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Abstract 

Complex multimode processes may have dynamic operation scenario shifts and strong transient 
behaviors so that the conventional monitoring methods become ill-suited. In this article, a new particle 
filter based dynamic Gaussian mixture model (DGMM) is developed by adopting particle filter re-
sampling method to update the mixture model parameters in a dynamic fashion. Then the particle 
filtered Bayesian inference probability index is established for process fault detection. Furthermore, the 
particle filtered Bayesian inference contributions are decomposed among different process variables for 
fault diagnosis. The proposed DGMM monitoring approach is applied to the Tennessee Eastman 
chemical process with dynamic mode shifting and the results show its superiority to the regular 
Gaussian mixture model in terms of fault detection and diagnosis accuracy. 
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Industrial process monitoring is essential to safeguard 
process operation, ensure product quality and improve 
manufacturing profit. In literature, multivariate statistical 
process monitoring (MSPM) methods have been widely 
applied to various kinds of industrial processes with some 
success (Kourti and MacGregor, 1995, Qin, 2003, Bakshi, 
2004, Yu, 2011). The most well-known MSPM techniques 
include principal component analysis (PCA) and partial 
least squares (PLS) (Nomikos and MacGregor, 1994; 
Piovoso and Kosanovich, 1994; MacGregor and Kourti, 
1995). The monitoring statistics of PCA/PLS methods 
require the process data to follow multivariate Gaussian 
distribution approximately in order for their confidence 
limits are valid. In practice, however, the normal process 
data may not follow non-Gaussian distribution so that the 

traditional PCA/PLS monitoring approaches become 
inappropriate.  

More recently, different types of non-Gaussian 
process monitoring techniques such as independent 
component analysis (ICA) and Gaussian mixture model 
(GMM) have been developed and applied to complex 
chemical process monitoring (Lee et al., 2004, Yoo et al., 
2004, Yu and Qin, 2008, Yu and Qin, 2009, Yu, 2011). 
The ICA method takes into account the higher-order 
statistics in order to extract the non-Gaussian features 
from process data. The industrial processes are often 
characterized by shifting operation modes so that the data 
shows strong multimodality. In such situations, the 
objective function of negentropy used in ICA does not 
necessarily capture the multi-Gaussianity in multimode 



  
 
process data. Though the GMM based monitoring 
approach can nicely handle the multi-Gaussianity, it 
assumes that the multiple operating conditions and their 
corresponding prior probabilities remain unchanged 
during the entire plant operation. The issue may arise 
when the collected training data are not representative of 
all the operation scenarios under the actual prior 
probabilities or the mode shifting periods have strong 
transient behavior.        

In this paper, a new particle filter based dynamic 
Gaussian mixture model is proposed to monitor multimode 
processes with transient mode shifting or operation 
strategy changes. The initial mixture model is first 
estimated by the modified Expectation-Maximization (E-
M) algorithm. Then the particle filter is adopted to 
dynamically update the mixture model parameters and 
predict the time-varying operation shifts. The inferential 
monitoring statistics can thus be computed from the 
dynamic GMM and used to detect the abnormal events in 
the process. Furthermore, the inferential contribution 
indices are estimated to diagnose the process faults and 
identify the faulty variables. The utility of the present 
DGMM monitoring method is demonstrated through the 
application example of Tennessee Eastman process (TEP) 
with operating scenario changes and the monitoring results 
are compared to those of GMM approach. 

Review of GMM 

The multiple operating modes in normal process can 
be characterized by different Gaussian components in 
GMM and the prior probability of each Gaussian 
component represents the percentage of total operation 
when the process runs at the particular mode. The 
probability density function of Gaussian mixture model is 
equivalent to the weighted sum of the density functions of 
all Gaussian components as given below: 
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where x  is a l -dimensional measurement sample, i  

denotes the prior probability of the ith Gaussian 

component and ( | )ig x   is the multivariate Gaussian 

density function of the ith component. For each 

component, the model parameters to be estimated are i  

and { , }i i i   , the latter of which include the mean 

vector i  and covariance matrix i  (Duda et al., 2001). 

During the model learning, the following log-likelihood 
function is used as objective function to estimate the 
parameter values 
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where jx  is the jth training sample among the total N  

measurements. 
The static Gaussian mixture model can be estimated 

by the modified E-M algorithm through the following 
iterative procedure: 
 E-Step: compute the posterior probability of the jth 

training sample jx  at the sth iteration 
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where iC  denotes the ith Gaussian component. 

 M-Step: update the model parameters at the (s+1)th 
iteration 

( )

1( 1)

( )

1

( | )

( | )

N
s

i j j
js

i N
s

i j
j

P C x x

P C x
 







 (4) 

( ) ( 1) ( 1)

1( 1)

( )

1

( | )( )( )

( | )

N
s s s T

i j j i j i
js

i N
s

i j
j

P C x x x

P C x

  





 
 




 (5) 

( )

1( 1)

( | )
N

s
i j

js
i

P C x

N
  


 (6) 

To overcome the drawback of traditional E-M algorithm, 
the minimum message length (MML) criterion is used as 
model selection index to search for the optimal number of 
Gaussian components (Figueiredo and Jain, 2002).   

Particle Filter Based DGMM 

As the operation scenario may change over time, the 
Gaussian components and their model parameters need 
updates accordingly. Particle filter is a sequential model 
estimation technique and suitable for dynamic processes 
with non-Gaussian state-space latent variables, while the 
conventional Kalman filter is based upon the assumption 
that the state-space variables are Gaussian distributed. In 
this study, particle filter is employed to update the initial 
model parameters of Gaussian components and then 
trigger the mixture model re-learning. 



  

For the estimated mixture density function prior to the 
updates ( | )p x  , first generate a set of particle samples 

( )m
ty  with 1 sm N  . The posterior probabilities of 

those particles are set as the corresponding weights ( )m
t , 

which can be normalized as 
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The particle weights may be further approximated as 
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Then the effective number of particles may be adjusted as 
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The posterior filtered density function can be 
approximated as 
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where ( )   stands for the Dirac delta function. 

If the value of  effN  is less than sN , resample the 

particles and repeat the above calculations. After the re-
sampling stops, update the parameters of Gaussian 
components by plugging the particle samples into Eqs. 
(3)-(6).  

The step-by-step procedure of DGMM method is 
summarized below:                                                                         
(i). Estimate the Gaussian mixture model with the 
modified E-M algorithm; 

(ii). Generate initial particle samples 1 2{ , , , }ty y y  

from the estimated mixture density function from Step (i); 
(iii). Compute and normalize the corresponding weights 
  

1 2{ , , , }t    

(iv). Calculate  effN  and compare with sN . If 


eff sN N , go back to Step (ii) and repeat. Otherwise, 

stop and update model parameters of Gaussian 
components using the particle samples. 

Fault Detection and Diagnosis using DGMM 

With the particle filtered Gaussian components, the 
Bayesian inference based monitoring statistic can be 
computed and compared against the pre-specified 
confidence level for fault detection. The particle filtered 
Bayesian inference probability (PFBIP) index is expressed 
as 
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where Tx  is the test sample, K  is the updated number of 

Gaussian components after particle filter, ( | )i TP C x  

represents the posterior probability of Tx  within the ith 

particle filtered Gaussian component  iC , and ( ) ( )i
M TP x  

denotes the probability of the test sample Tx  outside of 

the Mahalanobis-distance based ellipsoid under the pre-set 
confidence level (1 ) 100%  , as computed from the 

following equation 
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It is noted that rD  is the regularized Mahalanobis 

distance and follows a 2  distribution with l  degrees of 

freedom (Mao and Jain, 1996; Yu and Qin, 2008). During 
fault detection, the process is identified as faulty operation 
when the PFBIP value is less than the confidence level. 
Otherwise, the process operation is determined as normal. 

To further diagnose the faulty variables once an 
abnormal event is detected, the regularized Mahalanobis 
distance metric can be decomposed as follows 
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(13)  

where ( )js  denotes the jth unit vector and   is a small 
number to remove the ill condition of particle filtered 

covariance matrix  i . Thus the particle filtered Bayesian 
inference contribution (PFBIC) index can be defined as 
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which is used to diagnose the leading faulty variables from 
the contribution plots. In practice, the above contribution 
index can be normalized so that the sum of all variable 
contributions equals one. 

Case Study 

In this research, the Tennessee Eastman process 
(TEP) (Downs and Vogel, 1993) is simulated to evaluate 
the effectiveness of the proposed DGMM based 
monitoring approach and the results are compared to those 
of regular GMM.   

The process includes 12 manipulated variables and 41 
measurement variables, among which there are 19 
composition variables sampled infrequently. The total 33 
continuous variables are selected as monitored variables 
and the sampling interval for data collection is 3 min. 
During normal operation, the process may run at any of 



  
 
the six modes as listed in Table 1. The process flow 
diagram and the list of monitored variables are shown in 
Figure 1 and Table 2, respectively.   

Based on the above possible operating modes, a test 
scenarios is designed to examine the performance of 
DGMM monitoring approach. In the test case, the entire 
operation period consists of three stages. During the first 
stage, the process is operated between Modes 1 and 4 with 
equal possibility. Then in the second stage, it runs at either 
Mode 3 or 6 with 60% possibility under Mode 3 while 
40% of Mode 6. In the last stage, the process is among 
Modes 4, 5 and 6 with equal possibility. Total 4500 
training samples are collected from the three operation 
stages with 1500 observations at each stage. In the test set, 
100 normal samples from either Mode 3 or 6 are generated 
and then followed by 200 faulty ones, which involve a 
slow drifting error in reaction kinetics.  

Table 1. Six operating modes in TEP 

Mode G/H Mass Ratio Production    
Rate 

1 50/50 7038 kg/h G/H 
2 10/90 1408 kg/h G 

12669 kg/h H 
3 90/10 10000 kg/h G 

1111 kg/h H 
4 50/50 Maximum 
5 10/90 Maximum 
6 90/10 Maximum 

 
 

 
 
Figure 1. Flow Diagram of Tennessee Eastman Chemical 

Process (Downs and Vogel, 1993) 

 

Table 2. Monitored Variables in TEP 

No. Monitored Variable 
1 A feed rate 
2 D feed rate 
3 E feed rate 
4 A+C feed rate 
5 Recycle flow rate 
6 Reactor feed rate 
7 Reactor pressure 
8 Reactor level 
9 Reactor temperature 

10 Purge rate 
11 Separator temperature 
12 Separator level 
13 Separator pressure 
14 Separator underflow 
15 Stripper level 
16 Stripper pressure 
17 Stripper underflow 
18 Stripper temperature 
19 Steam flow rate 
20 Compressor work 
21 Reactor cooling water temperature 
22 Condenser cooling water temperature 
23 D feed valve 
24 E feed valve 
25 A feed valve 
26 A+C feed valve 
27 Recycle valve 
28 Purge valve 
29 Separator valve 
30 Stripper valve 
31 Steam valve 
32 Reactor cooling water flow 
33 Condenser cooling water flow 
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Figure 2. GMM Based BIP and DGMM Based PFBIP 

Plots for Fault Detection 

Table 3. Quantitative Comparison of GMM and 
DGMM Approaches in Fault Detection 

Method Fault Detection Rate False Alarm Rate 
GMM 86.5% 8% 

DGMM 95.5% 2% 
 
The detected faulty samples are further fed into the 

diagnosis scheme to identify the leading abnormal 
variables. The GMM and DGMM based contribution plots 
are shown in Figure 3(a) and (b). When the slow drift 
error on reaction kinetics occurs, the reactor temperature 
and pressure drift away from the steady-state values. 
Subsequently, the reactor cooling water outlet temperature 
changes and causes the reactor cooling water flow to 
respond. Furthermore, the feed flows of reactants A, D 
and E should change in order to balance the reaction and 
catch up with the new steady states. The PFBIC plot in 
Figure 3(b) successfully points out the leading variables 
including reactor temperature, pressure, coolant flow and 
reactant feeds. The BIC plot in Figure 3(a), however, does 
not capture the faulty variables accurately due to the 
dynamic shifting effects of different operating modes. The 
mixture model identified from the training data in this 
situation is biased without mode trajectory updates. 
Therefore, both the fault detection and diagnosis results of 
regular GMM method suffer from the static operating 
scenario assumption. 
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Figure 3. GMM Based BIC and DGMM Based PFBIC 

Contribution Plots for Fault Diagnosis 

Conclusions 

In this article, a new dynamic Gaussian mixture model 
based fault detection and diagnosis method is proposed for 
complex multimode processes with time-varying operation 
scenario shifts. The particle filter algorithm is adopted to 
account for the dynamic mode trajectory and update the 
mixture model parameters. Then the particle filtered 
Bayesian inference probability index and contribution 
metric are derived to detect abnormal operation events and 
diagnose major faulty variables, respectively.  

The particle filtered DGMM approach is applied to 
the Tennessee Eastman process with shifting operation 
scenarios and the monitoring results are compared to those 
of GMM method. The superior performance of DGMM 
approach in terms of fault detection rate, false alarm rate 
and variable diagnosis demonstrates that it is a powerful 
technique to monitor non-Gaussian process with 
complicated operation scenario shifts and strong transient 
behaviors.  
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