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Abstract 

The online use of First-Principles Models (FPMs) to support process operations has been practised in the 

chemical and petroleum industry for over 40 years. FPMs can encapsulate a large amount of process 

knowledge and many companies have realized significant value from the use of these models in online 

model based applications (OMBAs). Such applications include real-time optimization, model predictive 

control, data reconciliation, virtual sensors, and process performance monitoring to name a few. The 

sophistication of both the FPM models and applications based on them has increased over time. At some 

points in the evolution certain applications were not as successful due to issues related to sustainability, 

which includes model complexity, solvability, maintainability and tractability. Also, model development 

cost can be a factor in considering the type of model used in these applications. Hence many simplified 

and empirical model based online applications became preferred in some domains, even though the 

overall prediction quality of the FPM may be superior. This paper will review the past experiences, 

current status and future challenges related to FPM based online modeling applications. There are many 

areas where the issues related to FPMs can be addressed through proper model management, better 

software tools and improved technical approaches and work processes. It is hoped that this paper can 

serve as a basis to promote an understanding of the issues for researchers, modeling software vendors, 

modeling engineers, and application engineers and help to stimulate improvements in this area so that 

more usage and value of FPMs to support process operations is enabled in the future. 
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Introduction

This paper is concerned with the usage of first-principles 

models in online computer applications to support 

industrial process operations. Below, we start by defining 

some key concepts. 

 

 

 

First-Principle Models (FPMs) 

 

We are interested in mathematical models which 

establish a quantitative description of the effects of the 

process inputs (including both deliberate control actions 

and external disturbances) on the process outputs and key 

performance indicators (KPIs) characterizing the technical 



  
 

and economic performance of the process, and its safety, 

operability and environmental impact.  In this context, we 

loosely define FPMs to be those based on fundamental 

engineering,  physics and chemistry principles, in contrast, 

for example, to empirical mathematical or statistical 

correlations between input and output variables derived 

from plant or other data (e.g. models based on step/impulse 

responses, neural nets, time series, or other forms of data 

regression). Of course, most non-trivial models do contain 

some empirical components since they involve quantities 

that cannot be fundamentally calculated. However, our 

FPMs will include, at a minimum, mass and energy 

balances; they will also usually employ a physics and/or 

chemistry-based description of some or all of the terms 

(e.g. flux or source terms) that appear in these balances in 

terms of fundamental thermodynamics, kinetics, fluid 

mechanics and so on.  

Inevitably, the above considerations allow a spectrum 

of models of varying rigor to fall under the FPM 

description. However, a common characteristic of all but 

the most trivial of these models is their nonlinearity which 

can be quite high for certain classes of applications such as 

those that involve chemical reactions. On one hand, the 

nonlinearity of such processes provides at least part of the 

justification for using FPMs in terms of their ability to 

accurately describe behavior over wider ranges of 

operation than is possible using simpler alternatives such 

as linear models. On the other hand, it also means that it is 

often impossible to guarantee that the models will always 

be solvable within the desirable timeframe, or even at all. 

Thus, the issue of robustness of model-based calculations 

and the tractability of the model is of central importance. 

A second common characteristic of the FPMs of 

interest to this paper is their dynamic nature. Although 

certain types of online calculations (e.g. the so-called 

“Real-Time Optimization” used to determine optimal 

steady-state set-points for continuous processes) are based 

on steady-state models, most of the applications considered 

here require a description of the transient process behavior. 

FPMs are implemented in modeling and programming 

languages, and delivered in deployment forms for 

embedding or direct execution. In these deployment forms, 

FPMs can be a part of a distributed application or can be 

embedded in the controller/estimator application directly. 

 

Online Model-Based Applications (OMBAs) 

 

The online applications of interest to this paper are 

various types of model-based calculations which involve 

some form of direct data connection to the process plant 

and/or its control system. At a minimum, we assume that 

OMBAs receive as inputs plant measurements made 

available by online sensors; these may be complemented 

by additional offline measurements (e.g. results of 

laboratory analysis) where available. 

From the point of view of their functionality, OMBAs 

can be categorized into several distinct types: 

(a) Plant monitoring: these provide information to the 

plant operators about the current state of the plant, that 

is generally superior in accuracy and/or extent to what 

can be provided directly by the sensors.  

(b) Plant forecasting: potentially, OMBAs may also 

provide information on the future state of the plant, 

given its current state and, possibly, one or more 

hypothetical scenarios involving future actions or 

events. 

(c) Open-loop decision support: these take the form of 

actions (e.g. changes to the plant control system set-

points) that are suggested to the plant operators as 

means of achieving certain objectives or outcomes. 

This is a purely advisory function, with the actual 

implementation of these actions being left at the 

discretion of the operators. 

(d) Closed-loop control & automation: these are similar 

to the above, except that the proposed actions are 

implemented automatically on the plant, either directly 

or via its control system, without any operator 

intervention.    

OMBAs may be executed continuously (e.g. in 

synchronization with real-time control systems) or at 

scheduled times (e.g. at regular time intervals as, for 

example, in the case of daily production data 

reconciliation). Alternatively, they may be triggered on 

demand (e.g. by operator action) or under certain 

conditions (e.g. suspected abnormal situations). 

 

Objectives and Structure of This Paper 

 

Recent years have witnessed significant advances in a 

number of online model-based applications, such as 

model-predictive control and state estimation. It is not the 

intention of this paper to provide a detailed review of 

technical developments in each of these specific areas. 

Instead, our main focus is on the issues arising from the 

use of such applications in conjunction with FPMs, and on 

the implications and demands that this poses on FPMs, for 

example in the context of their transitioning from offline to 

online use and  keeping them up-to-date in the face of slow 

changes in the underlying processes.  

We also consider how different OMBAs can be 

synthesized within a coherent framework for online 

process management, and how to ensure that the most 

appropriate model is used for each OMBA while still 

ensuring model consistency across different applications in 

a sustainable manner that minimizes the effort required for 

model maintenance. At the same time, it is hoped to 

identify the needs that are not addressed by current 

technology.  

In general, FPMs potentially contain a high degree of 

process knowledge and can provide a valuable tool for 

operations. However, it is important to manage their 

complexity and to ensure that OMBAs based on them are 

designed with sustainability considerations taken into 

account right from the start. In this regard, we would like 

to give an update on the past experiences, status and what 



  

the challenges are for expanding the use and value of this 

class of models over the coming decade. 

The next section provides a brief historical perspective 

looking at the successes and failures of using FPMs in past 

online applications; this is followed by a discussion of the 

closely-related issue of sustainability of OMBAs. We then 

consider in detail aspects relating to the development and 

calibration of FPMs. We subsequently discuss different 

types of OMBAs and their requirements as far as FPMs are 

concerned, with particular emphasis on the challenges this 

poses for modeling technology. Experiences from a case 

study are presented to provide an example of the 

application of several of the above aspects, and to 

introduce some additional practical considerations. We 

conclude by outlining some key challenges for the future. 

Historical Perspective 

FPMs were first used in support of process control 

applications in the 1960s-1970s. This coincides with the 

initial use of digital computers to support process 

operations. In some cases these models were set up to 

generate gain information for steady state optimizers based 

on linear programming (LP) or sequential linear 

programming (SLP). During this time most were custom 

models or derived from modeling systems developed by 

the operating company. Many factors contributed to 

making the use of FPMs a complicated exercise. The 

modeling tools were not very powerful, computers were 

difficult to program and applications required experts to 

maintain them. In particular, most models used in this 

context were in “black box” form and their outputs were 

often subject to significant numerical noise, which 

prevented the calculation of accurate derivative 

information by input perturbation.  In spite of these 

difficulties, these initial model-based applications 

delivered value. 

In the 1980s, more progress was made in optimization 

and equation oriented (EO) approaches to first principles 

modeling. EO approaches greatly facilitate the 

development of models of complex unit operations in a 

manner that is independent of the solution method. Also, 

since there is no fixed directionality in model solution, the 

same model can be used for different applications, thereby 

reducing the overall cost of maintenance. Moreover, due to 

the availability of partial derivative information and the 

use of solution methods with superlinear or quadratic 

convergence rates, the EO approach tends to offer better 

computational efficiency. This is especially true when the 

solution is “hot-started” from previous solutions, as is 

often the case in online applications. Overall the EO 

approach offers a more natural and numerically suitable 

interface for optimization problems. Other approaches to 

using FPMs for optimization support in operations also 

appeared this decade, based on LP/SLP or even mixed-

integer linear programming (MILP, see Nath, 1986). 

However, despite this progress in process modeling and 

simulation, tools for model development targeted at online 

applications lagged behind those available for process 

design and simulation. This may have been, at least 

partially, due to the perceived size of the market for online 

applications in comparison to that for offline modeling, 

and the fact that modeling for online applications tended to 

be done by skilled specialists rather than general 

practitioners. 

In the 1990s, a large number of online FPM-based 

steady state optimization applications were developed and 

delivered in the petrochemical and refining industry. 

However, in general they lacked sustainability due to their 

complexity, need for good support expertise and lack of 

available tools. Partly because of this, competing 

approaches developed that could deliver much of the 

benefits in a more cost-effective, reliable and maintainable 

manner. Consequentially, the use of FPMs embedded in 

the optimization application endured a setback, but the 

FPM model class was still active and delivering value in 

other architectures for process optimization and control. 

During this same time, the use of model predictive 

control was spreading and achieving success in the process 

industries. In some cases, the use of the linear empirical 

dynamic models was inadequate to achieve the 

performance required. Some turned to FPMs to compute 

gain information to be used to update the MPC controller 

model. Others used dynamic FPMs to do step testing to 

generate data for an identification package for controller 

development. FPMs were also used to supplement process 

measurements in control applications in the form of soft 

(or virtual) sensors, effectively using a computed model 

output to represent an unknown measurement. The practice 

of using FPMs for gain updating, identification support 

and soft sensors has been successful and continues today, 

but in the past this usage was not supported in a unified or 

standardized way by the modeling software vendors. 

In the mid-1990s, approaches to using nonlinear 

dynamic FPMs were developed to address some 

challenging process control problems (Young et al. 2001). 

For these applications, an EO approach is also required to 

get the reliability and computation times required for an 

MPC application. Once again, the dynamic modeling tools 

to support visual flowsheet modeling that implemented an 

EO solution approach were not readily available since 

most dynamic modeling system vendors were targeting 

other domains and EO modeling approaches were not 

supported. As a result, custom models or 1980s-style 

modeling packages were used for the model development, 

thereby continuing the need for expertise to develop and 

maintain the models. Also, model development time was a 

concern, which tended to bias service companies offering 

OMBAs towards simple modeling approaches. In addition 

to nonlinear control, a few custom applications for 

nonlinear state estimation based on FPMs were also 

published during this time frame (Froisy et al., 1999). 

In the 2000s, a number of applications for nonlinear 

model predictive control were developed in the polymers 

area, where the extra complexity of using a nonlinear first 

principles model can be justified due to performance 



  
 

expectations. A limited number of industrial custom state 

estimation applications based on FPMs, targeted both at 

performance monitoring and controller support, continued 

to be implemented (Hedengren et al., 2007). 

Other novel uses of FPMs have developed to support 

process control recently. This includes using online models 

to compute controller limits (e.g., approach to critical 

process values) and computing future values of controller 

feed forward variables. In addition to providing gain 

information, FPMs can also be used to generate a “reduced 

complexity” state space or “control relevant” model. This 

is one way to balance preserving the prediction capability 

while reducing the complexity to a manageable level for 

online applications. 

Model Complexity and OMBA Sustainability 

 

The experience gathered to date and summarized 

above indicates that FPMs have the potential to deliver 

more value than empirical approaches in many OMBAs. 

As we look back on the issues encountered in steady state 

RTO applications and initial attempts at nonlinear model 

predictive control and state estimation, the barriers to 

increased usage of FPMs can be traced to a few key issues.  

First is application sustainability i.e. the ability to 

maintain applications in a cost-effective way such that they 

continue to produce value over time. There are tradeoffs in 

sustainability vs. the rigor added by the FPM to the 

application. For example, MPC applications embedding 

linear empirical dynamic models have delivered huge 

benefits while still achieving acceptable sustainability. The 

identification technology and tools have improved to make 

this process more reliable. Even in cases where linear 

models are found to be inadequate to meet ongoing 

performance expectations, this can often be addressed in a 

practical and satisfactory manner by manual model 

adjustments, variable transformations and some model 

updating. Overall, using more rigorous FPMs would bring 

too much complexity and little benefit to be competitive in 

control applications for which linear or almost linear 

models already offer adequate representations of process 

behavior. However, this still leaves a wide class of 

processes whose control can be better addressed by FPMs, 

especially where highly nonlinear effects are involved, as 

is the case, for example, with chemical reactors and 

polymerization processes.  

In general, if the underlying model is too complex, it 

will not be easy to modify or maintain an OMBA, and 

some or all of the value derived from it may be lost. 

However, it is worth noting that sustainability is not always 

a monotonically decreasing function of the degree of 

modeling rigor. If a model is too simple, there are 

associated maintenance issues with refitting, retuning and 

the OMBA value may be lost. This is the case in many 

applications of linear MPC. 

The second major barrier to the increased use of FPMs 

in OMBAs is the cost of model development. Developing 

an FPM from scratch can be a challenging and time 

consuming task, and being able to re-use existing models 

(or part thereof) developed in the context of other offline 

or online applications can significantly affect the economic 

feasibility of developing a new OMBA. We discuss this 

and related issues in more detail below. 

In summary, as illustrated schematically in Figure 1, 

the OMBA designer needs to seek an optimal level of 

modeling rigor that delivers maximum sustainability and 

cost effectiveness. The position of this optimum point is a 

strong function of the technology available, and 

developments over the next decade must aim to shift this to 

the right. We should also aim to make this optimal level of 

model rigor easier to identify with less guesswork.  

 

 
Figure 1: Modeling rigor vs. sustainability trade-offs 

FPMs: From Offline to Online Applications 

FPMs for Offline Model-Based Applications 

 

Although the use of FPMs for online applications is 

still rather limited, this is by no means true in the case of 

offline computer-based computations. FPMs have been 

used for process and equipment design with significant 

success for more than 50 years now (see Sargent, 1958 for 

some early but relatively sophisticated examples). First-

principles modeling is now used across the process 

lifecycle from basic R&D (e.g. catalyst development and 

design; design of new equipment) to engineering (e.g. 

design of integrated processes and their control systems), 

and ultimately to process operations for applications such 

as operational optimization, troubleshooting and 

debottlenecking; operator training simulators based on 

very detailed FPMs are being developed and successfully 

deployed in industrial applications, and are generally 

maintained over long periods of time.  Significant 

advances have been achieved in industrial practice in 

recent years by (a) using high-fidelity models of individual 

unit operations which can significantly increase the 

confidence in the designs derived from them, (b) 

combining these into models of integrated processes, 

thereby drawing a system envelope that is wide enough to 

take account of all important interactions and to represent 

the true process objectives and constraints in a meaningful 

manner, and (c) coupling these integrated process models 
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with formal optimization techniques which allow a much 

more complete, effective and efficient exploration of the 

design space than is possible using manual trial-and-error 

simulations. A compelling account of such an approach 

applied to the development of a new process has recently 

been reported by Martín Rodríguez et al. (2010). 

Early offline applications used to employ several 

different models for the same physical object. For 

example, it was (and still often is) customary to use 

relatively detailed models for design of complex 

equipment items (e.g. reactors), but then to rely on rather 

simple approximate models (e.g. based on user-specified 

conversions, or complete chemical equilibrium 

assumptions) for representing these same units within a 

process flowsheet, with the relationship between these 

different models often being rather ill-defined (e.g. the 

detailed reactor model would be used to compute a 

conversion at a nominal set of operating conditions, with 

this conversion subsequently becoming a fixed parameter 

in the simplified model). However, with increasing 

computer power, there is much less incentive to employ 

such approximations within any given system envelope 

(e.g. plant or plant section). There is also a better 

understanding of the benefit of using accurate predictive 

models throughout the process lifecycle in terms of 

improved confidence in design and reduction of the need 

for extensive adjustments at the time of plant 

commissioning.   

From the point of view of modeling technology, the 

above considerations have provided the motivation for 

moving from process simulators to multipurpose process 

modeling environments in which the process models are 

independent of the specific applications for which they are 

being used. The use of such environments offers significant 

advantages in terms of consistency across different 

applications, and also simplifies model maintenance in 

correcting errors or incorporating improved physical 

understanding.  

A key point of the above discussion is that 

increasingly sophisticated FPMs are used to capture and 

deploy knowledge and understanding throughout the 

process lifecycle; and that the required (often non-

negligible) investment of time and money is leveraged 

across multiple offline applications. Similar considerations 

are also important as far as online applications are 

concerned. In particular, if a FPM already exists, having 

been developed and tested for offline usage, then this 

removes, or at least mitigates, one of the largest obstacles 

to employing FPMs for online applications.  

 

FPM Development for Model-Based Applications 

  

The development of a FPM that is “fit-for-purpose” 

for the successful delivery of any model-based application 

is a non-trivial undertaking which typically involves a 

number of steps. The availability of a mathematical 

description that relates the system outputs of interest 

(including process KPIs) to the system inputs taking 

account of all the relevant physical phenomena is, of 

course, an essential first step. The next step is to 

implement this model in a suitable modeling platform. As 

has already been mentioned, this is generally easier in EO 

environments as they take much of the responsibility for 

the solution of a model away from the user, in contrast to 

sequential or simultaneous modular (SM) environments 

where the user has to code both the model equations and 

their solution. Even so, model implementation usually 

involves more than a simple transcription of the 

mathematical equations into a modeling language, as 

certain considerations that promote numerical stability and 

robustness need to be taken into account in choosing an 

appropriate formulation of the model equations.  

The next step typically involves obtaining a first 

solution of the model equations for a nominal set of values 

of the input variables and model parameters. This is 

necessary in order to test the correct implementation of the 

model, and usually involves the solution of a set of 

nonlinear algebraic equations at the initial point of a 

dynamic trajectory. SM environments have a distinct 

advantage in this context as they employ hand-coded 

solution procedures which can be tailored to the model 

under consideration, in particular by including code for 

generating good initial guesses for the model variables. On 

the other hand, this step is often much more difficult for 

EO environments which have to rely on general-purpose 

numerical solvers. The latter may not be able to converge 

from the (often very poor) initial guesses available, 

especially if the model is not written in an optimal manner 

or is not even entirely correct – a common situation during 

early model development. In the authors’ experience, up to 

20% of the total project effort may be expended at this 

step. More generally, in the past the potential lack of 

robustness of solution from poor initial guesses has been a 

significant reason for preferring SM approaches to EO 

ones in practical industrial applications (see, for example, 

Cox et al., 2006). However, recent technological 

developments may significantly shift this balance. For 

example, the concept of Model Initialization Procedures 

(MIPs) recently introduced in gPROMS
®
 allows the model 

developer to express complex initialization procedures as 

sequences of model transformations described in a purely 

declarative manner; these are executed automatically by 

the modeling tool using a robust proprietary algorithm as 

and when required. 

 

Calibration of First-Principles Models 

 

Once sufficient tests of the model’s correctness are 

carried out, the next step is usually the validation of the 

model against experimental data and the estimation of any 

model parameters (e.g. kinetic constants) which cannot be 

predicted from first principles or estimated from available 

correlations. There are well established procedures for this 

activity (see, for example, Asprey and Macchietto, 2000), 

and in principle they are applicable to experimental data 

from a variety of sources, including laboratory rigs, pilot 



  
 

plants or full-scale plants. In the context of FPMs for 

OMBAs, the obvious choice is often to use plant data for 

this purpose. However, this may not lead to optimal, or 

even acceptable, parameter values because plant 

measurements, even when complemented with the results 

of additional process testing, do not always contain 

sufficient information to allow accurate estimation of 

parameters. Moreover, the observed plant unit behavior is 

usually the outcome of the interplay of several complex 

physical phenomena, each with its own parameters, and is 

influenced by, often unmeasured, interactions with 

upstream and downstream equipment and the environment. 

Finally, the values of some model parameters may actually 

vary during plant operation; for example, reaction kinetic 

parameters may change due to catalyst deactivation, and 

heat transfer coefficients due to fouling or coking.  

In view of the above, it is preferable to distinguish 

three different activities: 

1. FPM validation and parameter estimation: This is an 

offline activity that makes use of as much information as 

possible from well-designed laboratory- or pilot-plant scale 

experiments to obtain the most accurate characterization of 

the fundamental physics of the process. Examples of 

parameters determined during this step include binary 

interaction parameters (usually estimated from vapor-

liquid equilibrium data), mass transfer and heat transfer 

coefficients (for clean equipment surfaces), and most 

kinetic parameters (usually estimated from specially-

designed pilot plant experiments or, potentially, carefully 

prepared historical process data). These parameters can be 

assumed to remain constant during plant operation and 

most rarely, if ever, change. They often have a strong 

effect on the model sensitivity information and it would not 

be appropriate to adjust them with online process data.  

2. FPM-to-plant calibration: This is also an offline activity 

and involves a set of (usually one-off) adjustments that 

may be necessary to match the FPM’s predictions to the 

behavior of the plant within the accuracy required for 

supporting OMBAs. Such adjustments involve a strong 

empirical element, and aim to address deficiencies of the 

original FPM arising from lack of fundamental knowledge, 

or inability to handle the modeling complexity. 

Nevertheless, for this exercise to be successful, it is 

important to have at least some qualitative understanding 

of where and why adjustments are necessary. For example, 

in the case of polymerization reactors, they may reflect 

deviations of residence time distribution from that assumed 

by the FPM; or in the case of thermal cracking furnaces, 

they may account for variations of radiation-related factors 

from those predicted by the standard correlations already 

embedded in the FPM. 

3. FPM online calibration: This is an online activity 

involving the continual adjustment of the model to take 

account of changes to the plant itself taking place during 

its operation. Examples include catalyst activity which can, 

for example, increase due to interaction with other 

components, decrease due to deactivation related to 

poisons, sintering or other effects, or be affected by issues 

relating to catalyst feeders or catalyst preparation; heat 

transfer coefficients which deteriorate due to coking or 

fouling; efficiencies of compressor and other equipment 

which may degrade over time; or, more generally, changes 

in various (largely empirical) biases relating to 

temperature, pressure, flow or energy (see section on 

Online FPM Calibration Approaches below). From the 

process control point of view, all of these can be viewed as 

“unmeasured” disturbance variables (UDVs) which are 

normally observable with process data, have well 

understood effects on model sensitivity, and are expected 

to vary with time during normal process operations. In this 

respect, they are similar to, for example, unmeasured 

compositions of impurities in feed streams. 

The changes to these disturbance variables usually 

take place over relatively long periods of time, and may be 

viewed as slow process dynamics.  It is possible to include 

descriptions of some of these phenomena in the FPM itself, 

and in fact to estimate the corresponding parameters (e.g. 

catalyst deactivation kinetics) using carefully-designed 

laboratory experiments during the offline calibration step. 

However, even in these cases, online calibration may still 

need to be applied to account for the inaccuracies that are 

almost always present in such models, and also for the fact 

that the actual state of the plant at the start of the 

application of the OMBAs is usually not known. 

 

Online FPM Calibration Approaches 

 

For process control engineers, online calibration can 

be viewed as a feedback process, to bring the model 

predictions on target to the process measurements, the 

same way feedback is used in a control application to bring 

measured values to requested target values or within 

ranges. 

Ideally, the FPM will already include appropriate 

parameter/disturbance variables which can be adjusted 

during online calibration. If this is not the case and the 

models cannot easily be modified, the options for 

calibration are limited.  The simplest approach is to 

compute additive or multiplicative biases after the model 

solves to match the process outputs. Simple additive 

offsets have no effect on gains; consequently, this 

approach will not properly translate information in the 

measurements that indicate changes to process 

sensitivities. Use of multiplicative biases can be 

appropriate in some cases but these will change model 

sensitivity between the inputs and the biased outputs. 

However, appropriate use of external multiplicative biases 

requires good judgment – which implies there could be 

some useful tool development in this area. 

In addition to the above basic output biasing 

strategies, there is a progression of more sophisticated 

online model calibration approaches that have been used in 

practice for OMBAs.  

A dynamic generalization of the “square” parameter 

estimation problem used in the early RTO applications can 

be used. This approach requires the application of 



  

engineering knowledge to pair a measurement with an 

individual disturbance variable. There is a dynamic 

relationship between these pairs, with a tuning factor to 

control the speed of matching the current process 

measurement (a filtering capability).  This can be viewed 

as a type of nonlinear observer and is a nonlinear 

generalization of the feedback strategy used in a number of 

linear MPC technologies. This square approach has an 

advantage of simplicity to understand, and allows updating 

both input/output disturbance variables. However, it can be 

more difficult to tune and lacks disturbance variable 

bounding capability, since it is not optimization based. It 

also only focuses on the current measurement and does not 

consider a history of measured values for the model online 

calibration problem. 

An improvement to this approach for online FPM 

calibration is the formulation of a state/disturbance 

estimation problem (Hedengren et al., 2007).  The two 

currently predominant approaches to state estimation are 

those based on Extended Kalman Filtering (EKF) and its 

variants, and Moving Horizon Estimation (MHE). A good 

comparison of these is discussed in Heseltine and Rawlings 

(2005). Recent developments in MHE and its application 

to a polymerization process have been described by Zavala 

and Biegler (2009b). MHE has the advantage that it can be 

applied directly to models based on (partial) differential-

algebraic equations (DAEs, PDAEs, Index > 1 cases) 

without requiring elimination of algebraic equations, 

thereby preserving sparsity – an important factor for large-

scale equation-based FPMs. Being optimization-based, 

MHE also naturally handles constraints without requiring 

any a posteriori clipping, unlike some EKF methods.  

 

As described in the next section, an effective and 

efficient online FPM calibration procedure is at the heart 

of most OMBAs. 

An Integrated View of OMBAs 

Although OMBAs are often thought of as being 

synonymous to model-based control, in fact a wide variety 

of such applications can be constructed and deployed, 

leading to significant practical benefits. Despite their 

diversity, almost all OMBAs have two common pre-

requisites: an up-to-date FPM reflecting the current plant 

condition; and a reliable estimate of the current state of the 

plant. As explained in the previous section, both of these 

can be produced via the online calibration of the FPM 

(marked as [1] in Figure 21) by processing raw plant data. 

In the remainder of this section, we review some of the 

most common OMBAs, with particular emphasis on 

aspects relating to FPMs. We then consider the demands 

placed on modeling technology by integrated OMBAs. 

                                                           

1 Throughout this section, the notation [n] refers to a 
correspondingly marked block in Figure 2. 

  

 

 
 

Figure 2: Integrated framework for OMBAs 

 

Open-Loop Advisory OMBAs 

 

Some OMBAs are of an open-loop nature, generating 

information and, potentially, advice in support of plant 

operations. One example is monitoring the current state of 

the plant [2], in particular in terms of KPIs that relate to 

plant throughput, product quality and safety and 

operability considerations, the values of which can in 

principle be obtained directly from the output of the state 

estimator provided they are included in the set of FPM 

variables. Based on the KPI values, it may also be both 

desirable and possible to carry out diagnosis of potential 

faults, e.g. to detect and locate possible blockages or 

leakages within a pipe network, based on estimates of 

various pressures. The corresponding analysis may be 

either rule-based or model-based, in the latter case making 

use of the FPM itself (see below).  Differences in statistical 

and FPM-based approaches to this fault detection problem 

are also discussed by Yoon and MacGregor (2000). 

Plant monitoring and diagnosis applications are 

primarily concerned with the current state of the plant. A 

different class of open-loop OMBAs [3] are those 

concerned with future plant behavior as it will evolve 

either naturally from its current state, or following 

additional future operator actions and/or external 

disturbances. Such applications are often concerned with 

the identification of potential risks and threats that may 

affect the plant at some future point in time given its 

current state (which, in itself, may be perfectly safe) in the 

event of one or more hypothetical scenarios taking place. 

In the simplest case, this involves dynamic simulations of 

the plant behavior under fully specified scenarios starting 

from the current state. More sophisticated applications of 

this type may involve the solution of optimization 

problems, e.g. aiming to identify the worst-case form of a 

particular scenario, or the maximum margin of safety of 

the process should a scenario materialize. For example, in 

the case of a flare network designed to protect plant 

equipment against over-pressurization, an important 

question at any point in time is the maximum capacity of 



  
 

the network to accept additional relief flows from one or 

more, currently inactive, sources. In any case, the main 

output of these OMBAs is information that can support the 

plant operators in their decisions.  

 

Closed-Loop Control OMBAs 

 

Closed-loop OMBAs interact directly with the plant, 

or more commonly its regulatory control layer. The most 

common class of such applications is that of model-

predictive control (MPC, [7]) which has now reached a 

significant level of development and industrial deployment 

(cf. the early review by Garcia et al. 1989 and the more 

recent one by Lee, 2011).  

Most MPC applications in industrial practice to date 

(Qin and Badgwell, 2003) make use of linear models of 

various types, the main reason being that such models 

bring efficiency, reliability and robustness to the MPC’s 

optimization computations. Currently, these models are 

usually derived from plant operational or test data; 

however, they can also be obtained directly from FPMs via 

linearization to produce linear state-space or transfer 

function models. This approach [5] has the advantage of 

minimizing the cost and disruption to plant operations 

associated with MPC model identification, even in 

applications requiring multiple linear models, each 

constructed around a different operating point (including 

non-steady-state ones). Of course, given the requirement 

for an appropriate FPM, in practice this is attractive mainly 

in situations where the FPM has already been constructed 

in the context of other offline and/or online applications.  

Nonlinear MPC (Allgöwer et al., 2004), based on 

either empirical models (e.g. artificial neural networks) or 

FPMs is also finding increasing application in industrial 

practice (Qin and Badgwell, 2003). Despite significant 

advances in the computational efficiency of the underlying 

optimization algorithms (see, for example, Zavala and 

Biegler, 2009a and Würth et al., 2009), the FPMs used in 

this context remain rather simple in comparison with those 

that are now routinely used for offline applications, and 

usually involve extensive use of simplifying physical 

assumptions. If a more detailed FPM is available, then it is 

often possible to use it to generate “pseudo-experimental” 

data, from which the simple FPM’s parameters are fitted 

offline to ensure that the process KPIs are predicted to an 

appropriate degree of accuracy within restricted regions of 

interest. An alternative is to derive a simpler model from 

the detailed FPM by applying model reduction techniques 

(Marquardt, 2001, Backx et al., 2006). This approach is 

subject to a number of pitfalls, not least the fact that it 

often leads to reduced order models which, albeit smaller 

in size, are not significantly or sufficiently more efficient 

than the original FPM (see, for example, the results 

reported by Astrid, 2004 and van den Berg, 2005). Recent 

attempts to resolve this issue include the use of proper 

orthogonal decomposition in conjunction with (semi-) 

empirical (“grey box” or “black box”) modeling (see, for 

example, Sun and Hahn, 2005, Romijn et al., 2008, 

Wattamwar et al., 2010). However, it is too early to judge 

whether these approaches will have a significant impact on 

industrial practice in the process industries.  

An alternative approach to nonlinear MPC which aims 

to address the issues of computational efficiency and 

robustness is based on the use of explicit control laws 

derived from linear or nonlinear models using multi-

parametric programming. An overview and perspective of 

this fast developing area, including its relation to first-

principles modeling and model reduction, has been given 

by Pistikopoulos (2009). 

In general, the MPC algorithms that have been 

considered so far in this section solve a constrained 

optimization problem that aims to maintain the process 

close to a given set-point or within setpoint ranges (for 

continuous processes meant to operate at steady state) or a 

dynamic trajectory (for batch/semi-batch processes, or 

continuous ones meant to exhibit a given transient 

behavior). These set-points or trajectories are themselves 

derived from the solution of optimization problems [6] 
with a wider (usually economics-based) view of the 

process objectives. The use of FPMs for steady-state 

optimizations of this kind, known as Real-Time 

Optimization (RTO), is already well established in 

industrial practice. More recent is the use of FPMs for 

dynamic optimizations (some use the term D-RTO). For 

example, van Brempt et al. (2003a, 2003b) and Dünnebier 

et al. (2005) have applied it to grade transitions in two 

industrial polymerization processes, and Mesbah et al. 

(2010) to batch crystallization processes. The recent work 

by Huang (2010) also addresses NMPC and dynamic 

optimization 

The most sophisticated use of a dynamic FPM is using 

it as a part of a real-time dynamic optimization or 

nonlinear optimal control [4] application which merges 

model predictive control and dynamic economic 

optimization within a single-layer architecture. The 

nonlinear MPC approach described in Young et al. (2001) 

accommodates this strategy in the problem formulation, 

but to date most applications deployed in industrial 

practice use production maximization as the economic 

objective function, although wider objectives have been 

considered in the academic literature (see for example, 

Rolandi and Romagnoli, 2005, and Engel, 2007). In 

principle, this approach combines the best features of RTO 

(continuous economic optimization once control objectives 

are met) with model predictive control (keeping the 

process in the feasible operating ranges) simultaneously in 

one application. The competing economic and control 

objectives are best resolved with a multi-level optimization 

problem formulation, resolving control (feasibility) first, 

then optimality tracking (dynamic economic optimization).  

Overall, increasingly sophisticated approaches to real-

time dynamic optimization are bringing significant benefits 

to industrial practice, but advances in this area will 

progress at a slow rate until issues related to FPM 

development cost and OMBA sustainability are addressed. 

In the near term, strategies that leverage a well-calibrated 



  

FPM with the closed loop identification tools that are 

implemented in the current generation of MPC products 

(as well as gain generation for updating MPC) will likely 

become more common. 

 

 

Model Structures & Modeling Tools for OMBAs 

 

The FPM [8] of the plant provides the foundation for 

all OMBAs, being used by them either directly or 

following some pre-defined simplification operation (e.g. 

linearization).  In this sense, the FPM serves as a “master” 

or “reference” model (see Backx et al., 2006 and 

references therein) which captures all relevant knowledge 

on the plant’s behavior and is kept up-to-date at all times. 

This potentially brings many advantages in terms of 

consistency across different applications, and reduced cost 

of maintenance.  

For simple applications (e.g. those concerned with a 

single major unit operation and its associated peripheral 

equipment), the master model has a fixed structure. Thus, 

the underlying assumption is that such a model will be 

carefully constructed and tested manually using an 

appropriate modeling tool; and that, thereafter,  it will 

remain fixed over a significant length of time (with the 

exception of any parametric changes involved in its online 

calibration). 

However, this simple and rather attractive paradigm is 

not necessarily optimal or even feasible for more complex 

applications. Consider, for example, a flare network 

providing over-pressurization protection to an oil and gas 

production asset or to a refinery. The network would 

typically be connected to a large number of process 

vessels, each one potentially acting as a source of material 

to be flared; and it would consist of many hundreds of pipe 

segments, valves, vessels and other devices. However, at 

most points in time, only a small subset of the network is 

likely to be active in the sense of having material flowing 

in it. Therefore, basing any online application on a 

dynamic model of the complete network would not only 

introduce unnecessary computational cost, but may also 

significantly reduce robustness by having to deal with 

zero-flow situations and other related issues. On the other 

hand, it is not possible to predict and construct a priori all 

possible combination(s) of active sources that will occur 

during plant operation. Instead, what is required for the 

OMBA management system is a horizontal model 

configuration capability allowing it to determine the 

relevant system envelope in real time (e.g. based on 

information from source sensors installed on the plant), 

thereby configuring and utilizing the plant sub-model that 

is most appropriate at any particular point in time. 

A further complication arises from the fact that it is 

not always possible to fix a priori an appropriate level of 

modeling detail to be used by a particular OMBA. As an 

example, consider an OMBA monitoring the safety of the 

flare network mentioned above against a number of risks. 

The primary purpose of the flare network is to allow 

process equipment to depressurize safely by releasing 

sufficient amounts of material into it; therefore, the 

minimum acceptable level of modeling detail for the 

various pipe components is one that determines the 

dynamic relationships between flow and pressure, thereby 

providing accurate predictions of back-pressures at the 

various relief valves. However, in some cases, another 

potentially serious risk is that of low-temperature metal 

embrittlement arising from the Joule-Thompson effect 

inherent in rapid depressurizations from high pressures. In 

this context, the OMBA would need to employ more 

detailed pipe models, typically taking account of spatially-

distributed thermal dynamics. On the other hand, if all pipe 

components in the (active subset of the) network were to 

be modeled to this degree of detail, the resulting model 

would be computationally unsuitable for online 

application. Instead, what is required is (a) a multi-level 

model of each plant component (e.g. pipe segment) 

comprising a set of consistent models of varying degrees of 

detail, coupled with (b) a vertical model configuration 

capability which allows the OMBA management system to 

decide the appropriate level of detail for each component 

model and to configure the FPM accordingly based on 

plant sensor information and/or model predictions. For 

example, by default the OMBA would use relatively 

simple pipe models producing rough temperature 

predictions; however, if the temperatures in one or more 

pipe segments are predicted to be potentially too low, the 

OMBA would automatically refine the models for these 

specific segments to more detailed forms while still using 

the simpler models for all others. 

For most OMBAs making use of increasingly complex 

FPMs, the efficient execution of the underlying algorithms 

is a key issue. As indicated by the brief review presented 

earlier in this paper, current efforts to address this 

efficiency issue focus primarily on improvements in the 

numerical methods. It is, however, also important to take 

advantage of the opportunities afforded by advances in 

computer hardware and middleware (e.g. in a distributed 

computing context). At the simplest level, this takes the 

form of the parallelization of the numerical algorithms or 

some of their most computationally expensive components 

(see Keeping and Pantelides, 1998, and Hartwich et al., 

2010 for an example relating to dynamic optimization 

computations). More complex OMBAs, such as the safety-

monitoring applications described earlier in this paper, 

often involve multiple computations which can naturally be 

carried out in parallel. The software architectures for such 

OMBAs need to launch and manage a number of parallel 

computations, ultimately collecting and synthesizing their 

results into a coherent set of messages to the operators. 

In conclusion, the support of sophisticated OMBAs 

places new and complex demands on process modeling 

technology and their architectures. Whether these needs 

can be addressed by superimposing additional layer(s) of 

software on top of existing modeling tools, or whether 

completely new software architectures are necessary is, at 

present, an open question. 



  
 

A Case Study – Polymer Process Control.  

In order to properly assess future needs, it is useful to 

explore a case study where FPMs have been applied in an 

online application. There are lessons learned from this 

practical experience, and real benefits and challenges will 

emerge from this review. 
In the 1990s, a number of attempts were made to use 

linear model predictive control for some challenging 

polymer process control problems. The basic objective in 

most problems was controlling polymer properties both 

while running on grade and during grade-to-grade 

transitions. Most of these approaches were unsuccessful 

due to the inadequacy of representing the process by linear 

dynamic models, even with model updating, and the 

general consensus among practitioners is that a nonlinear 

model is required to achieve the performance expectations. 

More specifically, approaches that use a linearized 

nonlinear model and update linear MPC can work well for 

on grade control, but may not give the best performance 

for transition control, because the control problem doesn’t 

reflect the process sensitivity change over the prediction 

horizon. As a result, the moves to control during transition 

will inevitably be inconsistent until the proper CV/MV 

sensitivity is finally seen by the controller. A good review 

of the evolution of this approach is given in Young et al. 

(2001). 

 Polymer process control is an area where the extra 

rigor (and even complexity) of an FPM is justified. The 

process model equations are generally well known and can 

provide good predictions. An application of this approach, 

described by Allsford et al. (2008), can be more accurately 

described as nonlinear optimal control, since economic 

objectives can be designed into the controller to achieve 

simultaneous dynamic optimization and control.  

The FPM form discussed here for this case study is a 

flowsheet based nonlinear dynamic differential/algebraic 

equation (DAE) model. The mass and energy balances are 

rigorous. Phase equilibrium calculations are rigorous in 

some cases and in others some empirical separations 

correlations are used. Enthalpies, k-values and densities 

are normally computed by an appropriate equation of state. 

The reactors are modeled rigorously and the polymer 

processes discussed in this case study have 

reactions/catalysts based on either free-radical or Ziegler-

Natta kinetics. Flow/pressure relationships are not 

normally modeled since the dynamics of these 

relationships are very fast compared to the control cycle 

time. All regulatory controls, including PID and other 

calculations that impact process sensitivity prediction and 

dynamics are modeled. The model is almost always 

supplemented by some custom empirical modeling (in a 

modeling language) to compute special properties or other 

outputs that cannot be predicted by fundamental means 

(e.g., polymer hardness, fouling curves established in 

tables for operators, etc).  

For these types of polymer control applications, 

examples of manipulated variables (MVs) are chain 

transfer agent flow rate, comonomer flow rate, catalyst 

flow rate, co-catalyst flow rate, reactor levels, and reactor 

temperature. Examples of controlled variables (CVs) 

include polymer melt index or viscosity, polymer density, 

polymer production rate, comonomer % incorporation, 

reactor pressure, approach to dew point, % solubles. 

Offline Model Calibration 

The offline model calibration step for the polymer 

process FPMs is primarily done as a steady-state multiple 

data set parameter estimation problem. For a given process 

type, a base set of kinetic parameters from the literature is 

used as a starting point. Process step testing is not a real 

option in most polymer processing units; hence model 

calibration relies heavily on historical plant data collected 

for the process operation for each of the polymer grades 

during different operating scenarios. Care is taken to cover 

all catalyst types, grades and get a wide variety of 

production rates and process variation for each product. 

This is the application engineer’s way of trying to ensure 

that the right amount of excitation exists in the process 

data. Kinetic parameters for each catalyst are estimated by 

simultaneously processing all relevant data sets. Multiple 

catalysts can be configured in the model, and transitions 

between catalyst types automatically and naturally change 

to use the appropriate kinetics in the FPM as the different 

catalyst compositions are accounted for. Other empirical 

parameters can be estimated for separations correlations, 

or other empirical property calculations. 

It is important for offline model calibration using 

process data to take account of the fact that the latter may 

contain the effects of unmeasured disturbances. In some 

cases, these can be accounted for in the parameter 

estimation problem via a “square” disturbance estimation 

strategy. A simple example is the estimation of a heat 

transfer coefficient (HTC) in a heat exchanger. Because of 

fouling occurring during process operation, the value of 

this coefficient will generally be different for each data set. 

The HTC values in the various data sets can be estimated 

from corresponding exchanger outlet temperature 

measurements, simultaneously with all other (time-

invariant) model parameters. For more complicated online 

estimation problem formulations such as state estimation, 

this strategy needs to be considered and generalized, which 

is a topic for more research. 

Model Validation 

Validation of FPMs often needs to be more extensive 

for control applications than for other OMBAs. First, 

validation of the steady state predictions are done for test 

data sets not included in the parameter estimation data sets. 

The process gains between all measured inputs and the 

controlled variables are computed for the model and 

mapped out over all of the polymer products (grades). 



  

These gains are reviewed with process engineers for 

validation. If the gains are not correct, more data analysis 

is required and additional data may be collected. In some 

cases some simple step testing may have to be employed to 

validate the gains. In other instances, data sets have been 

“created” to provide the missing information on the proper 

sensitivity. In other cases, lab tests have been available for 

product molecular property analysis, but these are often 

expensive and difficult to obtain. This process of 

estimation/validation is iterative until the model passes the 

established prediction requirements, including proper 

sensitivity. Admittedly, in practice this process has not 

always included the best available technology, such as use 

of parameter confidence limits and parameter observability 

information. 
Since the model is based on first principles, its 

dynamic behavior is mostly governed by vessel volumes, 

certain kinetic parameters and regulatory control tuning 

factors. There has been no dynamic parameter estimation 

problems used for the applications in this case study, only 

comparison of the dynamic predictions of the model with 

the process data (historical data replay task). Some filter 

factors or other dynamic tuning factors can be manually 

adjusted after viewing the dynamic prediction results to get 

better agreement of the model predictions with the process. 

This aspect of the model parameter identification can be 

improved by a better dynamic estimation problem 

formulation and is an area deserving further analysis. 

Online Model Calibration 

The polymer process models used in the applications 

for this case study incorporate feedback through online 

disturbance estimation. Most disturbance estimation was 

performed using the dynamic “square” nonlinear updating 

(observer-like) approach; some disturbance estimation was 

performed using the MHE approach. The disturbance 

estimation problem has feedback tuning parameters that 

need to be established. The application engineers use their 

experience to protect against update strategies that 

incorrectly change model sensitivities due to bad 

measurements or improper model structure.  The lack of 

recognition of this issue can result in poor predictions, and 

in fact this was the root cause of performance problems in 

a number of RTO applications in the 1990s. This aspect 

can be tested with real process data before controller 

commissioning begins. This is an area of development 

where better support tools and technical approaches could 

remove the requirement for the experience factor. 

Reliability, Robustness and Computation Time 

One concern mentioned for the deployment of FPMs 

in control applications is their solution reliability 

(convergence of the nonlinear model equations and/or 

optimization problem). Linear and quadratic programming 

methods are now almost 100% reliable to solve the MPC 

control problems. Nonlinear FPMs embedded in the 

controller require a nonlinear programming (NLP) solver. 

Control applications that use the FPM in an external way 

to provide gains also have the challenge of converging in 

the face of large process data changes. Part of the 

application development process is to do extensive 

robustness testing in a controller simulation environment. 

In addition to testing normal control scenarios such as 

configured CV prioritization and constraint handling, the 

nonlinear models must be tested for solution reliability in 

the face of large input changes, very ill-conditioned 

constrained scenarios, among others. Polymer process 

models are notoriously difficult to solve due to extreme 

nonlinearity and bad scaling (kinetic constants for some 

processes around 10
+35

, moment variables around 10
-10

).  

Over time, good learning experiences with these 

applications has resulted in the development of many 

approaches to addressing this concern. The following 

factors combine to provide a highly reliable FPM 

application for polymer processes: 

 Rigorous, automated data validation and 
preparation  

 Reliable nonlinear programming solver 

 Use of proven online calibration 
strategies/designs 

 Good equation-oriented model formulation, 
including proper scaling 

 Control problem formulation that accepts feasible, 
suboptimal NLP solutions 

 Model variable validity limits used during the 
solution (keeps model away from problems due to 
nonconvex regions). 

 With these factors addressed, the number of failures 

per year can be reduced to a very small number as a 

percentage of the total runs. Since the application is 

starting from a previous solution, the NLP optimal solution 

is usually obtained each cycle. It is rare to see the NLP 

feasibility mode active, where it reaches maximum 

iterations and obtains a feasible suboptimal improved 

solution.  

For the EO approach to solving the dynamic 

control/optimization problem, the simultaneous method in 

Renfro et al (1987) has been used successfully for many 

years. This allows a dynamic polymer process flowsheet 

model to be solved and simultaneously optimized over a 

time horizon in the required cycle times for the level of 

FPM rigor described at the beginning of this section. 

Again, the NLP feasibility mode provides protection 

against excessive cycle times if the iteration limit is set to a 

low value. However, to date the largest NMPC application 

has been around 10MVs and 35 CVs, with 10-20 future 

prediction intervals. For larger NMPC applications, other 

formulations and options may be needed to solve reliably 

within the required cycle times. Control engineers need 

options during the application design phase to reduce 

model complexity, improve solution times with special 

algorithms, or have more flexible control problem 

formulation options (e.g. suboptimal but fast) to continue 

increasing the scope and size of these types of control 



  
 

applications to levels similar to those for linear MPC and 

still meet the computational constraints dictated by the 

required cycle time. 

For an application running once every 1-3 minutes 

(cycle time), 24/7 about 3-4 failures per month on average 

occur, which is very good on a percentage basis. In most of 

these cases, the controller will pick up with a successful 

solution on the next cycle. These failures are usually 

related to some unforeseen missing data validation logic, 

where an invalid or inconsistent input gets into the model. 

Since OMBAs are running frequently, it is easy to compare 

information from two subsequent cycles to deduce problem 

root causes. Occasionally a failure occurs whose resolution 

is not obvious and requires a detailed model or solver 

analysis. This is a challenge issue for the future - to 

eliminate these failures or at least to devise a systematic 

work process for a process engineer to address this class of 

application failure issues. 

FPM-Related Commissioning Issues 

Poor performance of a nonlinear controller may be 

related to model predictions, and the root cause needs to be 

identified. For large sets of CV/MVs, it may be difficult to 

get all of the model gains correct and this fact is sometimes 

found out during commissioning. If this polymer process is 

different than other previous applications, the gains may 

not be known. Moreover, it is not always easy to correct 

the gains of an FPM since they are not available as explicit 

expressions that can be modified.  One example of a 

control application where this was a difficulty was a High 

Impact Polystyrene (HIPS) process involving multiple 

CSTRs and multiple plug flow reactors. Because of weakly 

observable parameters related to back mixing in the plug 

flow reactors, some of the gains predicted by the FPM 

were not correct. Some identification testing was 

subsequently required to enable the gains to be estimated. 

Even then, it was still a difficult exercise to make use of 

the values of these gains in the context of parameter 

estimation or any other adjustment applied to the FPM. In 

contrast, empirical nonlinear models with explicit 

expressions for gains that can be constrained during the 

(offline) parameter estimation problem would have been 

easier to adjust. In linear MPC, control engineers regularly 

manually change gains in the linear step response models 

to correct them after the identification is done. This is an 

extremely useful and important feature of the modeling 

approach for control applications which is not readily 

available in FPMs. Consequently, in many cases a simple 

empirical model has been used to replace a FPM CV/MV 

pair in order to address this particular issue – this is one 

form of hybrid first-principles/empirical (or “gray box”) 

modeling, an area which may deserve more research 

attention in this context. Alternatively, it may be possible 

for gain and other engineering knowledge to be 

incorporated directly in offline parameter estimation 

formulations. In addition, utilities for analyzing 

observability and uncertainty of model parameters, 

comparable to those already available in state-of the-art 

offline modeling tools, would be highly desirable. 

Model Maintenance  

FPMs actually eliminate a number of maintenance 

concerns associated with linear MPC applications. Since 

regulatory control models are embedded in the process 

models, retuning of the PID controllers in the process is 

directly accounted for in the model. The tuning parameters 

and other control calculations are included in the process 

model. This eliminates the reduction in application 

performance and/or the need for re-identification that is 

required in most linear MPC applications under this 

scenario. Process equipment and configuration changes are 

handled differently in FPM-based control applications. 

Adding or removing process equipment can reduce linear 

MPC performance or entirely invalidate many submodels. 

For modeling tools with flowsheeting capability, the model 

can be updated and the control application can be put back 

into service in a reasonable amount of time. 
Also, when new polymer grades are added for an 

existing catalyst, in many cases the controller can meet 

performance requirements with no additional work. This is 

due to the good extrapolation/interpolation capability for 

FPMs. On the other hand, if a new catalyst is introduced, 

then an additional offline calibration step may be needed to 

update the model. This task is not as easy as it needs to be 

for a process control engineer as the current linear 

identification process. Better nonlinear identification tools 

will help in this part of FPM maintenance. 

In the past, because of a lack of visual modeling tools 

for dynamic FPMs (of the quality of current steady-state 

simulation and design software), maintenance of these 

models could be a challenge for the novice. The 

architecture and functionality of first principles based 

modeling systems targeted at operations needs to be 

improved to the point where process engineers can 

maintain FPM based applications in a manner similar to 

that in standard process simulation packages. Also of 

critical importance is the ability to deploy a model with an 

equation oriented solution capability to meet the needs of 

model calibration, control and optimization calculations. 

Sequential modular (SM) architectures are not well suited 

for these tasks but they can be a great help with model 

initialization in a combined EO/SM architecture as 

mentioned previously. 

In summary, FPMs can be used in process control 

applications to achieve benefits and have reasonable 

maintenance costs. The project execution work process and 

tools need to be improved so that the applications can be 

done in a time frame that is competitive with simpler 

approaches that will achieve lower but acceptable benefits. 

The maintenance of these applications needs to be 

improved as well to achieve a high sustainability in a more 

cost effective way, using engineers with reasonable control 

knowledge, but not necessarily modeling expertise. 



  

Conclusions and Future Challenges 

Online applications based on FPMs have been 

supporting process operations and control for more than 40 

years. There is still much untapped value in using such 

models more extensively. There are also a number of 

barriers that can be addressed through improvements in 

technology, software and general work flows and 

procedures. 
The expanded online use of FPMs in process 

operations faces a number of challenges. From the 

commercial viewpoint, the customer’s end objectives for a 

particular online application can usually be met in multiple 

ways. Companies that deliver such applications need to do 

so in a timely fashion in a profitable way within their own 

required margins. FPMs have the potential to deliver more 

value, but can be more complex – hence riskier – to 

develop and deploy, which reduces its attractiveness in 

comparison with more empirical modeling approaches. 

Moreover, beyond the initial development and 

commissioning of an OMBA, it is not clear how to 

quantify the sustainability issues, in particular regarding 

the tradeoffs between increased maintenance requirements 

against the increased benefits of brought by FPMs. This is 

currently done by experience and development of a 

knowledge base but could perhaps be done more 

systematically. 

On the technical side, the paper has discussed the 

advantages of the EO process modeling approach in the 

context of OMBAs. For the wider application of dynamic 

FPMs in online application, it is essential for the EO 

modeling tools used for their construction to become as 

easy and straightforward to use as existing steady-state 

flowsheet simulators. Fortunately, current state-of-the-art 

modeling technology is already moving in this direction, 

largely driven by the demands of offline applications and 

their requirement for detailed FPMs within increasingly 

wider process envelopes. A similar trend is seen in offline 

model calibration, e.g. in the use of multiple data sets from 

dynamic experiments, for parameter estimation, the 

assessment of the accuracy of model parameters derived 

from such data, and the model-based design of experiments 

aimed at producing optimal information content. Such 

techniques are now routinely applied to data from specially 

designed lab- and pilot-scale experiments. However, the 

situation is less straightforward when model calibration 

needs to rely mostly or entirely on historical plant data. In 

particular, easier tools and methods need to be made 

available to analyze the “richness” of such data, and tools 

for nonlinear identification (essentially nonlinear 

parameter estimation from dynamic plant data) need to be 

made as powerful and reliable as those currently available 

for linear model identification. Moreover, as illustrated by 

the Case Study, it is often necessary to take account of 

additional “external” process knowledge (e.g. constraints 

on MV/CV gains and other information). Ways of 

incorporating this information within the FPM calibration 

procedure need to be developed.  

Irrespective of the sophistication of the modeling tool, 

the cost of developing a new FPM from scratch may be 

considerable. This can partly be addressed by leveraging 

modeling investment from across the process lifecycle. 

However, it has to be recognized that models used for 

operator training simulators, process design, and plant 

control all have different needs and priorities, and it is a 

challenge for the modeling software to help reconcile these 

conflicting requirements to reduce model maintenance 

issues. 

Another significant challenge for modeling tools is to 

support the type of mathematical calculations required by 

online applications. Some of these (e.g. dynamic 

simulation and optimization) are already supported by the 

more advanced process modeling tools, but the challenge 

is to achieve the degree of robustness and efficiency 

required for online use. As we have seen, progress in this 

direction will need both further algorithmic improvements 

and exploitation of new computing paradigms. Other 

mathematical calculations, such as algorithms for state 

estimation/online FPM calibration, have not yet been 

incorporated within commercially available modeling 

technology. Such a development would greatly facilitate 

the migration of FPMs from offline to online application. 

We have also seen that the paradigm of a single, fixed-

structure FPM may not be able to provide the flexibility 

required by more complex OMBAs, and that a degree of 

“on-the-fly” horizontal and vertical model configuration 

may be essential. The challenge is to develop software 

architectures that can support such complex operations in a 

general, reliable and efficient manner. 

The authors are confident that addressing the issues 

highlighted above will result in a wider use of currently 

existing OMBAs, and will greatly facilitate the 

development and accelerate the deployment of a number of 

new and powerful OMBAs that will deliver additional 

value to process operations in the future.  
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