-
struction of a storage function for processes described by
control affine nonlinear models. In particular, a decompo-
sition approach is proposed to study the problem of closed-
loop dissipativity assignment and feedback stabilization, ex-
ploiting an idea originally presented in (Sira-Ramı́rez and
Angulo-Núñez, 1997) based on the decomposition of the
drift vector field in terms of dissipative and non-dissipative
components and extending previous results on stabilization
presented in (Hudon et al., 2008) to an input-output set-
ting. One consequence of the constructive approach pre-
sented here is its potential to outline the excess or shortage of
passivity of a given controlled subsystem. This type of gen-
eral construction is of importance when one seeks to use dis-
sipativity theory to study interconnected nonlinear systems
(Sepulchre et al., 1997). The main advantage of the pro-
posed approach is that no a priori knowledge of a storage
function is required to carry the decomposition. Based on the
obtained approximate dissipative representation, the present
paper proposes a domination-based controller design tech-
nique to ensure input-output performance of each subsystem
for plantwide analysis.

The paper is organized as follows. First, the problem
of analysis and stabilization, through distributed state feed-
back control, of interconnected control affine subsystems us-
ing dissipativity is presented. The central part of the paper
presents the construction of a storage function based on a
geometric decomposition of the drift vector field. The ob-
tained storage function is then used to design nonlinear feed-

back controllers that ensure, in closed-loop, desired dissipa-
tivity properties. Areas for future research are also briefly
discussed.

Problem Formulation and Background
This section summarizes the problem under study. As

discussed above, following (Ydstie, 2002), plantwide pro-
cess control problems can be viewed as interconnected net-
works of process units, denoted Pi, exchanging mass and en-
ergy flows, coupled with an interconnected network of con-
trollers, denoted Ci. This general description of plantwide
control problems is depicted in Figure 1.
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control using the dissipativity theory. As mentioned earlier, process control systems must be able to 
produce optimal control action under operational constraints. Therefore, optimization-based control 
methods represented by the model predictive control (MPC) are the most suitable strategy to be 
implemented in the individual controllers in the proposed control networks. However, coordination of 
this type of controllers, as required in the networked process control strategy, is a very difficult open 
problem[17]. Our latest studies have shown that stability conditions derived from dissipativity can be 
established based on the historical input and output trajectories of the controllers rather than the input-
state-output relationship. In this project, the dissipativity conditions will be further converted into the 
constraints on the controller output which in turn can be implemented in the optimization algorithms 
for MPC to ensure plantwide stability and performance. 

Networked process control has become a new focal point in the frontier research for process operation 
and management[6],[27]. This technology can be tightly integrated into plant management and business 
systems to allow optimal business decision making and execution. The proposed research addresses 
the key issues in this emerging area based on modern control theories for complex systems, and 
therefore falls in the national research priority area of “Frontier technologies for building and 
transforming Australian industries” (research priority goal of frontier technologies).  

E4 APPROACH AND METHODOLOGY 

The research plan consists of three stages described below: 

E4.1 Development of representations for process units and networks (Project aim 1) 

The first stage of the proposed research is to develop new representations for process units (or more 
generally, subsystems) and process networks, which will facilitate networked control analysis.  

Representation of process units: In existing network analysis approaches, the subsystems are 
represented as mappings between information flow. However, process units in a chemical plant are 
connected with physical energy and mass flow and in the meantime, connected to controllers with 
information flow. Consider a plantwide process with ݊ process units (subsystems). One possible way 
to effectively capture both types of input/output relationships is to represent the process units in a two-
port form. As shown in Figure 2, process unit i can be modelled as sub-system ௜ܲ with two sets of 
inputs and outputs: column vectors ݑ௜ and ݕ௜ that represent the physical mass and energy flow coming 
to and leaving from the subsystem i respectively; and column vectors ݑ෤௜ and ݕ෤௜ that represent the 
information flow coming to (i.e., the controller command) and leaving from the subsystem (i.e., the 
sensor outputs) respectively. Disturbance flow and outlet flow of products are understood as the input 
from and output to the environment and thus a part of ݑ௜ and ݕ௜ respectively. The model of subsystem 
݅ can be written based on the conservation balance:  

௜ݔ݀ 
ݐ݀

ൌ ௜݂ሺݑ௜ሻ െ ݃௜ሺݕ௜ሻ ൅ ࣬௜,௦௢௨௥௖௘ ൅ ࣬௜,௧௥௔௡௦௙௘௥ 

෤௜ݕ ൌ ݄௜ሺݔ௜,  ௜ሻݕ

(1)

 
Figure 3.  Presentation of process and control networks 

 
 
 

Figure 2.  Presentation of a sub-system 
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Figure 1. Process and information networks

The general problem associated to such a process and in-
formation network is the design of controllers Ci(·), such that
the global network is stable and achieve a certain level of per-
formance, for example, as discussed in (Rojas et al., 2009),
optimal disturbance attenuation.

Recall, from (Willems, 1972; Sepulchre et al. 1997; van
der Schaft, 2000), the following basic definitions about dis-
sipative systems. Consider a control affine system Σ given
by

Σ :

{
ẋ = f (x)+∑

m
j=1 g j(x)u j, x ∈ X ,u ∈U

y = h(x), y ∈ Y .
(1)

The system Σ is said to be dissipative with respect to the sup-
ply rate s(u,y) : U×Y →R if there exists a storage function
V : X → R+, and that for all t1 ≥ t0, and all input functions
u(·), the following inequality holds

V (x(t1))−V (x(t0))≤
∫ t1

t0
s(u(t),y(t))dt, (2)

with x(t0) = x0 and x(t1) is the state resulting, at time t1 from
the solution of (1) taking x0 as initial condition and u(t) as
control input the function. If V is differentiable with respect
to time t for all x ∈ X and u(·), inequality (2) is equivalent to

V̇ (x)≤ s(u(t),y(t)). (3)

The system is said to be lossless if inequalities (2) or (3) are
equalities. A state space system Σ with U = Y = Rm is said
to be passive if it is dissipative with respect to the supply
rate s(u,y) = uT y. The system Σ is strictly input passive if
there exists δ > 0 such that Σ is dissipative with respect to
s(u,y) = uT y−δ‖u‖2 and is said to be strictly output passive
if there exists ε > 0 such that Σ is dissipative with respect
to s(u,y) = uT y− ε‖y‖2. Finally, Σ is conservative if it is
lossless with respect to the supply rate s(u,y) = uT y.

In the present paper, we consider interconnections of
multi-port subsystems of the type presented in Figure 2,



where for a each subsystem Pi, we denote the state by xi ∈Rni

the interconnection input by ũi ∈ RmI , the manipulated input
by ui ∈ Rmi , and the interconnection output by ỹI ∈ RmI .

ỹi

xi

ũi

Pi

ui

Ci(xi, ũi, ỹi)

ũi

Figure 2. Multi-port system

Each system Pi is assumed to be affine in the control in-
puts ui j(·) and the interconnection inputs ũi j(·), i.e.,

Pi :

{
ẋi = f i(xi)+∑

mi
j=1 gi j(xi)ui j +∑

mI
j=1 g̃i j(xi)ũi j

ỹ = h̃(xi).
(4)

Consider the interconnection of N subsystems, intercon-
nected through a constant interconnection of the form ũ1

...
ũN

=

H11 . . . H1N
...

. . .
...

HN1 . . . HNN


 ỹ1

...
ỹN

 . (5)

Following (Langbort et al., 2004), it is assumed that the infor-
mation network is the same as the process network, i.e., the
controller Ci has access to all information required to achieve
an objective given by the supply rate from ũi to ỹi, denoted
by si(ũi, h̃i(x)). In (Rojas et al., 2009), it was demonstrated
that for a large class of plantwide problems, this interconnec-
tion structure can be used to computed decentralized control
objectives. Following the original work from Moylan and
Hill (1978) and using the classical notation from (Hill and
Moylan, 1976), it was shown that for a fixed known inter-
connection structure H and global (Q,S,R) objectives, the
global stability problem can be translated into a collection of
decentralized (Qi,Si,Ri) objectives for each (Pi,Ci) pair. In
particular, it was shown in (Rojas et al., 2009) that asymp-
totic stability of the entire process network is ensure if

Q−SH−HT S+HRH < 0. (6)

In practice, and depending on the nonlinearity of a given
subsystem Pi, it could be difficult to compute a controller
Ci that delivers exactly a desired (Qi,Si,Ri). In the present
paper, we propose an approximate approach to the problem,
using parameterized domination-based feedback controllers
to ensure that distributed objectives are met. More precisely,
the crucial problem to be addressed in the sequel is the fol-
lowing: Given a decentralized dissipative objective encoded
as the supply rate si(ũi, ỹi), design a feedback controller Ci(·)
such that for the pair (Pi,Ci) in closed-loop, the dissipative
inequality

V̇i(x)≤ si(ũi(t), ỹi(t)) (7)

holds. One of the major difficulties in such dissipativity-
based plantwide control is the determination of the dissi-
patvity of subsystems. As mentioned previously, the prob-
lem to be emphasize in the present paper is the construction
of a storage function Vi(x) such that the last inequality holds,
for i = 1, . . . ,N. In the present paper, we propose an approxi-
mate geometric approach to construct storage functions, and
discuss an approach to feedback controllers design using the
obtained storage function such the above inequalities hold,
i.e., ensuring that the objectives for subsystems 1, . . . ,N, en-
coded as supply rates, hold such that a desired global ob-
jective for the interconnected network is met. The next sec-
tion discusses the proposed constructive approach for storage
functions.

Construction of a Storage Function
The problem of constructing storage functions for nonlin-

ear systems of the form (1) has been studied extensively in re-
cent years. In particular, several physically-based techniques
were proposed, most notably energy- and power- shaping
methods (Jeltsema and Scherpen, 2009). In the context of
chemical engineering, Ydstie and Alonso (1997) proposed to
use a thermodynamically-defined quantity, the availability, as
a storage function for dissipative analysis of process systems.
This quantity, in the context of the discussion from (Jeltsema
and Scherpen, 2009) is an example of a mixed-potential, i.e.,
a potential that combines a conserved quantity (an energy-
like component) and a metric quantity (an entropy-like com-
ponent). The present approach to construct a storage func-
tion can be viewed from that perspective. The general idea
on which the proposed storage function construction proce-
dure is based is to study the evolution of a volume element
in the phase space under the action of the drift vector field
f (x). In order to do so, the proposed approach relies on
differential geometry techniques, in particular, elements of
exterior calculus, briefly discussed in the sequel. A com-
plete review of exterior calculus on Rn can be found in (Ede-
len, 2005). We denote a smooth vector field in Γ(Rn) as
X(x) = ∑

n
i=1 vi(x) ∂

∂xi
and a smooth differential one-form in

Λ1(Rn) as ω(x) = ∑
n
i=1 ωi(x)dxi, where vi(x) and ωi(x) are

smooth functions on Rn. The standard basis for vectors in
Γ(Rn) and one-forms in Λ1(Rn) are denoted by ∂

∂xi
and dxi,

respectively. The wedge product is denoted by∧ and the inte-
rior product of a differential form ω with respect to a vector
field X is denoted by Xyω. The exterior derivative can be
viewed as a generalization of the differential of a function in
the direction of a vector field. In this context, a function h(x)
can be viewed as a zero form, i.e., h ∈ Λ0(Rn). In particular,
the exterior derivative of a function dh(x) has the interpre-
tation of a gradient in coordinates. The interior product is
an inner multiplication that can be understood as a contrac-
tion of indices in tensor calculus. For a vector field X and
a k-form α, the (k− 1)-form obtained by taking the interior
product Xyα can be viewed as a covariant tensor. The exte-
rior derivative and the interior product can be used together
to determines the Lie derivative of a k-form α along a vector
field X by using the Cartan’s formula:

LX α = Xydα+d(Xyα). (8)



In particular, for a zero-form h(x), since Xyh = 0, the Lie
derivative can be computed simply as LX h = Xyd f .

The procedure used in the present paper relies on the
canonical Riemannian metric in Rn, given as g= dx1⊗dx1+
. . .+ dxn⊗ dxn with associated volume form in Λn(Rn), ex-
pressed as µ = dx1∧dx2∧ . . .∧dxn. For a given drift vector
field f (x) = ∑

n
i=1 fi(x) ∂

∂xi
, we seek to construct a dissipative

representation with an associated natural storage function.
The central element to be exploited in the sequel is the di-
vergence of the drift vector field, i.e.,

div f =
n

∑
i=1

∂

∂xi
fi(x). (9)

From a physical point of view, by virtue of the Liouville the-
orem, it is known that a system is conservative if div f = 0.
To study dissipativity (and in particular Lyapunov stability),
we consider the problem of shaping the closed-loop vector
field such that the divergence of the resulting vector field is
negative definite, with a rate prescribed by the desired supply
rate.

In the language of exterior calculus, the divergence of a
vector field, can be encoded as follows. A (n−1) differential
form j is first obtained by taking the interior product of the
volume µ with respect to the drift vector field f (x), i.e.,

j =

(
n

∑
i=1

fi(x)
∂

∂xi

)
yµ (10)

j =
n

∑
i=1

fi(x)dx1∧ . . .∧ d̂xi∧ . . .∧dxn, (11)

where d̂xi denotes a removed element such that j is a (n−1)
form. Taking the exterior derivative of j, and by the property
of the wedge product that dxi∧dxi = 0, we obtain,

d j =
n

∑
i=1

∂ fi

∂xi
(x)dx1∧ . . .∧dxn = div f (x)µ. (12)

The first step in the proposed construction consists in con-
structing a differential one-form ω∈Λ1(Rn) that encodes the
divergence of the drift vector field f (x). Such a one-form is
obtained by using the Hodge star operator ? of the (n− 1)
form j, i.e.,

ω = ? j = ?( f (x)yµ). (13)

If the one-form ω is closed, i.e., if dω = 0, it can be shown
that it is also locally exact, by virtue of the Poincaré Lemma,
and the system is conservative (in particular, the dynamics is
generated by the gradient of a potential function). However,
if the one-form is not closed, ω can be expressed as the sum
of an exact component and an anti-exact component. Such
decomposition can be carried locally using a homotopy op-
erator H, such that

ω = d(Hω)+Hdω. (14)

Hence, the one-form ω is decomposed in terms of an ex-
act component and an anti-exact components, denoted by

ωe = d(Hω) and ωa = Hdω, respectively. In coordinates,
the homotopy operator is defined as follows. For a differen-
tial form ω of degree k on a star-shaped region S centered at
an equilibrium x∗, the homotopy operator is given as

(Hω) =
∫ 1

0
X(x∗+λ(x− x∗))yω(x∗+λ(x− x∗))λk−1dλ, (15)

where ω(x∗+λ(x− x∗)) denotes the differential form eval-
uated on the star-shaped domain in the local coordinates de-
fined above. By the properties of exterior derivative d◦d = 0,
hence the exact part ωe is closed and exact (i.e., ωe is the ex-
terior derivative of a 0-form, the function Hω).

Following the approach in (Hudon et al., 2008), we con-
sider the approximate dissipative potential function ψ(x) =
Hω to construct a storage function for the system. In gen-
eral, this function is not necessarily positive definite. First
note that the exact one-form ωe(x) is given, in terms of the
obtained potential, as

ωe(x) =
n

∑
i=1

∂ψ(x)
∂xi

dxi. (16)

To define a positive storage function based on the obtained
dissipative potential, we consider the following change of co-
ordinates, based on the obtained potential to a target dissipa-
tive system. Consider a gradient system

ż =−∇P(z) (17)

with the positive semi-definite potential centered at the origin
P(z) = 1

2 ∑
n
i=1 z2

i which from the discussion above is an exact
system, with an exact one-form given by

ω̄e(z) =
n

∑
i=1

zidzi. (18)

The coordinate change considered in the present note con-
sists in taking the new coordinates zi to be the gradient direc-
tions of the locally-defined approximate potential ψ(x) in the
original coordinates, i.e.,

zi =
∂ψ

∂xi
. (19)

The central problem here is to find an expression that re-
lates the one-form in the original coordinates ωe(x) to the
one-form in the new coordinates (18). In essence, the idea
amounts to reshape the dissipative potential ψ(x) such that
its derivative with respect to the dynamics is positive definite.
This is achieved by computing a transformation that pre-
serves the exact one-form ω̄e(z). Taking the exterior deriva-
tive on both sides of (19), one obtains the following expres-
sion relating both systems of coordinates

dzi =
n

∑
j=1

∂ψ2

∂xi∂x j
dx j, (20)

or, if the differential coordinates are expressed in vector form
dz = [dz1, . . . ,dzn]

T and dx = [dx1, . . . ,dxn]
T

dz = (D2
ψ(x))dx, (21)



where D2ψ(x) denotes the Hessian of the potential ψ(x). For
the particular choice of target dynamics chosen here, the tar-
get one-form in the x-coordinates ω̄e(x) is given as

ω̄e(x) = (∆ψ(x))ωe(x)+
∂ψ

∂x
(D2

ψ(x)−∆ψ(x))dx, (22)

where ∆ψ(x) is the Laplacian of the potential ψ(x). The
main task of the control design presented in the next section
amounts to the domination of the deviation from the original
system to the targeted system, as encode in the term

ω̄a =
∂ψ

∂x
(D2

ψ(x)−∆ψ(x))dx. (23)

It should be noted that the proposed coordinate transfor-
mation is valid if the Hessian of the computed potential func-
tion is non-singular, which is ensured if the potential is con-
vex (or concave), as assumed in (Jillson and Ydstie, 2007). A
similar argument was used recently in (Favache et al., 2011)
in the context of power-shaping. Note also that, by con-
struction of the homotopy operator, the equilibrium of the
x-system x∗ is mapped to the origin of the target system.

The dissipative design problem is derived as follows. For
the target system in z-coordinates, define the storage function

V (z) =
1
2

n

∑
i=1

z2
i ≥ 0, V (0) = 0, (24)

for which

V̇ =−
n

∑
i=1

z2
i ≤ 0. (25)

Hence, V (z) is an admissible storage function. Observe that
in the z-coordinates, the time derivative of the storage can be
re-expressed as an interior product,

V̇ (z) = L−∇P(z)V (z) =−∇P(z)ydV (z) =−∇P(z)yω̄e(z),

(26)

and it can be easily computed that V̇ (z) is negative semidefi-
nite, since

−∇P(z)yω̄e(z) =

(
n

∑
i=1
−zi

∂

∂zi

)
y

(
n

∑
i=1

zidxi

)
=−

n

∑
i=1

z2
i ≤ 0.

(27)

In the original coordinates, the Lyapunov stability condition
with respect to the function V (x), which can be obtained us-
ing (19), is thus given by

V̇ (x) = f (x)y((∆ψ(x))ωe(x)+ ω̄a(x))≤ 0. (28)

To relate this condition to the divergence, which is encoded in
the anti-exact part ωa, re-write the above inequality in terms
of ω and ωa, by using the fact that ω = ωe +ωa. In terms of
the drift vector field, the inequality becomes

f (x)y((∆ψ(x))(ω(x)−ωa(x))+ ω̄a(x))≤ 0. (29)

This last expression will be used as a basis for the stabiliza-
tion design in the next section.

Decentralized State Feedback Design
We now consider the construction of state feedback con-

trol for the control affine system (4), using the storage func-
tion Vi(x) constructed above based on the drift vector field,
such that the subsystem Pi is stable and achieve a desired
supply rate si(ũi, ỹi) in closed-loop. The approach presented
here can be viewed as an extension of the approach proposed
in (Sira-Ramı́rez and Angulo-Núñez, 1997) based on the de-
composition of the drift vector field in terms of dissipative
and non-dissipative components. Here, the objective of the
controller is to dominate the non-dissipative parts of the dy-
namics, encoded in ωa and ω̄a, and assign a certain supply
rate si(ũi, ỹi) to the subsystem Pi.

In the present note, it is assumed that we have access to
the full state x. It is also assumed that the communication
network is such that a controller Ci can send an estimation of
h̃i to any controller C j, i.e., the controller network is identi-
cal to the process network, HC = H (Langbort et al., 2004).
As a result, the value of ũ j is known to the controller C j,
and we seek to design feedback controllers C j = u j(x, ũ, h̃(x))
such that the dissipation inequality (29) holds. In general, the
right-hand side of (29) is fixed by plantwide stability analy-
sis, as reviewed briefly in the preceding section, following
(Rojas et al., 2009). Following the notation from (Byrnes et
al., 1991), we are seeking to design controllers of the form
u j(x, ũi) = α(x)+β(x)si(ũi, h̃i(x)).

To alleviate some problems related to the inversion-based
design proposed in (Sira-Ramı́rez and Angulo-Núñez, 1997),
and to be able to compensate for the remaining shortage of
passivity if the drift is unstable (or use the excess of passivity
if the system is open-loop stable), we consider a variation of
damping controllers of the Jurdjevic–Quinn type (Byrnes et
al., 1991). Those domination-based controllers of the form
u j = −LX jV (x) were also considered in (Sepulchre et al.,
1997). In this present case, we let the control be of the form

u j =−k1, j(x)g(x)yω̄e(x)− k2, j(x, ũ)si(ũ, ỹ). (30)

In closed-loop, the dissipative inequality (3) for the sys-
tem (4) can be re-written as(

f (x)+
mi

∑
j=1

g j(x)u j +
mI

∑
j=1

g̃ j(x)ũ j

)
yω̄e ≤ si(ũi(t), ỹi(t)).

(31)

Using the decomposition (29) and the controllers (30), one
obtains

fy(∆ψ(x))ω(x)− fy((∆ψ(x))ωa(x)+ ω̄a(x))

−
mi

∑
j=1

(
k1, j(·)(g jyω̄e)

2 + k2, j(·)(g jyω̄e)si(ũ, ỹ)
)

+
mI

∑
j=1

(g̃ jyω̄e)ũ j ≤ si(ũi(t), ỹi(t)). (32)

Controller design is then carried in two steps. First, we
design the gain functions k1, j(·) to dominate the approxima-



tion and ensure local stability, i.e., ensure that

f (x)y((∆ψ(x))(ω(x)−ωa(x))+ ω̄a(x))

−
mi

∑
j=1

k1, j(·)(g jyω̄e)
2 ≤ 0. (33)

The second task consists in the design of the gain functions
k2, j(·) such that the input-output dissipativity objective is
met, i.e.,

−
mi

∑
j=1

k2, j(·)(g jyω̄e)si(ũ, ỹ)+
mI

∑
j=1

(g̃ jyω̄e)ũ j ≤ si(ũi(t), ỹi(t)).

(34)

This particular choice of controller structure is generally
more robust than the exact cancelation controller approach
proposed in (Sira-Ramı́rez and Angulo-Núñez, 1997). How-
ever, as it is the case for damping controllers of the Jurdjevic–
Quinn type, it relies on a controllability-like assumption on
the pair of vector fields ( f (x),g(x)), which in the present case
can be written in a perturbed form ( f (x)+ g̃(x)ũ,g(x)). As a
consequence, this type of controller might suffer lost of con-
trollability depending on the structure of g̃(x). This question
would be considered in future research.

Conclusions
This paper presented an approach to the design, in the

context of plantwide systems, of nonlinear feedback con-
trollers that achieve a desired input-output performance, de-
termined (or parameterized) a priori from the analysis of
the interconnection network. The key idea in the proposed
approach consists in encoding control objectives as parame-
terized supply rates to be achieved through feedback control
design. The main contribution of the present paper consists
in the development of a nonlinear feedback control design
strategy ensuring that each subsystems meet those objectives
in closed-loop, based on the construction of an approximate
storage function for the system. Using geometric theory of
dissipative nonlinear systems at a local level, the approach
has the advantage of outlining potential structural limitations
to the desired global performance. Current areas of research
also focus on controller design under limited information ex-
change between subsystems and robustness to model uncer-
tainties of the proposed construction. Applications of the
proposed approach to chemical process control systems will
be presented in a forthcoming paper.
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