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Abstract
This paper discusses theoretical foundations for the modeling, analysis and control of chemical process networks thatare
tightly integrated through complex material, energy and information flows. The physical behavior of process networks
is described using fundamental concepts from classical thermodynamics, while time-scale decomposition and singular
perturbation theory provide the basis for exploring the network-level dynamic behavior that emerges as a result of tight
inventory integration, and developing appropriate reduced-order models and a hierarchy of control systems for managing
inventories and inventory flows. Finally, ideas from model-based networked control and Lyapunov theory are leveraged
to develop an integrated control and communication strategy that manages the information flows between the network
components and explicitly accounts for communication constraints.
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Introduction

Large scale systems are created by connecting simple
components together via material and information streams.
The resulting networks integrate physical devices, computa-
tion and communication. They represent traffic flow, internet
communication, chemical process plants, electrical grids, so-
cial, biological or financial systems (Ydstie, 2004).The com-
mon, underlying trait of all such systems is that each node has
storage capacity and the ability to transform the stored entity,
while the connections between the nodes provide means for
transportation. The dynamic behavior of a network is usu-
ally quite different from any behavior which can be extracted
from the individual sub-components or small groups of such.
In fact, the network may learn and adapt simply by adjust-
ing (controlling) the strength of the connections between the
sub-systems. Its behavior may also exhibit surprising robust-
ness in the sense that individual components may fail without
significantly altering the performance of the entire system.

This paper focuses on a particular class of networks
called chemical process networks. At the fundamental level,
the dynamic behavior of process networks is characterized by
inventory and information exchanges between units (the net-
work flow). Inventory flow is driven by potential differences

between the network nodes, and the network is at equilibrium
when these driving forces are zero (classic examples include
fluid flow driven by a pressure gradient and heat flow gen-
erated by a temperature gradient). Chemical process plants
clearly belong to this category, as they are large-scale dynam-
ical systems that involve complex, distributed arrangements
of interconnected subsystems (Amaral and Ottino, 2004b,a;
Jiang et al., 2007). The integration between the constituent
subsystems through mass, energy and information flows and
recycle gives rise to a specific, network-level dynamics, and
the associated need to account for and accommodate this be-
havior in network-level control structures, and information
exchange and communication strategies.

Control and supervision of networked process systems
is a challenging problem that requires tight integration of
computing, communication, and control into different lev-
els of plant operations and information processes. The chal-
lenge in dealing with networked systems stems not only from
the complex dynamic behavior of the component subsys-
tems – due, for example, to nonlinear dynamics, uncertainty
and constraints, which make the individual units difficult to
control – but also from the interconnections which can cre-
ate new, more complex dynamics, amplify instabilities and
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potentially exacerbate disturbance and failure propagations
across the entire network.

Over the past two decades, the fundamental and practi-
cal challenges associated with control of networked process
systems have been the focus of significant research activi-
ties in the process control community and have motivated
many research studies on the design of distributed and su-
pervisory control schemes for process networks. Tradition-
ally, the control of plants with geographically-distributed in-
terconnected units has been studied within either the cen-
tralized or decentralized control frameworks. In the cen-
tralized setting, all measurements are collected and sent to
a central unit for processing, and the resultant control com-
mands are then sent back to the plant. While centralized con-
trol is known to provide the best performance – because it
imposes the least constraints on the control structure – the
computational and organizational complexity associated with
centralized controllers often makes their implementationim-
practical. Also, the consequences of failures in a centralized
controller can be detrimental to the entire plant. These con-
siderations have motivated significant work on decentralized
control. In this paradigm, the plant is decomposed into a
number of simpler subsystems (typically based on functional
and/or time-scale differences of the unit operations) within-
terconnections, and a number of local controllers are con-
nected to each distributed subsystem with no signal transfer
taking place between different local controllers. Decentral-
ized control of multi-unit plants can reduce complexity in the
controller design and implementation, and can also provide
flexibility in dealing with local controller failures. However,
since in this structure the interconnections between the con-
stituent subsystems are totally neglected, the closed-loop per-
formance of the plant may deteriorate, and in some cases sta-
bility may be lost. Significant research work has explored in
depth the benefits and limitations of decentralized controllers
as well as possible ways of overcoming some of their limita-
tions (see,e.g., Price et al., 1994; Sandell Jr et al., 1978;
Siljak, 1991; Lunze, 1992; Sourlas and Manousiouthakis,
1995; Luyben et al., 1997; Cui and Jacobsen, 2002; Sko-
gestad, 2004; Huang and Huang, 2004; Kariwala, 2007, and
the references therein) . In recent times, there also has been
significant and growing interest in studying plant-wide con-
trol problems within a diverse array of frameworks, includ-
ing optimization-based distributed model predictive control
(see, for example, (see, for example Katebi and Johnson,
1997; Camponogara et al., 2002; Venkat et al., 2005; Stewart
et al., 2010; Maestre et al., 2011; Christofides et al., 2011),
passivity-based control (see, for example, (see, for example
Hangos et al., 1999; Garcia-Osorio and Ydstie, 2004; Jill-
son and Ydstie, 2007), agent-based systems (Tatara et al.,
2005; Tetiker et al., 2008), and singular perturbation for-
mulations (Kumar and Daoutidis, 2002; Baldea et al., 2006;
Baldea and Daoutidis, 2007). In addition to these works,
research has recently begun to integrate and address com-
munication issues in the plant-wide control problem (e.g.,
resource constraints, real-time scheduling constraints,com-
munication delays and disruptions, etc.), leading to the de-
sign of networked plant-wide control systems with explicitly-

characterized stability and performance properties (Sun and
El-Farra, 2008a,b, 2009, 2010a,b,c, 2011). These efforts are
motivated by the increased reliance in the process industries
on sensor and control systems that are accessed over shared
wired or wireless communication networks instead of ded-
icated links (e.g., Song et al., 2006), as well as the recent
calls for expanding the traditional process control and op-
erations paradigm in the direction of smart plant operations
(e.g., Ydstie, 2002; Christofides et al., 2007). A key com-
ponent of this paradigm is the deployment and integration of
networked sensors and actuators in process control systems
to achieve tighter integration of process operations with real-
time information and help realize objectives that cannot be
met otherwise, including proactive fault-tolerance and real-
time plant reconfiguration based on market demand changes.

This paper seeks to develop a unified framework for the
modeling, analysis and control of process networks whose
component subsystems are tightly integrated through mate-
rial, energy and information flows and recycle. These sys-
tems can be thought of in terms of a two-tier hierarchy,
where in one tier the processing units exchange material
and energy subject to physical laws and constraints, while
in another tier the control systems exchange information
through some communication medium subject to communi-
cation constraints. The developed framework brings together
concepts and tools from classical thermodynamics, singular
perturbations, and networked control. Classical thermody-
namics provides the framework for developing a physically-
based representation of process networks, while time-scale
decomposition and singular perturbation theory provide the
basis for exploring the impact of tight inventory integra-
tion on the network dynamics, and developing appropriate
reduced-order control systems for managing the inventory
flows. Finally, ideas from model-based networked control
and Lyapunov theory are leveraged to develop an integrated
control and communication strategy that manages the infor-
mation flows between the network components in a way that
takes communication constraints explicitly into account.

Structure and Connectivity in a Process Network
Figure 1 shows the architecture of a decentralized control

system for a chemical plant. It consists of severals layers that
allow operators and algorithms interact with the chemical
process in real time. The interface layer converts measure-
ments into signals that can be interpreted by the supervisory
control and data acquisition (SCADA) system. SCADA per-
forms low level control that adjust pumps, valves and other
actuators in response to measurements. They contain pro-
grammable logic control systems to ensure safe and reliable
operation, perform supervisory control tasks, send and re-
ceive data from the communication system through Fieldbus
(IEC 61158) or similar communication protocols that allow a
wide range of network communication topologies. PID con-
trollers and to an increasing degree more advanced process
control systems can be connected directly to Fieldbus or al-
low communication to Fieldbus devices through OPC as in-
dicated in the figure. In a typical chemical process appli-
cation there may be several thousand such devices and and
algorithms connected into a dynamically changing network



that integrates the physical process with communication and
control devices of ever increasing complexity. How such net-
works can be designed, maintained and operated is at present
an open problem and faults and poor performance often result
when single devices or communication between devices fail.
The objective of this paper is to discuss how such networks
can be modeled and controlled usign ideas from nonlinear
control theory and time-scale decomposition.

Chemical plants consist of a network of interconnected
process units (Figure 2), which interact dynamically through
material, energy and information streams. At the system
level, such dynamic interactions contribute to the emergence
of a complex, network-level behavior, that is present in addi-
tion to the dynamics of the individual units. At the local, unit
level, the process interactions constitute disturbances which
must be appropriately addressed in controller design. Froma
theoretical perspective, the analysis of process networksfo-
cuses on (interconnections of) open, finite-dimensional sys-
tems, with the dynamics of each sub-systemj being de-
scribed by a system of equations of the form:

ẋ = f(x)+
n

∑
j=1

g(x,u j , x j) (1)

where the driftf(x) denotes production, for example due
to chemical reaction,g(x,u j ,x j) denotes flow between the
sub-system andj other systems (each with statex j ); u j de-
notes a vector of inputs (control signals) which adjust the
input/output flow rates, thereby defining and determining the
interaction of systemj and other systems.
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Figure 1: The architecture of a modern control system con-
sists of several layers of hardware and software that inte-
grates the process with control and optimization algorithms
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Figure 2: Connectivity structures in integrated process net-
works

As a consequence, in the case of process networks, the
compensation of disturbances at the unit level involves not
only obtaining measurements ofexternaldisturbances, but
also obtaining state information from the units that are di-
rectly connected and/or in the physical proximity of the unit
of interest. Naturally, a tradeoff exists between achievable
control quality and theextentand frequencyof information
transfer (note that in modern plants, information exchange
occurs over a data bus/network, whose bandwidth may be
limited).

Controlling network nodes with a high degree of connec-
tivity ( i.e.,featuring more than a single input and a single out-
put, such as nodeB in Figure 2 (b) or nodeA in Figure 2 (c))
will intuitively require more extensive information (i.e., that
data be acquired from several neighboring units), while the
extent of information required for disturbance compensation
in simple input/output nodes is more modest. Special consid-
eration should be paid to the well established need to avoid
”recycling disturbances” when material or energy recycling
loops are present in the process Seborg et al. (2010), and
to acquiring the relevant disturbance information when re-
cycling is unavoidable.

Intuitively, thefrequencyat which information exchange
is necessarydepends on the time constant(s) of the units in-
volved (note that, as we will show below, the dynamics of
individual process units are fast). On the other hand, the fre-
quency at which information exchange ispossible or practi-
cal will be inversely proportional to the degree of connec-
tivity of the units. Assuming, for example, that the units
use Model Predictive Control, limiting the communication
frequency and the amount of data exchange will benefit the
fast execution of the controller but may impede on its perfor-
mance.

Furthermore, relying extensively on disturbance informa-
tion in the design of a unit-level controller poses the risk of
performance degradation or even loss of stability in the event
of a communication failure.

Process Systems and Network Representations

Definition

In a chemical process network we can use the non-
negative vectorx = (U,V,N1, ...Nnc)

T with x ∈ IR2+nc
+ , re-

ferred to as a system inventory, to represent the state. The
non-negative ofx confines the analysis of process systems to
the subclass of positive dynamical systems (note that a prac-
tical consequence of this property is that mole- and mass-
fractions sum to one). Inventories are additive so that, if
systemS consists of subsystemsS1 andS2 and x1 and x2

are, respectively, the states of these systems, then we can
write, x = x1 + x2, that is, the inventory of a system is the
sum of the inventories of its subsystems. Note that additivity
provides process systems with a linear vector space structure
that is exploited extensively in thermodynamics and process
control.

The inventory vectorx constitutes the basis for the Gibbs
classical state based theory of thermodynamics. In statistical
mechanics,x is referred to as the micro-canonical ensemble



and for a simple system it contains the measures of the energy
inventory, volume and number of moles ofnc different chem-
ical species. In a more general sense, the elements of the
vectorx can refer to any (extensive) variable that measures
the inventory of a quantity, such as area, charge, momentum,
number of items stored in a supply chain, cash deposits or
liabilities Ydstie (2004). In chemical process modeling, en-
thalpy is often used instead of internal energy. Within the
same context, it can be shown that there exists a special in-
ventoryS∈ R+, called Entropy, which captures dissipation
and stability by its tendency increase in isolated systems.In
what follows, we will assume that entropy satisfies the Callen
postulates Callen (Callen) i.e.S(x) should be concave, ho-
mogeneous degree one and differentiable at least once.

Using the concepts above, we can define a vector of con-
jugate, intensive variables, as:

wT =
∂S
∂x

=

(
1
T
,
P
T
, ..

µi

T

)
(2) (2)

which can be used to compute the driving forces for flow be-
tween subsystems. Specifically, we can write the flow com-
ponents of Eq. (1) as:

g(x,u j ,x j) = gc(u)+L(w−wj)(3) (3)

where the first term corresponds to convective (non-
dissipative) flow and the second term is dissipative. As
gc

T(w−wj) = 0 does not provide entropy production (due
to mechanical reversibility), dissipation can be calculated as:

fS j = (w−wj)
TL(w−wj)

Note that the Second Law states that the entropy is non-
negative, and, consequently,fS ≥ 0. This fact can also be
seen from the fact thatL > 0. Furthermore, the concavity of
the entropy production function implies that process systems
are dissipative.

The system dynamics in Eq. (1) can be augmented by
associating a vector of measured output signals:

y = h(x) (4)

The measured variablesy are typically intensive variables
such as temperature, pressure, composition and voltage
(which can be related to the state variablesx).

A Lyapunov Function for Process Systems

Together with the definition in Eq. (4), the formula-
tion in Eq. (1) introduces a two-port representation of pro-
cess systems. Figure 3 illustrates the two different classes
of input and output signals of interest for a process system.
The inventory flow variablesg correspond to physical flows
(heat, fluid, components and electrical current); these vari-
ables obey conservation laws, they can be positive or negative
and their magnitude and direction are determined by poten-
tial differences. Inventory flows can be added and subtracted
like inventories. On the other hand, u and y correspond to
information flows and are not necessarily conserved. In ef-
fect, they are not homogeneous degree 1 functions and fol-
low rules defined by block diagram algebra. The nonlinear-
ity associated with the two-port nature of process networksis

difficult to characterize in a generic way, which, in turn, isre-
flected in the difficulty to develop (and, in effect, the absence
of ) a general theory for nonlinear process control.

Figure 3: Two port representation of a process unit or sub-
system

The concavity of the entropy function serves as a basis for
defining a natural Lyapunov function V for a process unit:

V(x,x∗) = (w−w∗)T(x− x∗)+
np

∑
i=1

(xi − x∗i )
2Ki (5)

where * denotes variables at the stationary state,Ki > 0 and
andnp is the number of phases in the system. The first com-
ponent of this function is related to the Gibbs tangent plane
and it measures the distance between the intensive variables
and their reference variables. The second component shows
that we need to control as many inventories (extensive) vari-
ables as there are phases in the system. The construction
allows us to conclude that:

V(x,x∗)> 0, if x 6= x∗

andV(x,x∗) = 0 iff x = x∗. From statistical mechanics, it
can be shown that S(Z) is twice differentiable, with a local
curvature

M =
∂2S

∂xi∂x j
≤ 0

The symmetric, non-positive matrix M contains parameters
such as the heat capacity and the compressibility. A new
differential system can then be defined by the coordinate
transformationdw= Mdx Integrating using Newton’s the-
orem, we can express potential differences as a function of
the states of different sub-systems, i.e.,

w−wj = Q(x− x j)

where

Q=

∫ 1

0
M(x+(1− ε)(x j − x)dε

It follows that the Lyapunov function of Eq. (5) in fact
can be written as (local) quadratic function:

V(x,x∗) =−(w−w∗)TQ(w−w∗)+

nf

∑
i=1

(xi − x∗i )
2Ki (6)

The negative sign follows from the non-positivity ofM. This
formulation provides a direct link between stability theory
of thermodynamics and Lyapunov stability, and can be ex-
ploited in controller design, as we will see below.



Quasi Decentralized Networked Control
An approach that reconciles the need for frequently up-

dating the state information of the neighbors of a unit in a net-
work, and the limitations imposed by computation power and
potential communication failures is quasi-decentralizedcon-
trol, QDC (Sun and El-Farra, 2008a). QDC refers to a dis-
tributed control strategy in which most signals used for con-
trol at the unit level are collected and processed locally, while
certain signals (the total number of which is kept to a mini-
mum) are transferred between the local units and controllers
over a shared communication medium. This approach repre-
sents a compromise solution that aims to overcome the sta-
bility and performance limitations of decentralized control
approaches while avoiding the complexity and lack of flex-
ibility associated with implementing traditional centralized
control structures. A key consideration in this strategy is
to enforce the desired closed-loop stability and performance
objectives of the plant with minimal information transfer be-
tween the component subsystems.

Consider a unit-wise description of a process system,
consisting ofn interconnected processing units, with a state-
space representation that follows the generic descriptionin
Eq. (1):

ẋ1 = f1(x)+G1(x)u1

ẋ2 = f2(x)+G2(x)u2
...

ẋn = fn(x)+Gn(x)un

(7)

wherexi := [x(1)i x(2)i · · · x(pi)
i ]T ∈ IRpi denotes the vec-

tor of process state variables associated with thei-th pro-
cessing unit,xT denotes the transpose of a vectorx, x =

[xT
1 xT

2 · · · xT
n ]

T , ui := [u(1)
i u(2)

i · · · u(qi)
i ]T ∈ IRqi denotes

the vector of manipulated inputs associated with thei-th pro-
cessing unit, and the functionsfi(·) andGi(·) are sufficiently
smooth nonlinear functions.

QDC Controller Design

The objective of QDC isto design a distributed net-
worked control strategy that stabilizes the individual units
(and the overall plant) with minimal information flows be-
tween the component subsystems, thereby reducing the sus-
ceptibility of the plant-wide control structure to communica-
tion disruptions.

A first step towards this goal is to ensure stability at the
unit level, by synthesizing for each unit a feedback controller
that enforces closed-loop stability in the absence of commu-
nication suspension (i.e., when the sensors of each unit trans-
mit their data continuously to the control systems of the other
plant units). To this end, we consider nonlinear feedback
controllers of the general form:

ui = ki(x), i = 1,2, · · · ,n (8)

whereki(·) is a nonlinear function chosen to ensure that the
time-derivative of the Lyapunov function (5), –or of another
suitable control Lyapunov function candidateVi– of system
i, along the trajectories of thei-th closed-loop subsystem sat-

isfies a dissipation bound of the form:

V̇i = L fiVi +LGiViki(x) ≤ −αi(‖xi‖)< 0, i = 1,2, · · · ,n (9)

for some classK functionαi(·), whereLfV denotes the Lie
derivative of functionV along the vector fieldf.

The controller of Eq. (8) is thus designed to compensate
for the effect of the interconnected subsystems on the states
of the i-th unit. This allows for shaping the time-derivative
of the Lyapunov function and obtaining an explicit charac-
terization of the expected closed-loop behavior in terms of
a time-varying bound that dependsonly on the state of the
local unit being controlled. The stability properties of the in-
dividual plant units can therefore be assessed by monitoring
their states locally without the need for state measurements
from the rest of the plant. This controller-induced property
facilitates the design and implementation of a dynamic strat-
egy for managing the flow of information between the plant
subsystems.

The implementation of each control law in Eq. (8) re-
quires the availability of state measurements from both the
local subsystem being controlled and the units that are con-
nected to it. To reduce the transfer of information between
the local control systems as much as possible without sac-
rificing stability, a set of dynamic models of the intercon-
nected plant units is embedded within the local control sys-
tem of each unit to provide it with an estimate of the evolu-
tion of the states of its neighboring units when measurements
are not available. The use of models allows the sensors of
the neighboring units to collect and send their data less fre-
quently since the model can provide an approximation of the
plant’s dynamics. Feedback from one unit to another is per-
formed by updating the state of each model using the actual
states of the corresponding unit provided by its sensors at
discrete time instances. Figure 4 illustrates the implementa-
tion of this model-based control architecture for a unit (Unit
2) whose dynamics are influenced by both an upstream and
a downstream unit (Units 1 and 3, respectively). By provid-
ing estimates of the states of units 1 and 3 when measure-
ments are unavailable, the embedded models also increase
the robustness of local control systems with respect to distur-
bances from upstream and downstream, as well as to unex-
pected communication outages that may disrupt the flow of
information through the network.

Unit 1 Unit 3Unit 2

Model
of unit 3

Model
of unit 1

Model
of unit 2

Model
of unit 2

010101010101010101010101010101010101010101010101010 101010101010101010101010101010101010101010101010101 01

2xˆ
2xˆ

2x1xˆ
3xˆ

1x 3xModel
state
reset

Model
state
reset

Model
state
reset

Communication network

Information flow Material/energy flow

Controller 3
)x,xˆ(u 323

Controller 2
)xˆ,x,xˆ(u 3212

Controller 1
)xˆ,(xu 211

Figure 4: A networked control architecture featuring mod-
els of neighboring units, which can act as state observers to
increase the robustness of the local control system to distur-
bances and communication outages



The implementation of the local model-based control law
for each unit proceeds as follows:

ui(t) = ki(x̂
i ,xi(t)), i = 1,2, · · · ,n

.

x̂i
j (t) = f̂ j(x̂

i ,xi(t))+ Ĝ j(x̂
i ,xi(t))ûi

j(t)

ûi
j(t) = k j(x̂

i ,xi(t)), t ∈ (t i
k, t

i
k+1)

x̂i
j(t

i
k) = x j(t i

k), j = 1, · · · ,n, , j 6= i, k= 0,1,2, · · ·

(10)

where x̂i
j is an estimate ofx j , used by the local control

system of thei-th unit, x̂i is a vector containing the esti-
mates of the states of the plant units except thei-th unit, i.e.,
x̂i = [x̂iT

1 , · · · , x̂iT
i−1, x̂

iT
i+1, · · · , x̂

iT
n ]T , f̂ j (·) andĜ j(·) are nonlin-

ear functions that model the dynamics of thej-th unit, and
t i
k denotes thek-th time instance that the states of the models
embedded ini-th control system are updated using the state
measurements transmitted from the rest of the plant.

Information Update and Communication Policies

The frequency at which thei-th control system (Eq. 10)
receives measurements from the other units through the net-
work to update the corresponding model estimates is deter-
mined by the update periodhi

k := t i
k+1− t i

k (i.e.,the reciprocal
of the communication rate). The update period is an impor-
tant measure of the extent of information transfer, and can be
calculated statically or dynamically.

Using a static communication policy (i.e., the update pe-
riod is constant and the same for all the units,t i

k+1 − t i
k :=

h, k = 1,2, · · · ,n) presents the advantage that the minimum
allowable communication rate can be calculated off-line prior
to plant operation (Sun and El-Farra, 2009). However, a con-
stant communication rate may not always be the best choice,
especially in cases when plant operations are subject to un-
predictable and time-varying external disturbances.

In this case, a dynamic communication policy that allows
the local control system to determine and adjust the neces-
sary communication rate on-line (i.e., during plant operation)
based on the state of the plant becomes desirable (Sun and El-
Farra, 2010c). The Lyapunov stability constraint derived in
Eq. (9) can be used as a guide for establishing and suspend-
ing communication. Specifically, consider the plant of Eq.
(7) for which each Lyapunov function,Vi, i = 1, · · · ,n, satis-
fies Eq. (9) when state measurements are exchanged contin-
uously between the plant units. Consider also thei-th plant
unit subject to the model-based networked controller of Eq.
(10). Then, an update law of the form:

x̂i
j(t

i
k) = x j(t

i
k), ∀ j 6= i, where V̇i(xi(t

i−
k )) ≥ 0 (11)

wherexi(t i−
k ) = lim

t→t i
−

k
xi(t), ensures thaṫVi(xi(t i

k))< 0.

The implementation of this policy thus requires that each
local control system monitor the evolution of the correspond-
ing Lyapunov function to determine when the models’ states
must be updated and communication re-established. Specif-
ically, if Vi begins to increase at any time, the sensor suites
of the neighboring units are prompted to send their data over
the network to update their corresponding disturbance mod-
els embedded in thei-th unit and re-set the model estimation

errors to zero. Communication from the rest of the plant to
the i-th unit is then suspended for as long as the Lyapunov
functionVi continues to decay. In this way, only units that re-
quire attention (i.e., those on the verge of instability) receive
measurement updates, while the rest do not. This targeted
update strategy is more robust to unpredictable disturbances
(compared with a static policy with a constant update period)
and allows the plant to respond quickly in an adaptive fash-
ion to a unit that requires immediate attention. In additionto
stability considerations, performance specifications canalso
be incorporated into the communication policy by appropri-
ate modification of the update law. For example, an update
law of the form:

x̂i
j(t

i
k) = x j(t i

k),

V̇i(xi(t i−
k )) ≥ −(1−β)αi(‖xi(t i−

k )‖)
(12)

whereβ ∈ (0,1), ensures that not only doesVi decay
monotonically along the trajectories of thei-th networked
closed-loop subsystem, but also that it does so at a certain
minimum rate (which is a fraction of the rate prescribed for
the non-networked plant). By examining the above commu-
nication logic, it can be seen that an update law withβ 6= 1
imposes a stronger restriction on the growth of the model
estimation error than the stability-based logic of Eq. (11),
in the sense that it limits the extent to which model estima-
tion errors (resulting from communication suspensions) can
slow down the non-networked closed-loop response. This in
turn implies –quite intuitively– that accommodating the addi-
tional performance requirements comes at the expense of an
increase in the rate at which thei-th control system needs to
receive measurement and disturbance updates from the rest
of the plant.

The arguments above have dealt with thefrequencyof in-
formation exchange between the units. Theextentof data
exchange between units is driven by the number of models
that need to be incorporated in each control system, which,
in turn depends on the structure of the plant and the connec-
tivity of the units.

Consider again the network structures in Figure 1. For
example, in the presence of weak integration (e.g.,a low in-
ventory recycle flow), the integrated process network in Fig-
ure 2 reduces to a simple cascade (series) connection of units.
Since in this case unit 1 receives no input from the other units,
the number of models embedded in its control system is zero.
Unit 2 receives input from unit 1, so a model of unit 1 needs
to be included in the local control system of unit 2. If any
interactions exist between units 2 and 3 (e.g.,through the in-
fluence of the downstream pressure on the mass flow between
the two units), Unit 2 should also incorporate a model of Unit
3. Unit 3 receives two inputs - one directly from unit 2 and
another indirectly from unit 1 (which feeds into unit 2) - and
therefore requires two models: one to estimate the behavior
of unit 2 and another to estimate the behavior of unit 1.

If computational load becomes an issue (e.g., when N is
large), it is possible replace some or all of the models with
simpler zero-order hold models of the form:

˙̂xi
j(t) = 0, t ∈ [t i

k, t
i
k+1)

This corresponds to the case in which each control sys-
tem holds the last available measurement from a given unit



until the next one is made available at the update time. It
should be noted, however, that while this strategy helps re-
duce the number of models that need to be solved, it may
increase the communication requirements between the com-
ponent subsystems relative to that associated with the model-
based scheme. In general, it is expected that the estimate
generated by a physically-based model outperforms the es-
timate generated by a zero-order hold strategy (unless the
plant-model mismatch is significant).

Process Networks Networks with Tight Integration
Let us consider a generic integrated network of chemical

process systems, such as the one in Figure 2 c), consisting of
N process in series. We use the terms “integrated” and “in-
tegration” to denote the presence of a recycle connectionR,
intended to transfer inventory from the last unit to the first,
as illustrated in Figure 5.

R

F2   F1   Fo FN   

Figure 5: Generic integrated process system, featuringN
units and an inventory recycle connection

The mathematical model describing the evolution of an
inventory (e.g., material, energy) of this system can be writ-
ten (Kumar and Daoutidis, 2002; Baldea and Daoutidis,
2007) as:

ẋ = f(x)+ ∑
j=0,N

g j(x)u j +Rc
N−1

∑
j=1

k jg j(x)u j +RcgR(x)ur (13)

where u j = (Fj/Fj ,s) represent (possibly manipulated) di-
mensionless variables that correspond to the inventory flows,
k j = Fj ,s/FR,s, j = 1. . .N, and g j(x) and gR(x) are vector
functions of appropriate dimensions. The subscriptsdenotes
steady state values. The model explicitly identifies the terms
that involve the process port flows (j = 0,N), the internal in-
ventory flows (j = 1, . . . ,N−1) and the recycle flow (j = R).
In order to investigate the impact on the presence and mag-
nitude of inventory recycling on the process dynamics, Eq.
(13) also makes use of the recycle numberRc, a process-wide
dimensionless number expressed as the ratio of the (steady
state) rate at which inventory is recycled to the rate at which
inventory is introduced in the process through the inlet port:

Rc=
Rs

Fos
(14)

This perspective allows us to delineate two limiting case:

• Rc≪ 1, i.e., the flow rate of the recycle stream is small
compared to the flow rate of fresh feed. Intuitively, in
this case the dynamics of the process network in Figure
5 will not differ significantly from the dynamic behav-
ior of a cascade ofNprocess units in series as in Figure
1 a).

• Rc≫ 1, which corresponds to significant inventory re-
cycling. Intuitively, in this case the contribution of the

last two (internal inventory flow and inventory recy-
cle) terms in Eq. (13) to the evolution of the statesx
is significantly higher than the contribution of the first
two, and we can expect that the dynamic behavior of
the process represent a significant departure from that
of a cascade system.

Given the current trend towards ever tighter integration
of chemical plants through material recycling and energy re-
covery, the case whereRc is a large number is of elevated
interest. It will constitute the focus of the developments be-
low. To this end, let us rewrite the model in Eq. (13) in a
more general form as:

ẋ = f (x)+Gs(x)us+
1
ε

Gl (x)ul (15)

where, as above,x is the vector of unit inventories,us ∈ IRms

is the vector of scaled input variables that correspond to the
small input/output of inventory from the process,ul ∈ IRml

is the vector of scaled input variables that correspond to
the large internal inventory flows (including inventory recy-
cling), ε = 1/RcandGs(x) andGl (x) are matrices of appro-
priate dimensions. The model in Eq. (15) is a nonstandard
singularly perturbed system of equations Kumar and Daou-
tidis (1999); its dynamics thus have the potential to exhibit a
multiple time scale behavior. The rational approach for ad-
dressing the control of such systems involves the properly
coordinated synthesis of separate fast and slow controllers so
that overall stability, output tracking and disturbance rejec-
tion performance can be achieved. The design of such con-
trollers is carried out using separate reduced-order models
that describe the dynamics in the fast and slow time scales.
These issues are addressed below.

Reduced Order Modeling

We define a fast, “stretched” time scaleτ = t/ε. Rewrit-
ing Eq. (15) in this time scale and considering the limit case
ε → 0 (which physically corresponds to an infinitely high re-
cycle number or, equivalently, an infinitely high inventory
recycle rate), we obtain a description of the fast dynamics of
the process:

dx
dτ

= Gl (x)ul (16)

Note that the above model only involves the (large) flowrates
ul of the inventory recycle and internal inventory streams,
and does not involve the (smaller) flowratesus of input and
output of inventory to and, respectively, from the process.
Examining Eq. (13), it is intuitive that the internal inventory
flows do not affect the total inventory in the process, and that
the total inventory is affected only by the flow ratesus of the
input/output streams. In other words, Eq. (16) effectivelyde-
scribes the dynamics of the individual unit inventories in the
recycle loop and does not capture the overall (process-level)
changes in inventory. We can use this observation to further
infer that:

• The differential equations in Eq. (16) are not linearly
independent. By consequence, the steady state condi-
tion 0= Gl (x)ul for the fast dynamics in Eq. (16) does



not specify a set of isolated equilibrium points, but
rather a low-dimensional equilibrium subspace (man-
ifold), in which a slow component of the system dy-
namics evolves. The slow component of the process
dynamics is associated with the evolution of the total
inventory of the process.

• Based on physical considerations, at mostC+1 equa-
tions (whereC is the number of chemical compo-
nents) are required to completely capture the overall
and component-wise material balance, and the overall
energy balance of the process. Thus, we can expect
that the dimension of the system of equations describ-
ing the slow dynamics of the process system to be at
mostC+ 1, and the equilibrium manifold of the fast
dynamics to be at mostC+1-dimensional.

In order to obtain the description of the slow dynamics,
we will assume that it is possible to isolate a set ofn−(C+1)
linearly independent constraints corresponding to the fast dy-
namics, i.e., that the matrixGl (x) can be decomposed as:

Gl (x) = B(x)Ḡl (x) (17)

with B(x) ∈ IRn×(n−(C+1)) being a full column rank matrix

and the matrixḠl (x) ∈ IR(n−(C+1))×ml
having linearly inde-

pendent rows.
Multiplying Eq. (15) byε and considering the limit of an

infinitely high recycle flow rate (i.e.,ε → 0) in the original
time scalet, we obtain the linearly independent constraints
Ḡl (x)ul = 0 which correspond to the quasi-steady state of
the fast dynamics and must be satisfied in the slow time scale.
Also in the limit asε → 0, the terms(Ḡl (x)ul )/ε which cor-
respond to the differences of large flow rates present in the
inventory equations of every process unit, become indetermi-

nate. Definingz = limε→0
Ḡl (x)ul

ε as the vector of these finite,
but unknown terms, the system in Eq. (15) becomes:

ẋ = f(x)+Gs(x)us+B(x)z (18)

0 = Ḡl (x)ul

which represents a Differential Algebraic Equation model of
the slow dynamics of the process, induced by the presence of
significant inventory recycling.

Hierarchical Control of Integrated Processes

The two-time scale behavior of the inventory of inte-
grated processes suggests the use of a hierarchical control
structure with two tiers of control action: i) distributed
control, addressing control objectives for individual process
units in the fast time scale and, ii) supervisory control, ad-
dressing control objectives for the overall process in the slow
time scale To this end, let us complete the description of Eq.
(18) with a vector of output variablesy = h(x) = [yl ys]T . y
extends the definition of the output vector in (4) to the level
of the integrated process network, whereyl denote the subset
of the output variables that are associated with control objec-
tives for the individual process units (typically involving the
control of local inventories) andys those that are associated

with control objectives for the overall network,e.g.,produc-
tion rate, total inventory and product quality.

The above time scale decomposition provides a transpar-
ent framework for the selection of manipulated inputs that
can be used for control in the two time scales. Specifically, it
establishes that the output variablesyl need to be controlled
in the fast time scale, using the large flow ratesul , while the
control of the variablesys is to be considered in the slow time
scale, using the variablesus. Moreover, the reduced-order
approximate models for the fast dynamics (Eq. (16)) and
slow dynamics (the state-space realization of Eq. (18)) can
serve as a basis for the synthesis of well-conditioned (non-
linear) controllers in each time scale. Note that, due to the
dependence of the algebraic constraints in Eq. (18) on the
inputsul , the fast controller design must precede the design
of the slow controller.

As stated in the previous section of this paper, the design
of the unit-level controllers can be addressed as a collection
of decentralized, networked control problems usinge.g.,the
Lyapunov-based controllers in Eq. (8). The supervisory con-
troller is typically a nonlinear, multivariable optimization-
based construct that addresses plant-wide control objectives,
such as inventory and product quality control, as well as en-
ergy management by modifying the setpoints and control ob-
jectives of the decentralized controllers.

It can be shown (Baldea et al., 2010) that, provided that
the fast controllers are designed to exponentially stabilize the
fast dynamics, the stability of the overall network is deter-
mined by the stability of the supervisory control system in
the slow time scale. From this perspective, the composite
control approach delineated above affords the control engi-
neer a significant amount of design flexibility. The avail-
ability of a reduced-order model (i.e., a state-space realiza-
tion of Eq. (18)) of the slow dynamics that is non-stiff and
well-conditioned means that any of the available inversion-
or optimization-based controller design methods (Kravaris
and Kantor, 1990; Mayne et al., 2000; Zavala and Biegler,
2009) can be used to design a stabilizing supervisory con-
trol system for the slow dynamics, guaranteeing at the same
time stability at the process level. The composite control ap-
proach delineated above is also beneficial from an implemen-
tation point of view: the reduced dimensions and improved
conditioning (reduced stiffness) of the supervisory controller
(compared to a controller based on the original model (15)
will result in reduced online calculation times and less sensi-
tivity to noise and disturbances.

Information Transfer and Communication Policies at the
Process Network Level

Relying on a reduced-order model for supervisory con-
troller synthesis presents the benefit of reducing the informa-
tion transfer requirements at the level of the entire process
network. Following the developments above, the supervi-
sory controller designed based on the reduced-order model of
the slow process dynamics guarantees stability at the network
level, provided that i) the quasi-decentralized controllers en-
sure exponential stability of the fast dynamics and, ii) there
are no communication failures between the process and the



supervisory controller. Note that the latter provision allows
for a continuous updating of any model that is used in com-
puting the controller output.

The ideas developed above can serve as a basis for under-
standing the role of communication constraints and potential
communication failures on stability at the level of the process
network.

To this end, we will resort to a generalization of the Tel-
legen theorem (Jillson and Ydstie, 2007) to extend Eq. (6)
and derive a Lyapunov function for a process network with
multiple nodes. This approach uses the fact that the intensive
variables are unique (which follows from the concavity of the
entropy function) to show that we have:

∑
nodes

wT
(

dx
dt

− f
)
= ∑

ports
wTg− ∑

f lows

(wi −wj)
T(gi − g j) (19)

The expression above gives the entropy balance for the net-
work since:

dS
dt

= ∑
nodes

wT dx
dt

(20)

and the entropy can serves compute a network Lyapunov
function at the process network level, with

dVnetwork

dt
= ∑

ports
w̄T ḡ+ ∑

nodes

w̄T f̄− ∑
f lows

(w̄i − w̄j)
T(ḡi − ḡ j)(21)

+ ∑
nodes

∑
phases

K j x̄ j
dx̄ j

dt

and the function:

Vnetwork= ∑
nodes

Vi ≥ 0 (22)

is defined by summing the Lyapunov functions (5) of each
each node (process unit).

An adaptive communication policy at the process net-
work level can subsequently be defined using the same ideas
applied at the level of a process unit. A similar Lyapunov
stability constraint as the one derived in Eq. (9) can be estab-
lished at the level of the network, using the Lyapunov func-
tion (22),i.e.,

V̇network =≤ −α(‖x‖)< 0 (23)

V̇network can subsequently be used as a guide for defining
the minimum update requirements of the model built in the
supervisory controller and, consequently, the network level
communication needs. For example, an update law of the
form:

x̂(tk) = x(tk), when V̇(x̂(t−k )) ≥ 0 (24)

can be considered.
Based on the considerations outlined in the previous sec-

tion, the dynamics of the network Lyapunov function (22) are
much slower than the evolution of the corresponding unit-
level functions (5), and the network-level update frequency
that results from applying the update law (24) is significantly
slower than the unit-level update frequency defined by (11).

Conclusions and Outlook
The increasing need to improve operational efficiency

and lower energy and utility consumption have given rise to a
new class of chemical plants - the process network - featuring
tight integration between individual units (process systems)
through material, energy and information flows. Integration
gives rise to strong dynamic interactions, causing an overall,
network-level dynamics to emerge.

The complexity of this behavior, and its impact on pro-
cess control, requires a paradigm shift in our analysis tools.
Uniting concepts from classical thermodynamics, singular
perturbation theory, Lyapunov stability and networked con-
trol into a broadly applicable framework for the analysis and
control of integrated process networks, the paper presented a
novel avenue for addressing the aforementioned challenges.
We have advocated the use of a hierarchical networked ap-
proach, consisting of a set of quasi-decentralized controllers
at the unit level, and a supervisory controller which addresses
control objectives at the level of the process network, and ar-
gued that the proposed structure represents a powerful tool
for ensuring stability and performance for complex process
networks.
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