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Abstract 

In many industrial plants, data is sampled quickly which leads to the collection of gigabytes of process 
values that are stored in the data historian, most of which is routine operating data. However, the 
usefulness of this routine operating data for such applications as system identification, performance 
assessment, and fault detection, is still largely unknown. Therefore, in this paper, a framework is 
proposed for analysing the data quality of routine operating data. This framework consists of two main 
components: model segmentation and data quality assessment for each identified region. Model 
segmentation is performed using signal entropy, while the data quality is assessed using a ratio between 
the extreme eigenvalues of the inverse Fisher information matrix. As an example of the proposed data 
quality assessment method, a process controlled by a proportional controller is analysed theoretically. 
As well, the data quality assessment framework is applied to an experimental, heated tank example with 
multiple states. It is shown that the framework is able to effectively assess the quality of the data. 
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Introduction

Data, data, every where, 
Not a drop of knowledge 

Much like the mariners in Coleridge’s poem The Rime 
of the Ancient Mariner who were surrounded by 
undrinkable water and had no means of making it useful, 
in today’s industrial plants, control engineers are inundated 
by routine operating data most of which is discarded since 
its usefulness is unknown. Thus, there is a need to develop 
techniques that can be used to assess the quality of the 
stored data, specifically for control purposes.  

Routine operating data, which can be defined as 
closed-loop data without any setpoint changes, is the most 
common type of data collected in industry. This data is 
often used for process monitoring or control performance 
assessment. However, it is rarely used for system 
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identification or controller tuning, as there currently do not 
exist any methods to determine whether or not the data can 
actually be used for the given purpose. 

Therefore, the objective of this paper is to present a 
framework for data quality assessment that can be used to 
give guidance on the usefulness of the routine operating 
data, with a special focus on the data quality measure to be 
used. As a sample application of the proposed framework, 
a detailed analysis of the proposed measure for 
proportional, as well as proportional and integral (PI), 
controllers will be presented. An experimental example 
will also be presented. 

Data Quality Assessment Framework 

Consider the case that routine operating data of length 
N has been extracted from a data historian. This data will 



  
 
consist of two components, the output vector, ty , and the 

input vector, tu , that is, ( ), N N

t ty u ×∈
   . The objective is 

to determine whether the extracted data can be used to 
identify a model with a given structure. Auxiliarily, it is 
necessary to determine whether or not all the extracted 
data belongs to the same model.  Thus, the proposed 
framework for data quality assessment consists of two 
steps: 

1) Model Segmentation, which determines which 
sections of the extracted data series belong to 
which model, and 

2) Data Quality Assessment, which assesses the 
quality of the data for each of the extracted 
regions. 

Model segmentation is required as a preprocessing 
step to separate the data coming from different models for 
three reasons. Firstly, it is unlikely that the extracted data 
can be modelled by a single model and doing this may 
introduce errors in the model. Secondly, separating the 
different models in the extracted data can allow 
preliminary detection of faults, such as sensor failure and 
actuator problems, as these will cause the model to change 
from that which is expected. Thirdly, during the data 
quality assessment step, the presence of multiple models in 
the extracted data set may increase the perceived 
information content of the data with respect to the 
assumption of a single model.  

Model Segmentation 

The purpose of the model segmentation preprocessing 
step is to partition the extracted data series into regions 
that can be assumed to be from the same model without 
first identifying a model for each region. Additionally, it 
would be useful if the technique could identify which of 
the partitioned regions belong to the same model. 

It should be noted that model segmentation does not 
assign a cause or reason for the change in the model. In 
addition to a switching system, the observed model of the 
system could change due to sensor failures, changes in the 
actuator, disturbance model changes, or slow changes in 
the actual process model, such as fouling in a heat 
exchanger. 

Many different methods to partition the input and 
output data can be encountered in the literature. The 
methods can be classified into two broad categories: 
offline, where the complete data set is obtained and then 
processed, and online, where data processing occurs in 
tandem with data collection and the segmentation points 
are determined immediately (Keogh, Chu, Hart, & 
Pazzani, 2004). Most segmentation methods can be 
classified into the following three groups: sliding window, 
where to a given segment subsequent values are added 
until some error bound is exceeded; top-down, where the 
data is partitioned starting from the initial data set until 
some stopping criterion is reached; and bottom-up, where 
the data is first partitioned into the smallest number of 

segments and each of the segments are then merged until 
some stopping criterion is reached (Keogh, Chu, Hart, & 
Pazzani, 2004). For all these approaches, a model 
structure, often linear, is assumed for the data to follow. 

In the control literature, a commonly used partition 
method is based on the local approach for fault detection 
developed by Basseville et al. (Basseville, 1998). Similar 
to the preceding methods, an assumed model for the 
extracted data to follow is required. 

More novel approaches include a signal entropy-based 
approach (Denis & Crémoux, 2002; Micó, Mora, Cuesta-
Frau, & Aboy, 2010), which has the advantage that no 
model of the system need be provided in order to segment 
the data. This approach is useful for online performance 
assessment of a given model to represent the system, since 
there is no need to waste computational resources on 
determining the best model for the current data. For data 
quality assessment, this approach has the benefit that since 
no model need be assumed for the data, there is no need to 
be concerned with whether the extracted data is well 
represented by the given model. In fact, assuming a model 
would lead to circular reasoning. 

In this vein, consider the method originally proposed 
by Denis and Crémoux (Denis & Crémoux, 2002) to 
segment a deterministic geophysical signal by computing 
the changes in signal entropy using the following 
quantities 

( )
( ) log

L t
H t

t
=  

 
 

 (1) 

where L(t) is defined as the “length” or the degree of 
tortuosity in the signal, which for a time series can be 
written as 

( ) ( ) ( )
1

1
t

l

L t X l X l
=

= − −∑  (2) 

This has been extended to stochastic signals by 
rewriting Eq. (1) as the following difference equation 
(Shardt & Huang, 2011) 

( )( )1( ) log 1 ( )H t z L t−= −  (3) 

where z is the forward shift operator. By taking the 
difference between the input and output entropies, that is, 

( ) ( )
( )
( )

( ) log output

output input

input

L t
H t H t H t

L t
∆ = − =

 
 
 

 (4) 

the resulting difference can be shown to be independent of 
the input into the process. A region can be said to be the 
same if the entropy change for the given region is similar 
to the value for another region. 



  

After applying model segmentation, a total of Nk 
regions will be identified. Each identified region will have 
an entropy value Hi, length Ni, and a subset of the original 
data points ( ), i iN N

t t i
y u ×∈
   . Once model segmentation 

has been completed, it is then necessary to assess the data 
quality of each part. 

Data Quality Assessment: Initial Results 

The purpose of data quality assessment is to determine 
whether or not the data contains sufficient excitation or 
information to identify a model. This step would be 
performed for each segment separately. 

Consider a single region with data given as ( ),t t i
y u   

of length Ni. Assume that the model of interest for this 
region has the form given as 

( ),t ty f u β=


  (5) 

where β


 is a vector of p-parameters, that is, 

1 2, , pβ β β β=


  (6) 

It is preferably that p be much smaller than Nk as the 
performance of identification using routine operating data 
is strongly influenced by small data sets. 

Linearising the model about the true parameter values 
gives the process Jacobian, J, with respect to the input 
variables, 
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Evaluating the Jacobian matrix, J, given as Equation 
(7) for each of the inputs in the kth region will give the 
regression matrix, A, that is, 
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The inverse of the Fisher information matrix, Q, can 
be obtained as follows: 

TQ A A=  (9) 

For the case of linear, least-squares regression, this 
represents the matrix that would need to be inverted in 
order to determine the parameter estimates. 

In numerical methods, the condition of a matrix is 
used to determine whether a given system is invertible. 
Many equivalent definitions of condition exist. In this 
paper, the definition using eigenvalues is selected. It can 
be noted that an uninvertible matrix contains at least one 
eigenvalue with a value of zero (Anton, 2000). Therefore, 
the data quality index, ηdata, can be defined as 

( )( )
( )( )

max eig

min eig

T

data T

A A

A A
η =  (10) 

where eig represents the eigenvalues of ATA. A matrix is 
said to be well-conditioned if the ratio of largest to 
smallest eigenvalues in absolute value is less than a given 
threshold, ε.1 Similarly, the data is said to be informative 
enough with respect to the given model structure if ηdata < 
ε, that is, the Q-matrix is sufficiently well-conditioned for 
the taking of an inverse. As well, a well-conditioned Q-
matrix will imply that the variances obtained for the 
parameters will be reasonable and hence the results 
obtained will be significant. 

Theoretical Analysis of Data Quality for a Proportional 
Controller and an Autoregressive Model with 
Exogenous Input 

As an example of the proposed data quality 
assessment framework, consider the discrete-time, 
autoregressive model with exogenous input (ARX) 

1 1t t t dy y uβ α
− − −

= +


   (11) 
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where α and β are the parameters to be fitted and d is the 
time delay. For ARX models, linear, least-squares analysis 
can be directly used to obtain parameter estimates (Ljung, 
1999). The Q-matrix can be written as (Söderström & 
Stoica, 1989) 

                                                           

1 A threshold, ε, of 104 is often used in practice. 
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It can be noted that with a proportional controller, ut and yt 
are not independent and can be given as 

t tu Ky= −  (14) 

This implies that the Q-matrix given by Eq. (13) can be 
rewritten as 
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It can be noted that ( ) ( )1 1 1 1
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From Eqs. (15), (16), (17), and (18), it can be seen that 
if d = 0, then –K times the first column of Q will always be 
equal to the second column of Q. This implies that the 
matrix is not invertible and hence in this situation the 
model should not be identifiable. This result is in 
agreement with the previously published results in system 
identification for the conditions for identifying a process 
using closed-loop data without external excitation and a 
proportional controller (Söderström & Stoica, 1989; 
Gevers, Bazanella, & Ljubiša, 2008; Shardt & Huang, 

2011), which state that for identifying a system without 
external excitation, the following relationship must hold 

( )max , 0d n nβ α− − ≥  (19) 

Examining the Q-matrix, it can likewise be seen that Eq. 
(19) represents one of the conditions for Q to be in general 
invertible.  

Theoretical Analysis of Data Quality for a 
Proportional, Integral Controller and a First-Order 
Autoregressive Model with Exogenous Input 

As the complexity of the model and controller 
increase, the ability to analyse the results exactly is made 
more difficult. For the case of a proportional and integral 
(PI) controller and a first-order autoregressive model with 
exogenous input (ARX) with d = 0, an analytical solution 
can be obtained for identifiability as a function of the 
parameter values (Shardt & Huang, 2010). It should be 
noted that an arbitrary first-order ARX model cannot be 
identified in this case. It can be shown that the regions of 
unidentifiability are linked with the invertibility of the Q-
matrix. The details of this proof are omitted in interests of 
length. 

Performing a simulation for this case and calculating 
the data quality index for different values of α1, where 
β1 = 1 and a PI controller of the form 

( ) ( ) 1
1 1

1

1 0.9 0.25

1 0.9

z
G z

z

α −

−

−

− − +
=

−
 (20) 

is used. A total of 10,000 data point was used for the 
simulation. 

Figure 1 shows the data quality index, ηdata, and the 
difference between the estimated and true values for α1 as 
a function of the true value of α1. It can be seen that as ηdata 
increases in value, the difference between the estimated 
and true values also increases in value. Furthermore, it can 
be theoretically shown that at α1 = -13/18 (Shardt & 
Huang, 2010), the Q-matrix is uninvertible, and hence the 
system is unidentifiable.  

Experimental Example of the Framework 

Consider the heated-tank system shown in Figure 2. It 
can be noted that the hand valve on the drain can be used 
to change the exit resistance coefficient and create 
different models. The level controller was set in cascade 
with the cold water flow controller. The temperature 
setpoint was set to 43°C throughout the experiment. The 
cold water temperature fluctuated around 23˚C. Different 
operating conditions were produced by changing the hand 
valve and level setpoints in the system. Open-loop step 
tests were used to determine the expected open-loop 



  

process models for the different operating points, which 
had the form 

( )
1

d s

p

p

K
G s e

s
τ

τ
−=

+
 (21) 

where K is the gain, τp is the process time constant, and τd 
is the deadtime. The results are shown given in Table 1. 
The same proportional, integral, and derivative (PID) 
controller was used with values Kc = 1.5 (normalised), 
τI = 57.5 s, and τD = 5.8 s. All the experimental data is 
shown in Figure 3. The process started in Model A and at 
1017 s, it was changed to Model B. At 2498 s, the model 
was changed from Model B to Model C. Finally, at 4044 s, 
the model was changed from Model C to Model D. 

 

 

Figure 1. (top) Data quality index, ηdata, and 
(bottom) the difference between the estimated 

and true values of α1 for the controller given as 
Eq. (20). The bottom figure is taken from 

(Shardt & Huang, 2010). 

Table 1. Parameters for the four models 

Model Hand 
Valve 

(°) 

Level 
Setpoint 

(cm) 

K 
(°C·h/kg) 

τ 
(s) 

τd 
(s) 

A 50 20 0.74 52 40 
B 65 20 1.68 73 40 
C 65 35 2.02 133 40 
D 55 20 1.42 56 40 
 

 

Figure 2: Process schematic 

 

Figure 3: Cold water flow rate (top right), 
steam flow rate (top right), level (bottom left), 

and temperature (bottom right) as a function of 
time for the duration of the experiment 

Model Segmentation 

Figure 4 shows the entropy difference between the 
output (temperature) and input (steam flow rate) as a 
function of time calculated using Eq. (4). It should be 
noted that the drift in the values implies that the given 
process had not yet necessarily settled from the previous 
change or that unexpected changes, such as large, 
unmeasured changes in the cold water temperature may be 
present. This is especially the case for the first and last 
regions. The regions which are more or less straight lines 
represent the constant model areas, while the abrupt 
changes in the model are reflected by the spikes. Finally, it 
can be noted due to deadtime in the system, as well as the 
fact that the entropy sum was taken over all the data, the 
identification of changes is delayed. The identified regions 
with their corresponding entropies are given in Table 2. 

An autoregressive model of the form 
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was fit to each of the segmented regions. All models 
passed the appropriate regression analysis tests (Ljung, 
1999). The results are presented in Table 3. 

 

 

Figure 4: Length of the curve as a function of 
time for the experimental data 

Table 2. Information about the segmented data 
set 

Region Start 
(s) 

End 
(s) 

Data 
Points 

Entropy ηdata 

A 162 1077 915 -0.5307 3.5 
B 1296 2530 1234 -0.5173 5.1 
C 2966 4066 1100 -0.4793 2.0 
D 4367 6100 1733 -0.4451 29.3 

Table 3. Fitted model parameters 

Region α1 
(standard 
deviation) 

β1 
(standard 
deviation) 

A -0.987±0.005 0.0038±0.003 

B -0.995±0.02 0.0037±0.0009 

C -0.997±0.001 0.0085±0.001 

D -0.990±0.003 0.00312±0.0009 
 

From the results, it can be seen that the identified 
models as expected are different. Converting the discrete 
time values to continuous time values shows that the 
identified models are close to the step test values, as shown 
in Table 1. It should be noted that the step tests values 
themselves may have some inherent error.  

Conclusions 

This paper has presented a framework for assessing 
the quality of routine-operating data for system 
identification. In this framework, there are two steps: 
model segmentation and data quality assessment. Signal 
entropy is used to partition the models and a condition 
number based on the inverse of the Fisher information 
matrix is used to determine the data quality. It was shown 
that the results based on the condition number correspond 
well with previously developed complex system 
identification criteria. Finally, the proposed framework 

was tested on an pilot-scale example, where the framework 
was able to partition the data into separate models and 
accurately determine the reliability of the model 
parameters obtained.  

Future work will focus on testing the framework for 
more general multivariate cases, as well as for more 
complex industrial systems. 
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