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Abstract 

In this work, we propose a closed loop strategy to implement simultaneous scheduling and control on 

chemical processes whose state variables are subject to disturbance. As presented by the previous 

literature, integration of scheduling and control addresses both optimal production stages and transition 

periods, which results in global optima of an integrated model. We apply closed loop strategy on 

parallel CSTRs with cyclic production and compare its performance quantitatively with open loop 

strategy. The results of the case study justify the effectiveness of the closed loop strategy in dealing with 

process disturbances.   
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Scheduling problem results in the optimal production 

sequence, production time and resources allocation but it 

does not consider the dynamic behavior of the processes. 

When the system is subject to disturbance, rescheduling is 

needed. (Adhitya et al. 2007b) proposed a model-based 

framework for rescheduling operations to overcome the 

disruption effects. This framework was illustrated using a 

refinery case study. (Adhitya et al. 2007a) present a 

heuristic rescheduling strategy to guarantee real-time 

computational performance and minimal operational 

changes. 

      On the other hand, control problem focuses on 

transition periods between different products. (Mahadevan 

et al. 2002) formulated classic control strategies (i.e. based 

on transfer function, such as PID) for the transition periods 

in polymer process. However, they did not solve the 

scheduling and control problem simultaneously.  (Feather 

et al. 2004) built a mixed integer (Model Predictive 

Control) MPC for grade transition control. (Padhiyar et al. 

2006) proposed a differential evolution method to solve 

the optimization problem of grade transition. 

     Traditionally production scheduling and process 

control problems are considered separately. However, the 

solutions obtained by considering scheduling are certainly 

suboptimal. Targeting better operating conditions in 

today’s strict economic environment, a number of efforts 

have been made towards integration of scheduling and 

control problems. 

     The integration of scheduling and control results in 

better modeling of process operations since transitions are 

considered which are ignored when scheduling is 

considered separately. With integrated modeling, 

information can be shared between scheduling and control 

without delay. Thus, a more economical process operation 

is achieved (Harjunkoski et al. 2009; Mitra et al. 2009). In 

the literature, the existing approaches dealing with the 

integration of scheduling and control can be categorized 

into simultaneous modeling and decomposition based 



  
 

 

methods. Using the simultaneous approach the process 

dynamic model is incorporated into the constraints of 

scheduling problem. Thus a Mixed Integer Dynamic 

Optimization (MIDO) problem is formed and then is 

discretized into Mixed Integer Nonlinear Programming 

(MINLP) using collocation point method (Allgor and 

Barton 1999). Using decomposition method, the control 

problem is modeled as dynamic optimization (primal 

problem) and the scheduling part as Mixed Integer Linear 

Programming (Master problem). The solution proceeds by 

iterating between these two subproblems until 

convergence is achieved (Mahadevan et al. 2002). (Flores-

Tlacuahuac and Grossmann 2006) modeled scheduling 

and control simultaneously, and formed an integrated 

problem (MIDO), which is then discretized into MINLP 

with collocation point method. Their approach was tested 

using an application in cyclic production with CSTR. 

(Terrazas-Moreno et al. 2008a) extended this work and 

propose a Lagrangian decomposition strategy to lower the 

complexity of the scheduling and control subproblems. 

(Terrazas-Moreno et al. 2007) applied simultaneous 

approach in cyclic scheduling and optimal control for two 

polymerization systems. (Terrazas-Moreno et al. 2008b) 

continued their previous work, and incorporated 

uncertainty in product demands with discrete distributions. 

(Flores-Tlacuahuac and Grossmann 2010b) applied the 

approach of (Flores-Tlacuahuac and Grossmann 2006) to 

multiproduct parallel CSTR. The same authors applied the 

idea of simultaneous scheduling and control in PFR 

(Flores-Tlacuahuac and Grossmann 2010a). 

  (Nystrom et al. 2005) proposed a decomposed model 

for the integration of scheduling and control in 

polymerization processes. In their approach, the control 

problem is modeled as a Dynamic Optimization (DO) and 

scheduling part as MILP. They iterate between these two 

subproblems and update the solution until the problem 

converges. (Nystrom et al. 2006) applied this approach to 

parallel polymerization lines with multiple units. 

      The solution method of MIDO problem was addressed 

in a few papers. (Allgor and Barton 1999) built a general 

framework for MIDO problem and proposed a 

decomposition approach to solve MIDO, which was an 

iterative scheme between a master and primal problem. 

(Flores-Tlacuahuac et al. 2005) proposed a methodology 

to transform the MIDO problem into MINLP through the 

discretization of the dynamic model. Standard methods 

such as outer-approximation, is used in solving the 

resulting MINLP. (Harjunkoski et al. 2009) provided a 

review of scheduling and control integration and pointed 

out three main solution approaches. The first one is to 

convert MIDO into MINLP problem; the second to 

decompose the overall problem into scheduling and 

control subproblems; and the last one to use heuristic-

based systems like agent-based approaches. 

       Most of the simultaneous based approaches however 

do not implement process control using closed loop. In 

this study, we consider disturbance in real processes and 

build a closed loop strategy for simultaneous scheduling 

and control, which can be regarded as real time scheduling 

and control. We detect the disturbance on state variables 

and generate new solution for the integrated problem at 

the point of disturbance. As a result, process reacts quickly 

to eliminate the effects of disturbance. More specifically, 

we first solve the integrated problem off-line, and obtain 

the scheduling solution and control input. Then the 

solution is implemented in the process. If the real state 

track the reference (pre-calculated by solving the 

integrated problem off line) very well (i.e. their difference 

is within the tolerance), no feedback is needed. If 

significant disturbance occurs, the difference between state 

and reference is feedback and the integrated problem is 

solved again for the remaining part of the production 

cycle. Thus both the scheduling solution and control input 

are updated, which ensure that the operation after the 

occurrence of disturbance is optimal. A case study about 

cyclic production with parallel CSTRs demonstrates that 

our approach is economically preferable compared to open 

loop strategy. 

Modeling the integration of scheduling and control  

In this study, scheduling and control are modeled 

simultaneously. Process dynamic model is incorporated 

into the constraints of scheduling problem to form an 

integrated problem (MIDO) which is further discretized 

into a Mixed Integer Nonlinear Programming (MINLP). 

       In this work we study cyclic production (Figure 1) i.e. 

the production wheel is divided into five slots in which 

one product is produced. It should be pointed out that the 

scheduling part of the discretized model is the same as the 

one considered by  (Flores-Tlacuahuac and Grossmann 

2006). 

 

Figure 1: Cyclic production of five products in five slots  

However, the control part and the overall objective 

function of our model are different in our work. To 

achieve economically optimal operations of chemical 

process, we formed the objective as maximizing profit per 

unit time, which can be calculated as follows:, 

Profit per Time = (Revenue – Inventory cost – raw 

material cost)/Cycle time 
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where  1 2 3, ,    represent the profit rate, inventory cost 

rate and raw material cost rate, respectively. Unlike the 

objective in  (Flores-Tlacuahuac and Grossmann 2006), 

we do not incorporate state variation in 
3 . There are two 

reasons for this. First the state variables and manipulated 

variables have different dimensions so it has no physical 

meaning to combine them. The other is that it is difficult 

to quantify state variation economically. Intuitively, 

minimizing raw material consumed during transition 

periods implies that state fluctuation is restrained. 

Products Assignment 
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If product i is assigned to slot k, binary variable 1iky  , 

otherwise 0iky  . Each product is assigned to one slot by 

Eqs. (5) and (6). Binary variable 
ipkz  indicates a transition 

from product i to p at slot k. It is assumed that 
s pN N .

 

Demand Constraints 
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Equation (12) implies that the total amount produced of 

each product, which can be calculated as Eq. (13), should 

satisfy the demand in the current production wheel. 

Equation (14) defines the production rate as a function of 

feed flow and conversion. 

Processing Times 
max , ,ik iky i k  
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Constraint (15) gives the maximum duration allowed for 

producing product i in slot k. Equations (16) and (17) 

define the time span of product i and slot k respectively. 

Timing Constraints 
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Equation (18) calculates the transition time from product i 

to p in slot k. The starting point and ending point for each 

slot are obtained using Eqs. (19)-(22). 

Dynamic Optimization 

       Using the collocation point method applied in  

(Flores-Tlacuahuac and Grossmann 2006) it is found that 

the solution of the integrated problem is quite sensitive to 

initial value. Thus we used RK4 discretization method 

which is proved more stable for the case studies 

considered here. To explain this method briefly, let’s 

assume that each slot is divided into f elements. 

1 1( , , , , , , ), , ,n n n m
kf kf kf kf kf kfx f t x x u u n k f 

 (23) 

1n n
kf kfK x

      (24) 
12 ( 0.5 , 0.5 1 , , )n n n n m

kf kf kf kf kf kfK f t h x K u u  
  (25) 

13 ( 0.5 , 0.5 2 , , )n n n n m
kf kf kf kf kf kfK f t h x K u u  

  (26) 
14 ( , 3 , , )n n n n m

kf kf kf kf kf kfK f t h x K u u  
  (27) 

1
k

e

h
N



      (28) 

 , 1

1
1 2 2 2 3 4

6

n n n n n n
k f kf k kf kf kf kfx x h K K K K     

 (29) 

where f represents the explicit description of the dynamic 

and can be obtained by studying the reaction mechanics in 

certain reactors. The first-order derivative of the state at 

each step can be calculated with Eq. (23). Through the 
calculation of intermediate variables

1 2 3 4, , ,K K K K , the 

state of the next step is obtained by Eq. (29). 

Initial and Final Controlled and Manipulated Variable 

Values at Each Slot 
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      The steady state values for each slot 
, ,,n m

ss i ss ix u   are 

computed in advance by simulating the process at steady 

state condition. Equations (31) and (32) produce the 

desired state value at each slot. Besides, the state variable 
n
fckx

 
and manipulated variable m

fcku
 
at each discretization 

point should be confined by their lower bounds (i.e. 

min
nx min

mu ) and upper bounds (i.e. 
max
nx max

mu ). 

Closed loop implementation 

      We propose a closed loop strategy for implementing 

integration of scheduling and control in chemical 

processes whose state variables are subject to disturbance. 

To make it more applicable to real processes, we assume 

disturbance is un-measurable but can be observed as state 

deviation. The state is monitored at every step. A threshold 

is set up to determine whether the manipulated variable for 

the next step remain the same as reference or be updated 

through solving the integrated problem for the remaining 

slots. One limitation is that the time needed for solving the 

integrated problem should be less than the sample step. 

More specifically, as shown in Figure 2, we first solve 

the integrated problem off-line and obtain the scheduling 

solution and control input as reference. Then the solution 

is implemented in the process. If the state deviation from 

reference is less than the threshold, no update is needed. If 

it is greater, which means significant disturbance occurs, 

the current state information is feedback, and the 

integrated problem is solved again for the remaining part 

of the production cycle. New solution for the integrated 

problem is generated at the point of disturbance. Thus both 

the scheduling solution and control input are updated, 

which ensure that the operation after the occurrence of 

disturbance is optimal. 

 

Figure 2: Flow chart of closed loop implementation 

The main steps of the proposed approach are as follows:  

Step 1: Solve original problem, obtain the solution of    

scheduling and control as reference 

Step 2: At time point n, implement the solution, detect      

state deviation from reference 

Step 3: Compare the deviation to the threshold 

Step 4: If deviation is smaller than threshold, go to Step 6 

Step 5: If deviation is greater than threshold, re-solve the 

integrated problem, generate new solution of scheduling 

and control, and go to Step 6 

Step 6: n=n+1, go to Step 2 

Case study: Cyclic Production with Parallel CSTR 

      In order to test the effectiveness of closed loop 

implementation and its superiority over open loop 

implementation, we applied our approach in a case study 

and provide the quantitative comparison between open and 

closed loop strategy. The recipe and data set of this case 

study are given in (Flores-Tlacuahuac and Grossmann 

2010b). Reaction 3
k

R P takes place in parallel 

isothermal CSTRs with reaction rate 3
R Rr kC  . Five 

products, A, B, C, D, and E, differentiated by 
RC , are 

manufactured in two production lines. Cyclic mode, which 

is shown in Figure 1, is carried out in each production line. 

Mass balance in the reactor generates a dynamic model as 

 0
R

R R

dC Q
C C r

dt V
  

     (36)
 

where 0C  is feed stream concentration and Q is the feed 

flow (i.e. manipulated variable). RC  is concentration of 

the outflow. It is taken as an indicator of different product 

(i.e. the state variable). We are given the following values 
of design and kinetic parameters, 0 1C mol L , 

5000V L , 2 22 ( )k L mol h , and market information 

provided in Table 1. The steady state values of each 

product in Table 1 are calculated in advance. 

       We take advantage of the cyclic feature within each 

line, and assign product that has the smallest No. to the 

first slot by introducing constraints in Eq. (37). This would 

reduce the complexity without affecting the optima. 
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The objective in this case is to maximize profit per 

hour which is expressed in equation (1). Decision 

variables consist of sequence of production, production 

time, amount manufactured of each product, transition 

time and manipulated variable (i.e. feed flow rate) in 

transition periods. They are determined simultaneously by 

solving an integrated optimization problem. We 

formulated an MINLP on the basis of the discretized 

model described above. The problem has 3010 variables 

and 4048 constraints. It took 37s to solve it with 

GAMS/SBB solver on a 3GHz CPU/1GB RAM computer.  

The solution is obtained as shown in Figure 3. One line is 



  

 

fully dedicated to producing A (dash line), and the other 

line produces B, C, D, and E (solid line). To find an 

appropriate number of elements in each slot, we divided 

the transition period with different number of elements 

and found that 60 elements is an acceptable tradeoff 

between computational complexity and computation time.  

Table 1. Steady state and market information 

Products ( )Q L hour

 

( )RC mol L

 

Demand 

( )kg hour   
Price 
($ )kg  

Inventory 
cost ($ )kg  

A 10 0.0967 6 200 1 

B 100 0.2 4 150 1.5 

C 400 0.3032 7 130 1.8 

D 1000 0.393 6 125 2 

E 2500 0.5 8 120 1.7 

 

Disturbance is introduced to the line producing four 

products. The state is deviated from 0.5 to 0.45 at 50 

hours. With open loop strategy, the pre-calculated solution 

of scheduling and control is implemented during the whole 

process independent of the existence of a disturbance. As 

shown in Figure 5, the current state information is not 

communicated to the controller, and control inputs remain 

the same as that of pre-calculated. However, the closed 

loop strategy reacts instantly to the disturbance, making 

the process go to product C instead of continuing 

producing E (Figure 4). 

Table 2 provides quantitative comparisons between 

closed loop and open loop implementation. Profit per hour 

of open loop strategy is the lowest because product E is 

less produced and raw material is wasted due to 

disturbance. The closed loop strategy gains a slightly 

lower profit than pre-calculated one but a higher profit 

than open loop strategy because it implement the updated 

solution, which guarantee economical operations for the 

remaining part in the production cycle.  At the event of 

disturbance (i.e. state is deviated from 0.5 to 0.45), 

controller decreases the feed flow rate and the process 

goes to product C, and then goes back to E after C and D.       
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x: State in transition periods

x: State in production periods

u: Control input in transition periods, scaled down as U=U/4000
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Figure 3: Solution for the original integrated problem 
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Figure 4: Closed loop implementation 
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Figure 5: Open loop implementation 

 

       The open loop strategy generates less profit because it 

uses the pre-calculated manipulated variable on the real 

process regardless of the existence of the disturbance. 

When the state variable is deviated due to disturbance, 

closed loop strategy implement the updated control input. 

However, open loop strategy does not react to disturbance, 

which results in less production.     

Table 2. Quantitative comparisons of closed loop 
implementation and open loop implementation 

Items Original 

solution 

Figure 3 

Closed loop 

Figure 4 

Open loop 

Figure 5 

Scheduling Solution B-E-C-D B-E1-C-D-

E2 

B-E-C-D 

Cycle Time (Hr) 100 100 100 

Profit per Hr ($) 90720.1 88945.9 85319.2 

Revenue per Hr ($) 128767.2 127637.7 125047.2 

Cost of Inventory 

per Hr ($) 

16391.1 16917.5 18071.9 

Cost of Raw 

Material per Hr ($) 

21655.9 21774.1 21655.9 

 



  
 

 

Conclusions 

     In this study, we formulated a closed loop 

implementation of simultaneous scheduling and control 

and apply it to parallel CSTRs with cyclic production. We 

follow the work of (Flores-Tlacuahuac and Grossmann 

2010b) in modeling the integrated problem as a MIDO 

problem. However, we discretize the dynamic model using 

Runge-Kutta method instead of using collocation points 

(Flores-Tlacuahuac and Grossmann 2010b), because we 

found that RK4 is less sensitive to initial values in 

searching for optima with SBB algorithm. Moreover, the 

state variability is not included in the objective function.  

     We built a feedback scheme in implementing 

simultaneous scheduling and control to real process 

subject to disturbance. In this work, we assume that 

disturbance is unpredictable and un-measurable. When 

disturbance occurs, we obtain the state deviation by 

comparing the current state value with the reference value, 

and feedback the state information to controller to 

generate new control input if the deviation is significant.  

The case study results illustrate that the closed loop 

strategy is effective in decreasing the influence of 

disturbance and leads to higher profit gains.  

      One issue that should be point out is that the 

optimization algorithm SBB cannot guarantee global 

optima in solving MINLP. Future work will focus on 

using parametric MPC in dealing with disturbance. 
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