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Abstract 

The population balance equation is used to describe the dynamics of a continuous crystallizer. A simple 

condition to guarantee the stability of a mixed suspended mixed product removal crystallizer is derived 

based on the population balance. A novel discretization scheme solves the population balance and the 

resulting discretized population balance is shown to be equivalent to the original population balance. 

The obtained condition is tested by simulations of the crystallization process. Furthermore an observer 

based estimator is developed to estimate the crystal growth rate and the simulation results show that the 

estimator is able to track its true value. 
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Introduction

Crystallization is a typical chemical process that 

yields a particulate product characterized by shape and 

size (Randolph and Larson, 1988). The population balance 

equation was initially formalized from a statistical 

mechanical perspective by Hulburt and Katz (1964). Since 

then a considerable amount of research in the area of 

crystallizer dynamics followed. Some work was motivated 

by the occurrence of limit-cycle behavior in continuous 

crystallizers (Randolph, 1980). Two explanations for the 

crystal size distribution (CSD) instability were given by 

studying population balance. The first explanation depends 

greatly on the sensitivity of the nucleation rate. Instability 

is induced by the high order kinetic relationship between 

nucleation rate and super saturation (Juzaszek et al., 1977).  

In the second case, CSD stability is explained by classified 

crystal withdrawal (Beckman and Randolph, 1977). Yu et 

al. (1975) obtained a condition for the occurrence of 

sustained oscillations in the continuous crystallizers by 

linearizing the system at certain steady states. Jerauld et al. 

(1983) introduced new dimensionless groups that depend 

on physical properties and control parameters and derived 

a simpler condition by excluding the effect on the steady-

state values of the state variables. Yin et al. (2003) 

investigated the influence of size dependent crystal growth 

rate on the stability and dynamics of continuous 

crystallizer using the similar approach. Du and Ydstie 

(2011) derived the global stability property of a specific 

particulate process using an entropy based energy 

function. The equivalent condition for discretized 

population balance is also obtained in their work. 

Numerous investigations have addressed the problem 

of stabilizing an oscillating crystallizer using feedback 

control. Early studies proposed to measure the moments of 

CSD on-line and to adjust the flow rate of the fines 

destruction system (Lei et al. 1971). Beckman and 

Randolph (1977) demonstrated that oscillation could be 

eliminated by manipulating the flow. Hashemi and Epstein 

(1982) linearized the set of ordinary differential equations 

resulting from the method of moments and used singular 

value decomposition to define controllability and 

observability indices. Myerson et al. (1987) developed a 

nonlinear optimal stochastic control scheme with an 

extended Kalman filter for state estimation. Rawlings and 

Ray (1987) showed that the residence time and radical 



  

 

desorption rate are found to be key parameters governing 

reactor stability. Eaton and Rawlings (1990) developed a 

model predictive control strategy for a batch crystallizer. 

Furthermore Eaton et al. (1993) reviewed the development 

of parameter estimation and presented a new method based 

on nonlinear optimization. A number of parameter 

estimation methods for batch crystallization were also 

summarized by Tavare (1995). Semino and Ray (1995) 

showed that CSD is controllable through the manipulation 

of feed concentrations in a continuous crystallizer. 

Dochain (2003) developed a class of observers do not 

require the knowledge of the process kinetics which are 

suitable for crystallization processes because it is difficult 

to obtain their reaction kinetics. Recently Christofides et 

al. (2008) provided a comprehensive overview of model 

based feedback control for crystallization processes.  

Huang et al. (2010) analyzed the nominal and robust 

stability for nonlinear recursive observers. Furthermore, 

they developed a fast moving horizon estimation strategy 

for online applications. 

The structure of this paper is as follows. The 

population balance is used to describe the dynamics of a 

continuous crystallizer. An energy function is developed to 

study the stability property of the particle phase. The 

condition to eliminate self-sustained oscillations is derived 

by investigating the energy function behavior in Section 2. 

A novel discretization scheme solves the population 

balance. We further demonstrate the equivalence of the 

discrete population balance with the classic one as the total 

number of discrete intervals increases. A condition is 

obtained using Tellegen’s theorem for the discretized 

population balance in Section 3. Finally we design an 

observer-based estimator to estimate the kinetic parameter 

of the continuous crystallization process in Section 4. 

Stability Condition of the Population Balance 

 

       In a mixed suspension mixed product removal 

(MSMPR) crystallizer, the dynamics of the crystals is 

described by the population balance. It relates the crystal 

distribution function relates to deposition, agglomeration, 

attrition, seeding and withdrawal. For a MSMPR 

crystallizer with a volume we have 
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where        is the number density of particles as a 

function of crystal size   and time  .   is the characterized 

length of crystals which are assumed to be spherical in this 

work.      is the number density of seed crystals whereas 

    is the volumetric seeding rate.      is the number 

density of particles in the product.   is the volumetric 

removal rate.   is the particle growth rate which is given 

by McCabe’s law.   and   are the birth and death rates 

which represent agglomeration and attrition. Such 

crystallizer behaves as though it is perfectly mixed. 

Further it has unclassified withdrawal which means that 

the size distribution of the product crystals is the same as 

that in the crystallizer,            .  

       Crystallization from solution is a two-step process. 

The first step is the birth of new crystals whereas the next 

is the growth of these crystals to larger sizes. Those two 

processes are known as nucleation described by Volmer’s 

model and crystal growth by McCabe’s law (Jerauld et al., 

1983). Here we assume that agglomeration or attrition is 

neglected and no seed crystals are feeding in.  

      Equation (1) is thereby rewritten so that we get the 

partial differential equation, 
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where   the growth rate and   the nucleation rate are 

expressed respectively as, 
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here    is the growth constant and      is the 

supersaturation of the mother liquid, which is the driving 

force of the crystal growth.   is the volume fraction of 

liquid phase.    and    are the kinetic constant of the 

nucleation rate.  

Substituting equation (3) and (4) into the population 

balance we get 
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The following theorem provides conditions for the 

stable operation of the particulate phase in the FBR. 

Simulation studies show that the condition is necessary in 

the sense that oscillations occur if it is violated. 

 

Theorem: The population balance in equation (5) 

converges to stable steady state       provided  
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where   is the crystallizer volume,   is the particle 

withdrawal rate,   is the particle growth rate and      is 

the minimum radius of the seeds feeding the bed. Other- 

wise the steady state is unstable. 

Proof: The relationship between the number density and 

the mass density of particles is given by 
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The mass density based population balance for 

spherical particles is obtained by substituting equation (7) 

into equation (5) 
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The deviation form of the mass density of particles is 

defined  

 ̅                                                            (9) 

where       is mass density at steady state. The 

parameters       remain unperturbed so that the 

deviation form of population balance is written 
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An energy function is now defined so that 
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where    is the concentration of a saturated solution,   is 

the density of crystals and   represents the granular 

temperature. The derivative of the energy function is 

obtained by differentiating      and use equation (10) to 

get, 

   

  
 

    
   

∫  ̅
    

    

 
   ̅

  
     

      
  

    
 

 

 
                                                   (12) 

Such that 
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In order to guarantee the particle phase is stable, it is 

therefore sufficient that the following condition is 

satisfied, 

 

 
 

    

  
                       

The energy function converges exponentially if the above 

condition is satisfied and this results in     stability for the 

system according to the definition of      in equation 

(11).  

 

Discretized Population Balance 

 

        The population balance in equation (5) is 

approximated with a system of ordinary differential 

equations by partitioning the crystal size into a finite 

number of intervals. The mass balance and the number 

balance were then established for each size interval to 

obtain a discrete version of the population balance. The 

approach ensures that conservation laws are maintained at 

all discretization levels and facilitates computation without 

additional discretization. The details of discretization 

scheme are in White et al. (2006). 

       The mass balance in each interval is expressed as 
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where    is the mass of crystals in the interval  ,    is the 

mass based growth rate and it is proportional to the surface 

area available for deposition, 

                                                                      (15) 

                                             

where    is the number of crystals and    is the crystal 

surface area in the interval  .    is the reaction constant. 

An extra term   is added in the mass balance for the first 

size interval due to nucleation as shown in Figure 1. 

       The crystals are assumed to be spherical, then the 

relationship between    and    is written as, 

 

     
 

 
 (

  

 
)
 

                                                            (16) 

 

        As the crystals grow they move from on size interval 

to the next. The rate of transition is represented by      for 

flow into and    for flow out of interval  . By comparing 

the mass balance and number balance in the same interval 
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       The deposition rate is proportional to the surface area 

and the mass transfer coefficient such that 

 

                                                                    (18) 

 

      The discrete version of population balance in equation 

(14) converges to the continuous population balance (5) as 

the number of size intervals approaches to infinity. Du and 

Ydstie (2011) have proven the resulting discretized 

population balance is equivalent to the continuous 

population balance in equation (1). From the proof of 

equivalence of the population balance and its discrete 

version, it is shown that 
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      The discretized population balance is represented in 

the format of a process network shown in Figure 1.  

 



  

 

The state of the network is given by 

 

  [          ]
  

 

where   is the total size intervals, which determines the 

accuracy of the discretization scheme. 

 
  Figure 1. Network representation of the 

                 discretized population balance 

        

Stability Condition for the Discretized Population 

Balance 

 

       The entropy based energy function is defined as 
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where    is the desired steady state and       is the 

entropy function in each discrete interval.   is the 

conjugated variable of   and defined as 
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      Alonso and Ydstie (2001) have shown that        is 

positive       
 . Therefore      is positive        

due to the additive property of entropy.       

     The derivative of      is calculated as 
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where    is the corresponding conjugated variable to the 

stationary steady state   . 

     The conjugated variable at each node of the networked 

representation is selected as the mass density of size 

interval   , i.e. 
  

 
. Substituting it into equation (24) and 

combining the discretized population balance in equation 

(14), we obtain,                                             
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Using eigenvalue analysis we are able to obtain the critical 

value of particle residence time 
 

 
 to guarantee the stability 

for the discretized population balance.  

We will compare those conditions for the population 

balance equations in different forms.  Moreover we will 

show that once the number of total size intervals is 

properly chosen, the critical value of particle residence 

time calculated from the discretized PB converges to that 

from the continuous PB in the next section.  

Simulation Results 

       We apply the proposed method to a MSMPR 

crystallizer. In this crystallizer, no crystals are fed and 

nucleus is produced by nucleation.  The kinetic parameters 

of nucleation rate and growth rate are listed in the table 1. 

Table 1. The process parameters of the 

crystallizer 

Parameters       Values 

                          

                                         0.005            

                                                        1000        

       

       

       

      

         

         

      

         980        

               50      

         0.001 

         1800       

         0.4    

         4    

         20 

From the previous derivation to show the equivalence 

between the population balance and the discretized one, 

we find out the relationship between    and   , 
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Based on the parameters given in the table 1,    is then 

calculated. 

Recall the stability condition in equation (6) and (15), we 

find out the sufficient condition for the elimination of limit 

cycles for the crystallizer. The simulation results for stable 

and oscillating behaviors are shown in Figure 2 and 3. 

Here            is calculated from equation (20).  

 

 

Figure 2.The oscillating behavior with 

F          

 

 

Figure3. The steady state behavior with 

F          

Using the parameters provided in Table.1, the stability 

condition for the continuous population balance is plotted 

on the left in Fiugre 3. The domain below the straight line 

is stable. In this example, the minimal size of the particles 

is 0.4 mm and hence the critical value for particle 

residence time is obtained. As to that for discretized 

population balance , the graph on the right shows that the 

particle residence time converges to the critical value for 

the continuous population balance as we increase the total 

number of size intervals for the scenario that minimal size 

equals 0.4mm.  

 

Figure 4. Stability condition for the crystallizer 

An Observer Based Estimator Design 

     The observer based estimation scheme uses information 

from the measured states and follows the line of reasoning 

for the design of Luenberger observers. An important 

difference with respect to the extended Luenberger is that 

the measured variables don’t appear as estimates in the 

observer equations but with their measured values. In our 

case, the total crystal mass can be measured on-line. It is 

unlikely to have a complete knowledge of the reaction 

kinetics for chemical reactors. Here the mass transfer rate 

from continuous phase to solid phase is not known so that 

it has to be estimated.  Based on the dynamics of the 

crystals described in equation (14), the dynamics of total 

mass of the crystals is  
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Using the total crystal mass   as the measurement 

and the reaction kinetic            as the unknown 

parameter which needs to be estimated, the resulting 

estimator is 
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Since  ∑     is the total surface area which is positive, it is 

a regressor which is persistently excited. We choose that 

   
  
 

 
 to control the convergence speed.  

Figure 5 illustrates the kinetics parameter estimation for 

   and state estimation for  , the total mass of crystals 

for the simulation shown on the top and bottom 

respectively. Simulation results show that the estimated 



  

 

value of    tracks the true value and the state estimator 

gives off-set free estimation of total mass of the crystals. 

 

 
Figure 5.Parameter tracking and state estimation 

 for the  crystallizer. 

Conclusion 

       In this work we derive the stability conditions for a 

MSMPR crystallizer and design an observer based 

estimator for the crystallization process.  An energy 

function is developed to develop the condition for the 

population balance which describes the dynamics of the 

crystals. Furthermore the condition for the equivalent 

discretized population balance is also developed. The 

conditions are tested by simulations. An observer based 

estimator is developed to estimate the reaction kinetics of 

the growth rate. The simulation shows the effectiveness of 

the observer.  
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