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Abstract— The Identification of high fidelity models is a
critical element in the implementation of high performance
model predictive control (MPC) applications in the industry.
These controllers are large in size with input-ouput dimensions
ranging from 5×10 to 50×100. Identifying models of this scale
accurately is a time consuming and demanding exercise. In this
work, we present a novel approach wherein an information
rich test signal is generated in closed loop by maximizing
the MPC objective, as opposed to minimization that is done
in the standard controller. We show that the proposed input
design approach is T-optimal (trace optimal) for autoregressive
exogenous input models. Our approach automatically accounts
for the input and output constraints and is implemented in a
receding horizon manner. It is demonstrated through simulation
examples on both well and ill-conditioned processes.

I. INTRODUCTION

Model predictive control has become the norm for multi-
variable constrained processes where regulatory control tech-
niques are faced with severe limitations. Standard interfacing
protocols now allow for faster deployment of advanced
control applications in a plant setting. Unfortunately, the
approach to step testing and modeling has remained largely
unchanged and performed by moving one variable at a time.
This is primarily due to: (a) lack of appropriate tools, and
(b) lack of industrial awareness of closed loop identification
theory. Surveys of state-of-the-art in MPC technology are
available in Qin and Badgewell (2003), Bauer and Craig
(2008).

Dynamic models play a central role in MPC technology.
Industrial experience has shown that the most challenging
and time-consuming task in an MPC commissioning project
is that of step testing and model identification. A traditional
approach to step testing would involve a control engineer
who spends many shifts in the control room operating the
plant in open loop. Additionally, during MPC maintenance
phase, the main task is often model re-identification. A
traditional model identification test on a refinery unit, such
as the crude unit, can take several weeks. The quality
of collected data depends primarily on the experience of
the control engineer. After the test, it can take significant
time to analyze the data and to identify appropriate mod-
els. Currently available modeling tools involve significant
amounts of trial and error to make the models conform to
the industrial data. At the end of the modeling exercise, the
control engineer is left with, at best, an intuitive feel for the
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fidelity of the individual models. Since the models form the
heart of any MPC application, it is critical that the project
team has confidence in the models before deploying them
online.

There is a growing demand for more efficient model
identification methods that reduce duration of plant tests, the
time needed for model identification and the disturbances to
optimal operation of the plant during the test. The quality of
models estimated and the efficiency of these identification
methods depend on the choice of input during the plant
test and whether the test is done under open or closed loop
conditions.

There is extensive literature on designing inputs for linear
processes (Goodwin and Payne, 1977; Ljung, 1999; Hjal-
marsson, 2005; Jansson and Hjalmarsson, 2005; Qin, 2006).
While a large portion of the literature focusses on input
design under open loop, there have also been some attempts
to articulate the need for closed loop identification and its
relevance to high performance controllers in general (Van
Den Hof and Schrama, 1995; Gopaluni et al., 2003; Gopaluni
et al., 2002; Forssell and Ljung, 1999; Forssell and Ljung,
2000). These traditional approaches to input design are based
on finding an optimal input sequence that minimizes a
function of the parameter covariance matrix. Consequently,
there are a few common challenges to implementation of
these input design algorithms: (a) the optimization problem
involved is often nonconvex, (b) the optimal input depends
on the “true” process model, and (c) the input and output
constraints are not explicitly accounted. To the best knowl-
edge of the authors, Cooley and Lee (2001) and Jansson and
Hjalmarsson (2005) are some of the few articles that attempt
to formulate a convex input design optimization problem and
account for constraints.

In this work, we explore a novel approach to the generation
of an information rich test signal relevant to MPC applica-
tions. The idea of using a model predictive framework based
on the current controller model is formulated to calculate a
set of moves that maximize the output (controlled variable)
variability to the extent allowed by the process constraints.
The test moves are then implemented in receding horizon
manner, i.e., the first step or move is implemented and the
entire sequence recalculated at the next sampling instant. We
show that this approach is equivalent to designing a T-optimal
(trace optimal) input for autoregressive exogenous (ARX)
input models. The application of the model predictive input
design approach is demonstrated through examples on both
well and ill-conditioned processes.

This approach has numerous advantages: (a) the input is



designed by solving a convex optimization problem, (b) the
receding horizon nature of the algorithm ensures that the
“true” process model is not needed, (c) the input and output
constraints are explicitly included in the input design opti-
mization problem, (d) the plant tests are done in closed loop,
and (e) the implementation in off-the-shelf MPC technology
is rather straightforward.

II. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) is a technique commonly
used in advanced process control (APC) applications in the
industry for the last 30 years. Its success in industry has been
due to (1) its ability to capture the fundamental relationships
in a process unit in the form of an empirical model, and (2)
its ability to handle tradeoffs between process constraints and
drive the unit to its most profitable constraint.

The dynamic layer of any industrial MPC application
relies on minimization of a multi-step objective function to
calculate a sequence of moves for the inputs. Only the first
of these moves is implemented and the rest are discarded.
The calculations are repeated at each sampling instant to
give it a receding horizon nature. Based on a linear dynamic
model, the following quadratic objective is minimized at
every instant to calculate the sequence of future moves,

J(k) = (r(k)−y(k))T
ΓΓΓ(r(k)−y(k))+∆u(k)T

ΛΛΛ∆u(k) (1)

where

r(k) =
[
r1(k)T r2(k)T · · · rny(k)

T ]T ∈ RPny×1

ri(k) = [ri(k+1) ri(k+2) · · · ri(k+P)]T ∈ RP×1

y(k) =
[
y1(k)T y2(k)T · · · yny(k)

T ]T ∈ RPny×1

yi(k) = [yi(k+1) yi(k+2) · · · yi(k+P)]T ∈ RP×1

∆u(k) =
[
∆u1(k)T

∆u2(k)T · · · ∆unu(k)
T ]T ∈ RMnu×1

∆ui = [∆ui(k+1) ∆ui(k+2) · · · ∆ui(k+M)]T ∈ RM×1.

In the above formulation, P and M are the prediction
and control horizons, respectively, and ΓΓΓ and ΛΛΛ are the
output and input weighting matrices. r(k), y(k), and u(k)
denote the set points, the outputs and the inputs at at the
sampling instant k. The number of inputs and outputs are
denoted by nu and ny, respectively. ∆ is the difference
operator. The estimated model is used to predict the future
outputs over the prediction horizon. This objective function
is minimized subject to process operating constraints. The
following quadratic program is solved at every sampling
instant,

minimize
∆u(k)

J(k)

subject to yL ≤ y(k)≤ yH

uL ≤ u(k)≤ uH

∆uL ≤ ∆uk ≤ ∆uH

where ()L and ()H are lower and upper bounds on the
corresponding variables.

One of the main advantages of the MPC technology is
its ability to formulate the input and output constraints in
a consistent way, and ensure that they are satisfied to the
extent possible in any process situation.

III. OPTIMAL INPUT DESIGN

A. The Approach

The problem of optimal test input design is one where the
information content in a given data set has to be maximized
in the context of the process model being identified and
the controller for which the model is being developed. For
example, if one is designing a PID controller with the model
being identified, the frequency ranges in the input signal
could be different than the frequency ranges if the intended
application is a model predictive controller. The input design
for a multivariable process is often based on different prin-
ciples than that for a univariate process, especially when the
process is ill-conditioned (Koung and MacGregor, 1994).

When designing a test sequence for a MPC application,
the main tradeoffs are between exciting the process to
the maximum extent possible and maintaining the process
within the constraints. The level of process excitation or
information content is often expressed through the condition
of persistent excitation, which ensures that the “information
matrix” is well conditioned. Shouche et al. (1998) had taken
the approach of imposing the condition number of the infor-
mation matrix as an explicit constraint in the MPC objective
function. This approach ensures that the designed input is
capable of exciting the process to the extent permitted by
the constraints.

In the present approach, we reformulate the MPC objective
function to calculate a sequence of input moves that are
capable of maximizing the variability in the outputs while
attempting to satisfy input/output constraints. The duality of
the control/identification problems is exploited in formulat-
ing the objectives of the input design problem. A receding
horizon approach is taken to meet the process constraints in
the presence of time-varying disturbances.

We propose to solve the following optimization problem
to design the optimal input for exciting a process with the
model predictive controller,

maximize
∆u(k)

J(k)

subject to yL ≤ y(k)≤ yH

uL ≤ u(k)≤ uH

∆uL ≤ ∆u(k)≤ ∆uH .

Note that similar optimization problems are solved in the
input design and control formulations. The only difference
being whether the objective function is maximized (input
design) or minimized (control). The proposed formulation of
input design will result in calculation of a set of moves that
maximize the input/output variability to the extent allowed
by the constraints. The first move in the test sequence is
implemented and the rest are discarded, similar to the MPC
control sequence.



B. T-Optimality

Optimal inputs are often designed by minimizing some
function of the model parameter covariance matrix. In this
section, we show that the MPC objective J(k) is in fact
proportional to the trace of inverse of parameter covariance
matrix (in other words trace of the information matrix) for
ARX models and therefore the proposed input design method
is T-optimal.

The information matrix depends on the type of model
structure used in the identification exercise. Typical model
structures used in MPC identification are: (1) finite impulse
response (FIR) models, and (2) ARX/Box Jenkins model
structures. If a FIR model structure is used, the model iden-
tification typically involves solving a least squares problem.
The information matrix consists of past inputs all the way up
to the steady-state time of the process. If an ARX structure
is used, the information matrix at the identification step
comprises of past inputs and outputs up to the model order
chosen. Many modern identification methods (Zhu, 2001)
rely on using high order ARX models to initially identify
the process. Subsequently, these models are reduced to lower
order models to present the models in a form compatible
with the intended MPC or PID application. Therefore in
the following paragraphs we show that maximizing MPC
objective is equivalent to maximizing the information matrix
of an ARX model.

Let us consider a multivariable ARX model of the follow-
ing form (for the ith output)

Ai(q)yi(t) = Bi1(q)∆u1(t)+Bi2(q)∆u2(t)+ · · ·
+Bim(q)um(t)+ e1(t)

where Ai(q) is a polynomial of order ni for i = 1 to n and Bi j
is a polynomial of order mi j for j = 1 to m. Assume that the
noise sequences ei(k) are independent. The Ai(q) and Bi j(q)
polynomials are of the form

Ai(q) = a(0)i +a(1)i q−1 + · · ·+a(ni)
i q−ni

Bi j(q) = b(0)i j +b(1)i j q−1 + · · ·+b
(mi j)
i j q−mi j

where a(.)i and b(.)i j are coefficients of the respective polyno-
mials. These coefficients can be easily estimated from data by
solving a simple least squares problem (Ljung, 1999). Note
that the ARX model uses differenced input. Let us consider a
time period from t = k to k+N, where N denotes the number
of samples considered. By stacking the outputs during this
period and expanding the corresponding ARX models, we
can write

yi = Ziθi + ei (2)

where yi = [yi(k) · · · yi(k+N)]T , Zi is a corresponding data
matrix obtained using the ith ARX equation and θi is a vector
of corresponding parameters in Ai(q) and Bi j(q). Similarly
ei = [ei(k) · · · ei(k + N)]T . Now stacking together similar
linear equations for each output, we can create the following
set of equations

y = Zθ + e

where y = [y1
T y2

T · · · yn
T ]T , Z = diag(Z1,Z2, · · · ,Zn)

1,
θ = [θ1

T
θ2

T · · · θn
T ]T and e = [e1

T e2
T · · · en

T ]T . The least
squares solution to the parameter vector, θ is given by

θ̂ = (ZT Z)−1ZT y (3)

and the corresponding variance of the estimated parameters,
θ̂ is proportional to (Ljung, 1999)

cov(θ̂) ∝ (ZT Z)−1. (4)

The matrix F := (ZT Z) is also called Fisher information
matrix and is inversely proportional to the parameter co-
variance matrix. Inputs for system identification are often
designed by minimizing some function of this parameter
covariance matrix. For instance, we can minimize the trace
(A - optimal design), eigenvalue (E - optimal), or determinant
(D - optimal) of the covariance matrix. The minimization of
the inverse of the covariance matrix often is a nonlinear and
complex function of the inputs and therefore not amenable to
convex optimization techniques. Instead, maximization of a
function of the information matrix tends to be convex prob-
lem. The following proposition shows that the maximization
of the trace of information matrix (also called T - optimal
design) is equivalent to maximization of the MPC objective
function under some mild technical constraints.

Proposition 1: The MPC objective J(k) as defined in (1)
is proportional to trace(F) for small order ARX models
with appropriate choice of input and output weights, and
prediction horizons.

An outline of the proof of this proposition is presented
in the appendix. This result essentially states that the input
designed by maximizing J(k) subject to process constraints
will also maximize the trace of the information matrix.
Therefore the proposed approach is T-optimal.

The use of the MPC objective function ensures that outputs
are given adequate importance during the test sequence
design process. Additionally due to the process conditioning,
if it is necessary to move one or more inputs in a corre-
lated fashion, this will automatically result from the above
optimization step. The input and output prediction horizons
are assigned the same value to ensure consistency with the
identification step.

The use of the prediction horizon idea ensures that the
designed test sequence will be controller relevant, i.e., the
frequency ranges that are of interest to the MPC are given
more attention indirectly. The presence of the input/output
constraints in the test design formulation ensures that the
information content as defined by the objective function is
maximized to the extent allowed by the process constraints at
every sampling instant. The receding horizon approach, like
the MPC calculation, allows for the presence of unmeasured
disturbances. This leads to increased probability of constraint
satisfaction during the plant test.

A desirable consequence of retaining the MPC objective
function structure in the test sequence calculation is that

1diag(.) is used to denote a matrix obtained by stacking its arguments
along the diagonal



Fig. 1. Closed loop data from the MPC operation.

in theory any MPC application is inherently capable of
switching into a testing mode without the need to use
additional software. Simply changing the objective of the
optimization problem, from minimization to maximization,
will cause the application to go into a testing mode. Once
sufficient data has been collected, the application can return
to control mode by switching back the optimization mode
to minimize. In the following section we present results of
using this formulation on two representative processes - one
which is well conditioned and the second an ill-conditioned
one

IV. SIMULATION EXAMPLES

A. Example 1 - Well Conditioned Process

A 3×3 process was used for this example. The model is
based on a crude distillation column with the outputs being
purities and inputs being flows and temperatures. A MPC was
designed and implemented on this simulated process with
the following tuning parameters and constraints. No model
plant mismatch was considered for this case. The following
parameters were used in simulations: P = M = 5, uL =−20,
uH = 20, yL = −2, yH = 2, Γ = Λ = −I. White noise of
variance 0.1 was added to each output.

The controller generated data looked very similar to a
standard closed loop experiment. Figure 1 shows the data for
the three inputs and outputs generated by the controller alone
without the addition of any external persistent excitation.

A higher order ARX model was used to identify models
from the above data. The above data was divided into
equal estimation and validation data sets. Figure 2 shows
a comparison of the identified models with the true system.

Model validation was done through monitoring of the
residuals, quality of the predictions on the validation data
set and the confidence intervals on the identified parameters.
Figures 3 shows the fit between data and the model for the
three outputs.

B. Example 2 - Ill Conditioned Process

The proposed approach is demonstrated here on a high
purity distillation column simulation. By its very nature, high
purity distillation columns tend to be ill-conditioned from a
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Fig. 2. Comparison of the estimated model (dash-dotted) and actual (solid)
step responses from the experiment data.

Fig. 3. Model predictions from estimated model.

systems point of view. As such, conventional perturbation
methods do not yield expected results for model identifi-
cation purposes. Moving the process inputs independently
leads to inaccurate identification of the weak gain directions
- (Cooley and Lee, 2001; Koung and MacGregor, 1994). To
design optimal perturbation for these types of systems one
has to adopt one of the following approaches: (1) Use a
priori knowledge to move inputs in a correlated fashion, the
degree of correlation being dependent on the process model,
which is often unknown at the identification stage, and (2)
conduct the experiment under closed loop conditions and
rely on the controller to provide the necessary correlation to
identify the strong and weak gain directions accurately. The
process model along with its singular values is shown in
Figure 4. This is a 2×2 process with the following transfer
function,

G(s) =
[ 0.878

τs+1 − 0.864
τs+1

1.0819
τs+1 −

1.0958
τs+1

]
(5)

where τ = 194, and

W =
[−0.6246 −0.7809
−0.7809 0.6246

]
V =

[−0.7066 0.7077
−0.7077 −0.7066

]
Σ =

1√
τ2ω2 +1

[
1.9721 0

0 0.0139

]
cond(G) =

σ1(ω)

σ2(ω)
= 141.732

where W and V are the unitary matrices of singular value
decomposition, Σ is the matrix of singular values and ω



Fig. 4. Comparison of the singular values - estimated model (dash-dotted)
with the true system (solid).
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Fig. 5. Open loop excitation shown in the output space (red straight lines
denote the directions of the two column vectors in V ).

denotes the frequency. As can be seen from the singular
values, the system is poorly conditioned. Conventional open
loop step testing approaches can often lead to models which
estimate only the strong gain direction. The input space of
an open loop PRBS type test is shown in Figure 5. The
receding horizon formulation was next used to carry out a
closed loop experiment for the system. The following tuning
parameters and constraints were used during the experiment:
P = M = 10, uL = −200, uH = 200, yL = −2, yH = 2,
Γ = −0.01I, Λ = −I. White noise of variance 0.1 was
added to each output with power of 0.1. The data from
the closed loop step test is shown in Figure 6. The data
shows significant excitation along the weak gain direction as
opposed to the open loop experiment in the Figure 5 where
the strong direction was dominant. The models estimated
from the closed loop experiment are compared in Figure 7.

It is even more instructive to look at the gains estimated
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Fig. 6. Output space with the receding horizon approach to experiment
design (red straight lines denote the directions of the two column vectors
in V ).
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Fig. 7. Comparison of the estimated model with the true system (green -
model, blue - true system).

from the two different approaches and their inverse,

K =
[0.8724 −0.8585

1.0751 −1.0890

]
K−1 =

[40.20 −31.69
39.68 −32.20

]
K1 =

[0.8253 −0.8114
1.0279 −1.0417

]
K−1

1 =
[40.59 −31.62

40.05 −32.16

]
K2 =

[0.6968 −0.7424
0.8940 −0.9269

]
K−1

2 =
[−38.10 −30.51
−36.75 28.35

]
where K is the gain of the true system, K1 is the gain
estimated from the closed loop receding horizon experiment
data and K2 is the gain estimated from the open loop data.
Note how different the inverse is for the open loop based
model from the true inverse. A controller based on the second
model can end up making moves in the wrong direction. This
is a direct result of not estimating both the gain directions
accurately. Inaccurate estimation of gain directions can have
significant impact on the controller performance, especially
for the optimization or linear programming layer of the
controller.

V. CONCLUSIONS
The proposed approach has many advantages: (1) ability

to handle constraints in a predictive way during the step test,



(2) ability to deal with ill-conditioned processes, (3) ability
to account for unmeasured disturbances and mitigating their
impact on constraint violations during the step test and (4)
ability to switch between control and step testing merely by
switching the objectives of the MPC.

On the other hand compared to traditional experiment
design approaches, it is not clear how the proposed method
will address excitation over different frequency ranges. It is
expected that the choice of the prediction horizon will influ-
ence the frequency content of the implemented signal. This is
a topic that needs further research. One of the advantages of a
conventional step testing approach is the transparency of the
move plan and complete control over the implemented move
sequence. In the case of the proposed approach, an automated
move plan is generated, the first move is implemented and
the rest discarded. The generated move plan is a function of
the: (1) input/output weightings, (2) input/output constraints,
(3) prediction horizon, (4) current model plant mismatch,
and (5) unmeasured disturbances. More work is needed to
establish the relationships between these parameters and the
calculated move sequence.

APPENDIX

Only a brief outline of the proof of proposition 1 is
presented in this section. We can easily show the following,

trace(F) = trace(ZT
1 Z1)+ · · ·+ trace(ZT

n Zn) (6)

and

trace(ZT
i Zi) =

k+N

∑
t=k

ni

∑
s=1

y2
i (t− s)+

m

∑
j=1

k+N

∑
t=k

mi j

∑
s=1

∆u2
j(t− s)

=
k+N−1

∑
l=k−ni

αi(l)y2
i (l)+

m

∑
j=1

k+N−1

∑
l=k−mi j

βi j(l)∆u2
j(l)

(7)

where

αi(l) =


l +1− k+ni (k−ni)≤ l ≤ (k−1)
ni (k−1)≤ l ≤ (k+N−ni)

k+N− l (k+N−ni)≤ l ≤ k+N−1
0 Otherwise

and

βi j(l) =


l +1− k+mi j (k−mi j)≤ l ≤ (k−1)
mi j (k−1)≤ l ≤ (k+N−mi j)

k+N− l (k+N−mi j)≤ l ≤ k+N−1
0 Otherwise

Now defining ααα(l) = diag(α1(l),α2(l), · · · ,αn(l), and βββ (l)
a matrix with elements βi j(l). Therefore

trace(F) =
k+N−1

∑
l=k−maxi(ni)

y(l)T
ααα(l)y(l)+

k+N−1

∑
l=k−maxi, j(mi j)

∆u(l)T
βββ (l)∆u(l) (8)

Now for N >> maxi(ni) and maxi, j mi j,

trace(F)≈
k+N−maxi(ni)

∑
l=k−1

y(l)T
ααα(l)y(l)+

k+N−maxi, j(mi j)

∑
l=k−1

∆u(l)T
βββ (l)∆u(l) (9)

Noting that ααα(l) and βββ (l) are constant in the above equation,
we have an MPC objective function with appropriate input
and output weights, and appropriate prediction horizons.
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