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Abstract

In this work, we explore how feedback control can be used to make chemical producers responsive to market forces through
dynamic operating policies. Using a toy model of a marginal chemical producer, we examine two different control strategies
for dealing with stochastic fluctuations in operating margins. These results provide a basis for exploring more complex
control problems that include the effects of market forces.
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Introduction

Many products of the chemical and petroleum industries are
fungible goods. They are highly liquid and in many cases
actively traded on centralized exchanges. Examples include
not only petroleum distillates but also common plastic such
as polyethylene and polypropylene. While this liquidity re-
duces market friction, it also subjects producers to rapid
changes and potential shocks in prices. Even in cases where
the products themselves are not explicit commodities, the
feedstocks are – petroleum and natural gas being prime ex-
amples. While financial instruments such as future contracts
and swap can be used to hedge against these potentially dis-
ruptive market forces, they may not always exist or their pre-
miums are too high. Additionally, these instruments prevent
producers from directly exploiting prevailing market condi-
tions, be they good or bad.

In this work, we explored how feedback control can
be used to make a chemical producer responsive to market
forces through the use of dynamic operating policies. To ex-
plore this problem, we developed a toy model of a marginal
chemical producer with variable capacity operating in a dy-
namic market environment. The problem is admittedly sim-
ple and borrows heavily from classic work on inventory con-
trol, production scheduling, and portfolio optimization (e.g.
[3]). However, our immediate goal was not to solve a realis-
tic problem but rather to explore the general nature of these
policies under very simplifying assumptions. In particular,
we sought to explore how these policies differ from the ones
traditionally used in chemical process control as a first step
towards addressing more complex problems.
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Problem Statement

Consider the idealized scenario where there are M identical
plants, each yielding the same operating profit or loss xt (e.g.
crack spreads) during the time interval [t, t+∆t). Our problem
is to determine at the current time t the number of plants that
should be active or idle at the future time t + ∆t when xt+∆t is
an unknown quantity. In other words, if each active plant will
yield a profit or loss of xt during the current interval [t, t+∆t),
then how many plants should be active at time t + ∆t?

We further assume that there are costs associated with
activating idle plants and idling active ones. Specifically, we
assign a cost cA associated with the action of activating an
idle plant at time t +∆t and a cost cD with the action of idling
an active plant t + ∆t. For simplicity, we take these costs to
be additive. In addition, we assume that there is a cost cI

associated with maintaining a plant in the idle state over the
interval [t, t + ∆t). Again, we take this cost to be additive.

This decision is clearly affected by our ability to accu-
rately forecast future operating margins. If these future val-
ues are known with certainty, then the problem is straight-
forward to solve. However, if these values are unknown,
then we can at best only base our decision on expected fu-
ture profits or losses. This in turn requires some measure of
our uncertainty. In particular, we need to assign probabilities
to our forecasts. To make the problem tractable, we assume
that the price dynamics are Markov and that the conditional
transition probabilities

P(xt+∆t | xt,mt)

are known, where the integer-valued variable mt is used to
denote the number of plants active during the time interval
[t, t + ∆t). Equivalently, we can model future profits and



losses using a discrete-time dynamic model of the form

xt+∆t = f (xt,mt,wt),

where wt is a random parameter that is characterized by the
conditional distribution P(·|xt,mt).

To mathematically formulate and numerically solve this
problem, we employ a dynamic programming framework in
discrete time over a discounted horizon. We begin by first
providing the stage costs associated with the time interval
[t + k∆t, t + (k + 1)∆t), hereafter denoted as stage k:

g(xk,mk,mk+1) = mk xk − cI(M − mk+1)
−cA[mk+1 − mk]+

−cD[mk − mk+1]+,

where, with abuse of notion, we employ the following sim-
plifying definitions: xk

∆
= xt+k∆t and mk

∆
= mt+k∆t. The

notation [·]+ is used to denote a function that returns the
argument only when it is positive and zero otherwise (i.e.
[x]+

∆
= max{x, 0}). Note that for the kth stage, the state vari-

ables are xk and mk and the manipulated variable is mk+1.
The first term to the right of the equality gives the oper-

ating profit or loss associated with running mk active plants,
the second the cost associated with keeping N − mk plants
idle, the third the cost associated with increasing the number
of active plants at the next time interval (mk+1 > mk), and the
fourth the cost associated with decreasing the number at the
next time interval (mk+1 < mk). Overall, the stage cost gk(·)
provides the operating margins given existing utilization mk

and changes to future utilization mk+1 during the time interval
[t + k∆t, t + (k + 1)∆t).

The total discounted cost over the horizon [t, t + N∆t) is

ΦN =

N−1∑
k=0

αkg(xk,mk,mk+1) + αNmN xN ,

where the parameter α, a real-valued number between zero
and one, denotes the discounting factor. The reason that we
consider a discounted cost is to account for the time value
of money. In general, current profits are more desirable than
those in the distant future.

Following Bertsekas [1], we formulate the control prob-
lem then as finding the set of policies

π = {µ0, µ1, . . . , µN−1}

that maximizes the expected profits over a discounted time
horizon

max
π

E {ΦN | x0,m0} ,

where µk is the control law that specifies the number of ac-
tive plants, mk+1, at time index k + 1 as a function of the
current profits and number of active plants at time index k
(i.e. mk+1 = µk(xk,mk)). Table 1 summarizes the governing
problem variables and parameters.

We can solve this optimization problem by applying the
dynamic programming algorithm:

Jk(xk,mk) = max
mk+1

E {g(xk,mk,mk+1)

+ αJk+1(xk+1,mk+1) | xk,mk} .

Table 1: Variable and parameter definitions

M Number of plants
N Horizon length
xk Operating margin at time k
mk Number of active plants at time k
cA Cost to activate idle plant
cD Cost to idle active plant
cI Cost to keep plant idle
α Discount factor
γ Risk factor

We refer to these sorts of policies as risk-neutral control be-
cause the governing optimization problem equally balances
profits and losses. In the next section, we discuss the solu-
tion structure and provide a numerical example. In subse-
quent sections, we consider the case where the producer is
risk sensitive.

From the perspective of control, these sorts of problems
are interesting as the setpoint is not defined a priori. Rather,
it is determined by producer prices and operating costs, vari-
ables that are not necessarily fixed but more often than not
fluctuate in an unknown manner in response to market con-
ditions. As a comparison, most process control problems
seek to robustly maintain and stabilize a system about some
known setpoint in the face of external disturbances. In the
problem considered in this work, the setpoint is not known at
future times and instead only the relevant conditional proba-
bilities are. In other words, the problem is to design a con-
troller that will enable a system to track a stochastic process.
This problem that falls within the general class of stochas-
tic pursuit-evasion games. However, the problem is more
naturally formulated using classical approaches based on dy-
namic programming and Markov decision processes.

Solution Structure: Risk-Neutral Control

The two-state (N = 1) problem admits the analytic solu-
tion:

mk+1 =


M if x̄k+1 ≥ (cA − cI)/α
mk if (cA − cI)/α ≥ x̄k+1 ≥ −(cI + cD)/α
0 if x̄k+1 ≤ −(cI + cD)/α,

where x̄k+1
∆
= E{xk+1 | xk}. In other words, if the profits

associated with increasing production exceed the costs as-
sociate with increasing capacity utilization then one should
operate at full capacity. Likewise, if the costs associated
with decreasing production are less than the losses associated
with decreasing utilization then one should idle all produc-
tion capacity. Interestingly, the solution exhibits hysteresis
or a deadband. In addition, only two controls are realized:
µk(·) = 0 or M. Note also that the optimal policy does not
depend on the number of active plants at time k: µk = µk(xk).

The linear structure of the cost function means that the
solution exhibits certainty equivalence. Similarly, one can
show that the N-stage problem exhibits the same bang-bang



type control with a deadband hysteresis (this same type of
bang-bang type control also arises in optimal control prob-
lems involving linear objective functions [7]). In particular,
the N-stage problem admits a solution of the form

mk+1 =


M if x̄k+1 ≥ uN

mk if lN ≥ x̄k+1 ≤ uN

0 if x̄k+1 ≤ lN ,

where the bounds uN and lN are functions of the parameters
and horizon length. As will be shown in the numerical exam-
ple below, the only change as the horizon length N increases
is that the size of the deadband uN − lN deceases as the longer
horizon affords more aggressive control.

Example: Risk-Neutral Control

As an illustrative numerical example, consider the case
where x̄k+n = xk for all n ≥ 0 (i.e. xk is a discrete-time
martingale). The results are shown in Figures 1 and 2 for
the parameter values: M = 10, cA = 1.0, cD = 1.0, cI =

0.5, α = 0.95). The key observation, as noted previously, is
that the size of the threshold, uN − lN , decreases as the hori-
zon length N increases. Basically, the control becomes more
aggressive as longer horizons afford more opportunities for
future recourse. Not unexpectedly, the benefits are greatest
when there are many active plants when margins are nega-
tive or many idle plants when margins are positive because a
dynamic policy enables corrective action.

Figure 1: Switching threshold as function of horizon length.
The black line denotes uN and the gray line lN . The dashed
lines denote the respective thresholds for N = 1 as deter-
mined from the analytical solution.

Risk-Sensitive Control

One limitation of the preceding formulation is that the opti-
mal policy does not directly account for stochastic fluctua-
tions in the operating margins. The policy is the same if the
volatility is large or small. In practice, one often desires a
more cautious policy if the expected margins xk are volatile
versus a more aggressive one if they are not. This choice ul-
timately reduces to a question of risk tolerance: how much

Figure 2: Expected benefit per time associated with employ-
ing a stationary dynamic policy (N = ∞) as opposed to static
one (µk(xk,mk) = mk) as a function of the initial conditions
x0 and m0.

risk is the producer willing to incur in order to maximize fu-
ture profits? In the preceding example which we termed risk
neutral, a large profit followed by an equally large loss is
equally preferably to no profit at all. When the producer is
risk sensitive, the later scenario is more preferable than the
former.

In order to devise a risk-sensitive operating policy, we
need to numerically represent the producer’s tolerance for
risk. The standard approach is to employ a utility function
U(x) that assigns numerical values to different possible out-
comes based on the producer’s tolerance to risk [4]. In the
associated control problem, the optimal policy is the one that
maximizes the expected utility, itself a function future prof-
its, as opposed to simply maximizing the expected profits
themselves.

In risk-sensitive decision problems, the utility function is
monotonically increasing and concave (see Figure 3). Here,
we consider a utility function of the form:

U(x) = − exp(−γx),

where the parameter γ > 0 is used to quantify our degree of
risk sensitivity: the greater the value of γ the less tolerant one
is to risk. The key attribute of this utility function is that it pe-
nalizes losses more than it rewards profits. Utility functions
of this form are commonly employed in risk-sensitive control
problems as they admit tractable dynamic programming so-
lutions that preserve the staged structure of the problem. We
note that risk-sensitivity policies based on utility functions of
this form have parallels toH∞ control [2].

We formulate the risk sensitive problem as finding the
optimal policy that maximizes the expect utility over a dis-
counted horizon

max
π

EU(ΦN).

The solution to this problem can be obtained by applying a
modified dynamic programming algorithm of the form

Jk(xk,mk) = max
mk+1

exp(−γg(xk,mk,mk+1) ×



Figure 3: Graphical illustration of risk tolerance for the util-
ity function U(x) = − exp(−x) (denoted by the black line).
Following Luenberger [5], consider a proposition where
there are two equally likely payoffs x1 and x2. Utility the-
ory provides a framework for determining the value of such
a proposition based on an individuals risk preferences. If the
preferences are risk neutral, then the value of the proposition
is the expected payoff E{x}, an even-money bet. However, if
the preferences are governed by a utility function, then the
assigned value is the expected utility C = E{U(x)}. As the
utility function is strictly concave when the preferences are
risk sensitive, C ≤ E{x} irrespective of the governing prob-
abilities. In other words, a risk sensitive individual would
equally value the known outcome C < E{x} to the random
outcome of x1 or x2.

E{Jk+1(xk+1,mk+1) | xk}.

As before, we can easily solve this problem using a naive
value iteration approach. The key difference with the previ-
ous formulation is that certainty equivalence does not apply
in the risk-sensitive control problem as we need to evalu-
ate the expectation of a exponential function: E{exp(y)} ,
exp(E{y}). In other words, we need to explicitly account
for stochastic fluctuations in the operating margins xk. This
in turn requires an expression for the conditional transition
probabilities.

Numerical Solution Procedure

In the remainder, we assume that the operating margins
can be modeled using a simple, mean-reverting stochastic
process in continuous time

dXt = −θXtdt + σWt,

where Wt is a standard Wiener process (see Figure 4). Here
we use Xt to denote the random variable and xt its numeri-
cal realization. The strength of this model is that parameters
are easy to interpret in terms of the statistical properties of
Xt: the stationary mean is zero and the correlation function
is given by the expression σ2

2θ exp(−θτ), where τ is the corre-
lation time. From a pragmatic viewpoint, a mean-reverting
process provides a simple mechanism for instantiating our
prior beliefs regarding intrinsic volatility and temporal cor-
relations in prices. Such processes provide simple models
for commodity price dynamics [10].

Figure 4: Illustration of two mean reverting processes with
the same variance. The black curve (θ = 1 and σ = 0.71 )
shows a realization of a process with a slow correlation time
whereas the gray curve (θ = 0.1 and σ = 2.2) shows one with
a fast correlation time.

We can also view the operating margins as the aggregate
of multiple, not necessarily stationary stochastic processes.
However, the co-integration of these processes is most likely
stationary with mean-reverting dynamics [6]. For example,
while the prices of crude oil and gasoline individually cannot
be accurately modeled using a simple mean-reverting pro-
cess, their difference, the so-called crack spread, can to a first
approximation.

To determine the governing transition probability, we
need to solve the Fokker-Planck equation

∂t p(x, t) = ∂xθxp(x, t) +
σ2

2
∂2

x p(x, t),

subject to the boundary conditions

p(x, t)→ 0 as x→ ±∞

and ∫ ∞

−∞

p(x, t)dx = 1.

Note that the stationary solution to the Fokker-Planck equa-
tion is given by the Gaussian distribution

ps(x) =
θ

πσ2 exp
(
−
θx2

σ2

)
.

In order to solve the risk-control problem, we need to
reformulate it as Markov decision process on a finite state
space of size n. Here we assume that the operating margins
xk take on only fixed number of discrete values in the set

S = {xmin, . . . ,−2δ,−δ, 0, δ, 2δ, . . . , xmax}

where δ = (xmax − xmin)/(n + 1). To adequately capture the
range of the stochastic process, we chose xmax = 3σ/

√
θ

and xmin = 3σ/
√
θ. The probability that Xt remains within

these bounds is greater than 99%. To discretize the Fokker-
Plank equation, we can employ a first-order upwind method



to discretize the convection operator and finite differences
to discretize the Laplacian, both on a fixed domain with
reflecting boundary conditions. This spatial discretization
procedure approximates the Fokker-Planck equation with a
finite-dimensional, linear differential equation of the form
ṗ(t) = Ap(t). We then can integrate this equation using
a fixed time step ∆t, yielding a Markov chain of the form
pk+1 = Ppk. Here, the ith element of the vector pk gives

P(xk = si),

where si is used to denote the ith element in the set S (si =

xmax − (i − 1)δ). Similarly, the elements of the the matrix P
define the transition probabilities for the Markov chain:

Pi j = P(xk+1 = s j | xk = si).

By approximating the Fokker-Planck equation as a
Markov chain, the resulting risk-sensitive dynamic program
reduces to following simplified form

Jk(si,mk) = max
mk+1

exp(−γg(si,mk,mk+1) ×

N∑
j=1

Pi jJk+1(s j,mk+1).

Note that the expectation is replaced by a simple summation
and that Jk is now an n × (N + 1) matrix. As before, this
problem can easily be solved using a naive value iteration
approach.

Example: Risk-Sensitive Control

Figures 5 and 6 show the optimal stationary policies
(N = ∞) for the problem with two different tolerances for
risk. Aside from the risk parameter γ, all other parame-
ter values were the same: cA = 2, cD = 2, cI = 0.5,
α = 0.95, θ = 0.1, σ = 1, and ∆t = 1. When the sensitivity to
risk is low (Figure 5), the optimal policy involves bang-bang
type control with a threshold, the same as the risk-neutral
scenario. However, as the risk tolerance increases (Figure 6),
the optimal policy is no longer discontinuous. Reflecting the
sensitivity to risk, the optimal policy leads to more cautious
changes in capacity utilization. Idle plants are activated in
proportion to the increase in expected margins. Interestingly,
the threshold is still present, indicating that the same general
solution structure is present. We also note that the control
action is not symmetric on either side of the threshold. The
reason is that the utility function itself is not symmetric.

When we evaluate the expected benefits associated with a
risk-sensitive operating policy (Figures 7 and 8), we observe
that it outperforms the no-control scenario only when exist-
ing conditions are unfavorable. The optimal policy is geared
towards minimizing risk as opposed to maximizing profits.
In these regards, a risk-sensitive policy functions like an in-
surance policy, hedging against potential disasters at the cost
of a fixed premium.

Conclusions

In this paper, we explored a toy model of a marginal chemical
producer with variable operating capacity subject to stochas-
tic fluctuations in the operating margins. This problem was

Figure 5: Optimal stationary policy for γ = 0.01.

Figure 6: Optimal stationary policy for γ = 0.2.

motivated by the goal of incorporating economics into pro-
cess control problems. In particular, we wished to explore
a problem where the setpoint is not a fixed or known value
but rather a stochastic one reflecting market forces. Such
a problem arises when producers vary production rates in
response to variations in market prices and operating costs.
From a theoretical point of view, this control problem alters
the structure of the associated optimization problem such that
the standard quadratic objective functions no longer apply.
Moreover, the resulting policies are not longer continuous
but rather involve discrete thresholds and hysteresis. In these
regards, the resulting control laws are analogous to those
used in hybrid systems and suggest that a new paradigm may
be appropriate.

We note that analogous problems have previously been
explored in the classic dynamic programming and opera-
tions research literature. Also, our formulation is somewhat
naive given the complexity of problems currently tackled us-
ing stochastic programming [9]. In these regards, we do not
claim any novel discoveries or algorithms. Rather, our goal
was to reappraise a classic problem in light of current market
trends, namely the commoditization of the chemical indus-
tries, the influence of dynamic markets, and the associated



Figure 7: Expected benefit per time in terms of operating
margins associated with employing risk-sensitive dynamic
policy with γ = 0.01 as opposed to static one (µk(xk,mk) =

mk) as a function of the initial conditions x0 and m0.

Figure 8: Expected benefit per time in terms of operating
margins associated with employing risk-sensitive dynamic
policy with γ = 0.2 as opposed to static one (µk(xk,mk) = mk)
as a function of the initial conditions x0 and m0.

goal of developing control strategies for flexible manufac-
turing processes. Future efforts are directed towards more
realistic problems involving multiple market factors and the
dynamics of the governing processes themselves. The goal
of current work was to explore what these controllers may
look like and how to formulate the governing optimization
problems.

Clearly the major limitation of this work is the use of dy-
namic programming. One cannot mention dynamic program-
ming without acknowledging the “curse of dimensionality”.
While this admittedly simple problem can easily be solved
using naive approaches, the direct application of dynamic
programming would be intractable on more complex and re-
alistic ones. That said, the dynamic programming framework
is powerful one. In addition, there have been a number of
significant advances over the years in developing approx-
imate strategies for solving previously intractable dynamic
programs, model predictive control being the most notable.

We conclude by commenting briefly on the parallels to
economic model predictive control (EMPC) [8]. Our view
is that present work and EMPC take complementary ap-
proaches to the same problem, namely of incorporating eco-
nomics directly into the control problem. The notable at-
tribute of the present work is that it addresses price volatil-
ity. That said, process dynamics are ignored, which is not
the case in EMPC. Another key difference is that the present
work discounts profits and losses over the prediction horizon
whereas EMPC does not. The choice depends on the gov-
erning timescales of the process, which are considered long
relative to the time value of money in the present work and
short in EMPC.
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