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Abstract
Model reduction is an important systems task with a long history in traditional chemical engineering modeling.
We discuss its interplay with modern data-mining tools (such as Local Feature Analysis and Diffusion Maps)
through illustrative examples, and comment on important open issues regarding applications to large systems
arising in molecular/atomistic simulations.
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Introduction

Model reduction is an important systems task in physics
and engineering modeling, and it has a long history in
chemical engineering marked by many successes over the
years; the development of reduced chemical mechanisms
for combustion and the lumping of petroleum fractions
are two cases in point, and the use of these tools in
biological reaction network reduction is a vital current
research frontier. Mathematical tools ranging from the
quasi-steady-state approximation and the partial equilibrium
approximation to the center manifold theorem, Lyapunov-
Schmidt reduction and Approximate Inertial Manifolds have
been developed. Tools of a more computational nature,
such as the Intrinsic Low-Dimensional Manifold approach
or the Computational Singular Perturbation approach have
also been finding extensive applications. We are interested
in the reduction of large problems associated with molecular
simulations; more specifically, we focus on data-mining tools
that can be linked with model reduction techniques. We
use extensions/modifications (both linear and nonlinear) of
Principal Component Analysis to illustrate important open
issues that we discuss.

Recent research by part of our team has studied the
reduction of macromolecular simulations. The macromolec-
ular example we will discuss here is a simple one, that
aims to illustrate the features of the different data reduction
methods employed. However, the motivation for reduction
is derived from the complexities of molecular systems
consisting of much larger molecules such as proteins, DNA
and various synthetic polymers. At the atomic level the
often important conformational modes for such molecules
involve backbone torsion angles, and this will be illustrated
in our dipeptide example. As these polymers become
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larger their simulation becomes rapidly prohibitive both
because of their size and the longer simulations dictated
by the increases in molecular relaxation times. Luckily,
many large polymers have dominant dynamic modes that
may be mapped to reasonable reduced coordinate systems.
The methods described here – Local Feature Analysis
(LFA), that allows one to target physically relevant modes
by choosing “seed elements” systematically, and Diffusion
Maps (DMAPs), that provide nonlinear parametrizations of
these modes– attempt to construct such coordinate systems.

Examples of polymer systems and behaviors that may
benefit from the methods described here include reptation
for amorphous melts or glasses. Reptation is the slithering
of a polymer chain along its own chain contour (Daoud and
De Gennes, 1979). The primary coordinate for such a motion
is along the contour of the polymer chain, similar to the
artificial spiral data set we discuss here, for which Diffusion
Maps are so effective. Many polymers have heterogeneous
structure and behavior at spatial scales larger that the
atomic scale; these include complex biological polymers
such as proteins and RNA, for which flexible loops behave
differently than more rigid helical motifs. This heterogeneity
lends itself to systematic choices of seed elements for the
LFA approach. We expect that other polymer systems,
containing levels of structural order that are intermediate
between an amorphous glass and a regular protein motif, may
also benefit from such methods.

Technical Approach

Principal Component Analysis (PCA) has, for more than
a century, held pride of place in the mining of data related
to model reduction; its applications range from chemistry to
turbulence and from sociology to biology. Starting with PCA
we discuss and illustrate both linear (Local Feature Analysis)



and nonlinear (Diffusion Maps) extensions/modifications of
it; this gives us the opportunity to discuss/highlight certain
important current research issues.

Principal Component Analysis

Consider an ensemble X ∈RN×L of L data points (vectors
in RN that have been centered, L > N). Let

R =
1

L−1
XXT , (1)

R ∈ RN×N , denote the covariance matrix of this ensemble. It
is well known the matrix R can be written as

R = Ψ f Λ f ΨT
f . (2)

Λ f is a diagonal matrix composed of R’s eigenvalues in
decreasing order: λ1 ≥ · · · ≥ λr >> λr+1 ≥ · · · ≥ λN , and
Ψ f is an orthogonal matrix composed of R’s eigenvectors
as columns. We define Ψ ∈ RN×r as the matrix containing
the first r columns of Ψ f , which correspond to the first
r eigenvalues of R. PCA (Shlens, 2005) maps any vector
x ∈ RN down to x̃ ∈ Rr through

x̃ = ΨT x, (3)

where x̃, the “output”, contains the projection coefficients
of x onto the first r principal components. In PCA, the
projection coefficients are functions of all N variables, and
therefore reflect “global” features. The inverse mapping
(reconstruction) of PCA is defined by

x ≈ Ψx̃. (4)

Local Feature Analysis

Local Feature Analysis is a linear dimensionality
reduction method, similar to (and derived from) PCA (Penev
and Atick, 1996). As in PCA, LFA considers the covariance
matrix R = 1

L−1 XXT . In PCA, the mapping from N down to
r dimensions is accomplished using ΨT , as defined above. In
LFA the matrix that maps the original N-dimensional data
to a reduced r-dimensional space is based instead on the
topographic kernel

K = ΨΛ− 1
2 ΨT . (5)

Here K ∈ RN×N , and the reduction is performed by the
matrix K̃ ∈ Rr×N , which consists of r judiciously selected
linearly independent rows of K. Thus x̃ = K̃x, where x ∈ RN

is a data point in the original state space and x̃ ∈ Rr is
its representation in the reduced subspace. The PCA and
LFA methods each also give rise to an approximate inverse
mapping, such that any point in the r-dimensional space can
be “reconstructed” in the N-dimensional space. When the
same value of r is used in PCA and LFA, the reconstruction
accuracy obtained from both methods is identical (Penev and
Atick, 1996).

In PCA, the rows of the mapping matrix are eigenvectors
of R and are therefore orthogonal. In LFA, the rows of K are
not orthogonal, but rather contain topographic information.

In fact, any r independent rows of K can be used to represent
the system, and thus can be selected for K̃. However, one can
systematically select the r representative state variables, i.e.
the “seeds”. Many iterative methods (Penev and Atick, 1996;
Zhang and Wriggers, 2008) have been proposed to automate
the seed selection. While these proposed techniques use
different criteria, they all involve significant computations
and may not converge to a unique solution.

In our seed selection method all state variables are
mapped, based on the data ensemble, onto a feature space
spanned by the r principal eigenvectors. Note that in this
feature space, all the eigenvectors are treated as being equally
important (due to the rescaling in Eq. 5). A candidate
pool of seed states is first constructed by selecting the states
that significantly reflect the principal components, i.e. the
states that have significant components in at least one of the
principal directions. Among the candidate pool, the state that
has the highest variance is selected as the first seed. That
is, the state variable with index argi max(ψ̄iΛψ̄T

i ), where i
is any index from the candidate pool and ψ̄i is the ith row
in Ψ. The succeeding seed is selected from the remaining
states in the pool so that the correlation between the current
seed and the seeds selected so far is minimized. Here the
correlation between state variables i and j can be shown to
be indexed by the angle α between the normalized vectors
of ψ̄i and ψ̄ j, where 0◦ ≤ α ≤ 90◦. The smaller α is, the
more correlated state variables i and j are. The termination
condition is that either (a) there is no remaining state that
is uncorrelated enough to the selected seeds or that (b) r
“seeds” have been selected. The selected seeds are the least
correlated in the PCA feature space and would span the LFA
reduced dimensional state space. In fact, the number of seeds
indicates the smallest number of original state variables that
can be used to approximate the full system. If only n < r
seeds are selected in the end, the reduced dimensional state
space spanned by these n seeds is different from the subspace
spanned by the first n PCA eigenvectors. We remark that
an alternative seed selection method can be found in our
ongoing work (Xue et al., in preparation).

If reconstruction accuracy is the only consideration, there
is no advantage of LFA compared to PCA. However, if
the reduced-order coordinates are to be assigned physical
meaning, then LFA can be advantageous. For a system
characterized by strongly correlated topological groups, one
expects LFA to pick up one representative state variable,
i.e. seed, out of each group. In general, the consistency
of the LFA basis has been reported to be higher than
PCA, when applied to different windows of noisy data
(Balsera et al., 1996; Zhang and Wriggers, 2008; Xue et al.,
2010). Moreover -and this is a crucial point- associating
coordinates in the reduced-dimensional space with a few
specific variables in the original, N-dimensional space, may
aid in physical interpretation of the reduction. In one of our
examples, we will consider a molecular dynamics simulation,
and choose seed atoms using LFA. This lays the foundation
of an approach for automated coarse-graining of molecular
simulations, in which each seed atom forms the locus for a
“super-atom” in the coarse-grained simulation.



Diffusion Maps

In contrast to PCA and LFA, Diffusion Maps is a non-
linear dimensionality reduction technique (Coifman et al.,
2005b,a). DMAPs take high-dimensional data points that lie
on (or close to) a low-dimensional, nonlinear manifold and
embed them in a low-dimensional linear space: the distance
between data points along the manifold is related to the
Euclidean distance in the new, embedding space, so that, in
some sense, the intrinsic geometry of the data is retained.
One constructs the L×L matrix W , with

wi j = k(xi,x j) = exp
�
−

d2(xi,x j)

ε

�
, (6)

where k is a kernel function, d is a distance metric between
the data points (in our examples we use the Euclidean
distance), and ε , the kernel width, is a procedure parameter.
This matrix W can be interpreted as the adjacency matrix for
a weighted graph, where the nodes of the graph represent data
points and two data points are connected by a high weight
edge if they are close in the original space.

One then defines the matrix

A = D−1W, (7)

where D is a diagonal matrix with dii = ∑L
j=1 wi j. A is then

a Markov transition matrix for the graph defined by W . One
can view nodes i and j of the graph as “similar” if a random
walker starting at node i, and a random walker starting at
node j, both evolving on the graph based on A, have similar
probability distributions for their location after time t. The
probability for a random walker starting at node i to arrive
at node k at time t is given by At

ik; thus, to compare nodes i
and j at time t, we should compare rows i and j of At . One
could use the standard 2-norm, but vertices of higher degree
would then contribute more to the overall metric. Therefore,
one considers a relevant distance metric as:

D2
t (i, j) =

L

∑
k=1

�
At

ik −At
jk

�2

dkk
. (8)

This is the diffusion distance between data points i and j at
time t. It can be shown that

D2
t (i, j) =

L−1

∑
k=0

µ2t
k (vk(i)− vk( j))2, (9)

where v0, . . . ,vL−1 and µ0, . . . ,µL−1 are the eigenvectors and
eigenvalues, respectively, of A. One orders the eigenvalues
and eigenvectors so that |µ0| ≥ |µ1| ≥ · · · ≥ |µL−1|. Since
A is row-stochastic, µ0 = 1 and v0 = (1, . . . ,1)T , so that
the first term in the sum in Eq. 9 does not contribute
to the diffusion distance. The diffusion map embedding
is defined as xi �→

�
µ t

1v1(i),µ t
2v2(i), . . . ,µ t

L−1vL−1(i)
�
; this

embedding preserves the diffusion distance between data
points. It is, however, not unusual to observe a spectral
gap at l, such that |µ0| ≥ |µ1| ≥ · · · ≥ |µl |� |µl+1| ≥ · · · ≥
|µL−1|. Then, the computation of the diffusion distance can
be truncated at l without significant loss of accuracy, and

the truncated diffusion map embedding can be defined as
xi �→

�
µ t

1v1(i),µ t
2v2(i), . . . ,µ t

l vl(i)
�
. In our examples here we

will use the t = 0 embedding.
DMAPs is supported by the theory of continuous

operators on manifolds. In the limit of infinite data (L →
∞), a random walk on the data, defined by the matrix A,
converges to a random walk on a manifold Ω in continuous
space (Nadler et al., 2006a,b). The matrix operator A can
then be written as an integral operator on the manifold, A,

Av(x) =
�

Ω

k(x,y)
d(x)

v(y)p(y)dy, (10)

where p(x) is the local density of the data and d(x) =�
Ω k(x,y)p(y)dy. It can be shown that (Coifman and Lafon,

2006)

Av(x) = v(x)+ ε
�

∆(vp)
p

− v
∆p
p

�
+O(ε3/2), (11)

so that

lim
ε→0

A− I
ε

v =
∆(vp)

p
− v

∆p
p
. (12)

For stochastic problems which, on the manifold, are
governed by a Langevin equation, ẋ = −∇U +

√
2ẇ (w is a

Brownian motion), the equilibrium density would be p(x) =
e−U(x). If the data are sampled with this density, then

lim
ε→0

A− I
ε

v = ∆v−2∇v ·∇U. (13)

This operator is the Fokker-Planck operator with potential
2U . Therefore, the eigenvectors of A approximate the
eigenfunctions of this operator, and the eigenvalues of the
Fokker-Planck operator, γk, are related to the eigenvalues
of A by γk = µk−1

ε . Diffusion maps are, therefore, in such
limiting cases, capable of recovering important features of
the underlying stochastic dynamics.

Some Comparative Case Studies

Spiral

Our first example is designed to illustrate the different
features of the three techniques above. We constructed a
data set consisting of points evenly distributed along a planar
spiral. We then embedded this spiral in three dimensions via
two different embeddings. In the first, the spiral plane was
offset slightly from the x−y plane; in the second embedding,
the slight offset was from the x − z plane. In both cases
Gaussian noise was added to the data points in all three
directions (see Figure 1(a)).

The data set is effectively one-dimensional, as the points
can be parameterized by the arclength along the spiral.
However, the data is not well approximated by any one-
dimensional linear subspace, but rather lie in an effectively
two-dimensional linear subspace. Linear methods, such as
PCA and LFA, are thus expected to perform differently than
nonlinear ones (DMAPs).
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Figure 1: (a) Two spiral data sets. (b) The data in principal component space. Inset: PCA eigenvalue spectrum. (c)
Leading non-trivial DMAPs eigenvector recovers the arclength along the spiral. (d) DMAPs eigenvalue spectrum. Inset:
Higher DMAPs eigenvectors, corresponding to the eigenvalues marked in Figure 1(d), plotted against the first non-trivial
eigenvector. Note that they are well-correlated.

Indeed, PCA successfully passes a plane through the
data, thereby reducing the dimensionality from 3 to 2
(Figure 1(b)). LFA identifies the two “most representative”
original directions for each data set (x and y in the case
of data set 1, and x and z for data set 2). Since it is
not constrained by linearity, DMAPs is able to reduce the
data dimensionality from 3 to 1, and correctly uncovers
the arclength as a single important variable for each spiral
(Figure 1(c)). As seen in the inset of Figure 1(d),
many successive leading eigenvectors from the Diffusion
Map analysis are all correlated (they are higher harmonics
of the first eigenvector, corresponding to the “arclength
dimension”); other dimensions, transverse to the arclength,
become manifest beyond the “knee” in the eigenvalue plot.
We should at least briefly mention that many technical
issues (such as the performance of the approach as the noise
becomes stronger, or the optimal choice of ε) are still the
subject of research.

Alanine Dipeptide

The second illustrative example we present involves the
small biomolecule alanine dipeptide (N-acetyl-L-alanine-N-
methylamide) (Ala2) (see Figure 2(a), inset). Ala2 has been
the subject of numerous studies (e.g. Bolhuis et al. (2000);
Hummer and Kevrekidis (2003); Ferguson et al. (2011))
and it is established that “good” physical variables which
can parameterize its effective free energy surface are the
backbone dihedral angles ψ [N-Cα -C-N] and φ [C-N-Cα -C].
We would like to explore whether the different data-mining
methods are able to “uncover” these variables directly from
simulation data.

A molecular dynamics simulation of Ala2 in explicit
solvent was performed using the AMBER 10 molecular
simulation package (Case et al., 2008) with an optimized
version (Best and Hummer, 2009) of the AMBER ff03 force
field (Duan et al., 2003). The simulation box contained 638
TIP3P water molecules (Jorgensen et al., 1983). We used
periodic boundary conditions and the particle mesh Ewald
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Figure 2: (a) Ramachandran effective free energy surface of Ala2 and the structures corresponding to wells A, B, and C.
Inset: Ala2 structure with dihedral angles φ and ψ and oxygen atoms 3 and 8 labeled. (b) Correspondence between leading
PCA eigenvector and dihedral angle ψ . Inset: PCA eigenvalue spectrum. (c) Correspondence between leading Local
Feature and dihedral angle ψ . (d) Correspondence between leading Diffusion Map eigenvector and dihedral angle ψ . Inset:
DMAPs eigenvalue spectrum.

method (Essmann et al., 1995) for long-range electrostatic
interactions. The simulation was performed at constant
volume. The temperature was maintained at 300K using
a Langevin thermostat (Loncharich et al., 1992). Bond
lengths involving hydrogen atoms were constrained using the
SHAKE algorithm (Ryckaert et al., 1977). The simulation
used a time step of 0.001 ps. Data was collected for 7ns,
with configurations saved every 0.1 ps. Figure 2(a) shows
the resulting effective free energy surface βG(φ ,ψ). We
observe (as expected) two broad wells with three minima.
The minima are located at φ ≈−160◦, ψ ≈ 150◦; φ ≈−75◦,
ψ ≈ 150◦; and φ ≈ −75◦, ψ ≈ −20◦. For the purposes of
this discussion we label them A, B and C respectively (see
Figure 2(a)).

The data used in our analysis consists of 50,000 consecu-
tive snapshots from the molecular dynamics trajectory. Each
data point is represented by a vector containing the physical
coordinates of all atoms in Ala2 except the hydrogens. All
snapshot configurations were aligned relative to a template
to minimize the RMSD between them using the Kabsch
algorithm (Kabsch, 1976, 1978).

PCA effectively reduces the dimensionality to three, and
we see that the leading principal component is strongly
correlated with the dihedral angle ψ (see Figure 2(b)). LFA
is based on the same three eigenvectors as PCA and, based
on our approach to selecting the first LFA seed, Figures 2(b)
and 2(c) show similar results.

Three-dimensional embeddings of the data show that both
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Figure 3: (a),(b) 3D PCA view. (c), (d) 3D LFA view. (e), (f) Data in DMAPs space. (a), (c), (e) Data colored according to
dihedral angle ψ . (b), (d), (f) Data colored according to dihedral angle φ .

PCA and LFA organize the data well visually. Clearly, points
are organized according to the values of the two dihedral
angles, and in this way one can identify sections of the φ −ψ

free energy surface (see Figures 3(c) and 3(d)). The data
appear to approximately lie on an two-dimensional manifold
in three-dimensional space. In Figure 3(c), it appears that a



polar angle in the LF1 −LF3 plane is strongly correlated with
ψ . Figure 3(d) shows a more direct correspondence between
LF2 and φ .

The corresponding PCA plots are shown in Figures 3(a)
and 3(b) for completeness. The surface is now rotated
and stretched, since the linear mappings from the original
position data to the LFA and PCA coordinates are different.
In both cases, it appears that by using three components
(PC or LF), the values of ψ and φ can be simultaneously
estimated.

It is natural to ask whether the values of ψ and φ can
be estimated from only two reduced coordinates. In this
example, LF1 can be used to determine if the system is in the
upper (red) or lower (blue) well in the free energy landscape
plot (Figure 2(a)), but the information to distinguish red from
green (close to the transition point) is no longer available
without LF3. If one is only interested in which energy well
the system resides, then LF1 and LF2 may provide a sufficient
classification. However, if a model capable of describing the
transition dynamics is desired, then one may wish to include
LF3.

Recall that LFA contains a topographic kernel, so that
each coordinate in the reduced space is associated with
a coordinate in the original, full space. The selection
algorithm chose Atom 8 (direction x) for LF1 since it has
the highest variance, and subsequently selected Atom 3(y) as
LF2 and then Atom 8(z) as LF3, since they were maximally
uncorrelated with the previous local features. Atoms 3 and
8 are the two oxygen atoms in the molecule. By examining
how the individual atoms move in configurations along the
free energy landscape, we can rationalize why these two
oxygen atoms are so significant. As the dihedral angle φ
flips between the two wells, Atom 3 is maximally displaced,
while a flip of angle ψ causes Atom 8 to flip relative to the
central carbon.

An additional advantage of LFA is that, because each
coordinate in the reduced space is associated with an atom’s
position, the time-evolution of these reduced coordinates
can be understood as pertaining to the motion of the
corresponding seed atom. In PCA, the time evolution of
the principal components, which are global in nature, has
no clear connection to the time evolution of the original
variables.

As was the case with PCA, the leading non-trivial
DMAPs eigenvector is strongly correlated with the angle
ψ (see Figure 2(d)). Observing the data embedded in
DMAPs space (Figures 3(e) and 3(f)), one perceives a
structure resembling a triangle whose upper edge (where
the approximate location of minima A and B are indicated)
represents the entire upper free energy well. The bottom
well is compressed into the lower vertex of the triangle,
where the minimum C is located. Data points along
the transition between minima B and C are found along
the BC side of the triangle. One might argue that
the two-dimensional projection using DMAPs provides a
slightly clearer representation of the transitions than the
corresponding two-dimensional PCA or LFA projections.

Conclusions

It seems clear to us, and -we hope- to the reader,
even through such brief illustrations, that data-based model
reduction is at the beginning of a new period of research and
growth. The main issue we pointed out above is the choice of
good physical variables corresponding to the (in some sense)
optimal variables that PCA or DMAPs can locate - variables
that may serve very well in computational tasks, but have no
obvious physical meaning. LFA, through its choice of seeds,
attempts to find “the best” physical variables that can be
used to interpret the PCA based reduction. For DMAPs the
corresponding step (finding good physical variables that are
one-to-one with the DMAP-located variables) is a difficult
and, at the moment, completely ad hoc post-processing
task: one guesses possible candidate variables, and tests
whether they are one-to-one with the selected diffusion map
coordinates.

Whether with physically meaningful reduced sets of
variables, or with useful -but physically not directly
interpretable- such sets, the task of model reduction is
only starting. Choosing the nature of the effective models
in the new variables (deterministic or stochastic, discrete
time or continuous time), determining how to obtain the
effective equations in the new variables (off-line or on-line),
using these variables to aid in biasing the computations to
effectively search the system phase space, are all crucial
tasks that are currently the subject of intense research (e.g.
Ferguson et al. (2010)). Factoring out symmetries before
(or as part of) data-mining is also an important part of the
process.

We close by stating what, in our opinion, is the obvious
and clear advantage of each method. Linear (PCA and LFA)
methods provide a simple and systematic reconstruction (or
lifting): constructing physical realizations consistent with the
reduced variables; the corresponding task for DMAPs can
be very difficult. On the other hand, nonlinear reduction
methods can be much more parsimonious in reducing data
such as the spirals of our artificial illustration - and going
this extra mile may be crucial in the overall success of model
reduction (Kevrekidis et al., 2004). It is interesting to state
that global nonlinear reduction techniques like DMAPs can
be combined with local uses of linear tools (local PCA) in
model reduction studies, and that is also an open current
research direction.
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