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Abstract 

A model-based detection and isolation (FDI) system based on nonlinear state estimation and high filtering 
conditions is proposed.  A better understanding of the residual trends, calculated from the difference between 
measurements and the extended Kalman filter (EKF) estimates, can be obtained when a fault occurs by 
developing a model that is able to predict the behavior of the residuals. This residuals model is utilized as the 
basis for detection and isolation of multiple faults, having the advantage of distinguishing single and multiple 
faults from a diverse array of possible faults, a common occurrence in complex processes. The proposed 
approach is validated using a CSTR, which is simulated using unit operation software CHEMCAD. 
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Introduction

Nonlinear model-based FDI systems 
(Venkatasubramanian et al., 2003 and Castillo et al., 2010) 
use dynamic models that are physically-based or 
empirically-defined.  A typical model-based approach 
utilizes nonlinear state estimators and the concept of 
analytical redundancy, where residuals are derived by 
calculating the difference between the actual outputs of the 
monitored system with the outputs obtained from a 
mathematical model and the state estimator.  To detect 
faults, the residuals are evaluated by using either threshold 
values or statistical decisions.  To isolate faults, a 
signature matrix can be defined in which residuals that fall 
outside of the threshold values are matched with different 
faults that could occur in the system.  Parameter estimation 
is another alternative for isolation (Isermann, 2005), 
whereby variations of parameters of the nonlinear model, 
from their nominal operation values, are associated with 
different faults. The latter isolation technique is known as 
a parametric approach.  The disadvantage of these model-

based approaches lies in the isolation of multiple faults in 
which distinguishing one from another becomes a 
formidable task.  In this paper, multiple fault cases are 
analyzed when different kinds of faults (such as sensor, 
actuator or process faults) are included under a restrictive 
amount of available measurements.  With this restriction, 
there is no guarantee of successful identification, except 
for extracting major information from the residuals. 
Therefore, the main contribution of this paper is to 
develop an FDI system based on developing a high fidelity 
model that is able to predict and understand residual 
dynamics in the event fault occurs in a nonlinear system.  

The proposed architecture, based on residuals 
modeling to detect and isolate faults, is illustrated in 
Figure 1.  The right portion of Figure 1 illustrates how the 
FDI system is designed.  A state estimator, which has 
different characteristics than the one used for control 
purposes (shown on the left hand side), is utilized to 
generate the residuals.  These residual trends kesR  can be 



  
 

 

predicted using the residuals model block at each time 
step.  Additionally, using both the residuals kesR  and 

predicted residual trends kr , the mechanism of detection is 

designed whereby the detection of the fault is performed at 
each time step.  Once a fault is detected, the residuals 
model and the residual signals are utilized to isolate the 
faults at each time step. At the output of this isolation 
block, different modes are generated, such as 

ki
Fault or 

False Alarm.  These four components (the state estimator, 
residuals model, the detection and isolation mechanisms) 
are briefly presented in the next section. 
 

 

Figure 1: Fault Detection and Isolation (FDI) 
System 

This paper is comprised of six sections. Section 2 
formulates the dynamic residuals model as well as the FDI 
mechanism. Next, Section 3 presents the CSTR system 
that is simulated by using CHEMCAD in which control 
loops and faults are created using this unit operation 
software.  The multiple fault case is presented in Section 
4, followed by the validation of the residuals modeling 
approach in Section 5. Finally, closing remarks are 
presented in Section 6. 

FDI Mechanism Based on Residuals Modeling  

The residuals model is derived by considering the 
following assumptions: (1) the process is formulated as a 
nonlinear stochastic differential equation shown in Eqs. 
(1) and (2); (2) the nonlinear system is observable; (3) the 
effect of the noises w and v is considered, even though 
these vectors are unknown; and (4) a state estimator is 
needed.  Then, the extended Kalman filter (EKF) will be 
utilized for the formulation of this function. 

 1-k1-k1-kk w,u,xf=x                                                  (1) 

 kkk v,xh=y                                                                  (2) 

where: nx  is the vector of state variables, mu  is 

the vector of system inputs, py is the vector of system 

outputs,  f  is the nonlinear state equation function,  h  

is the nonlinear output function, w and v are gaussian 
white noises with covariance matrices kQ  and 

kR respectively.  These covariances satisfy the following 

conditions:   j-kk
T
jk Q ww E ,   j-kk

T
jk R  vv E , and 

  0  wv T
jk E . 

The extended Kalman filter (EKF), which is an important 
component to determine the residuals model, is a widely 

used algorithm for nonlinear state estimation (Simon, 
2006).  The EKF linearizes the model about the current 
estimated state. The prediction of the state variables 

nx̂  is obtained using Eq. (3), which is in terms of the 

Kalman gain kK  and the measurement vector p
k z , 

      0,,0u,x̂fh - zK,0u,x̂f= x̂ 1-k1-kkk1-k1-kk             (3) 

note that depending upon the value of the Kalman gain 
which is in terms of the noise covariances.  Additional 
filtering results from giving more priority to the model 
predictions (first term on the right hand side of Eq. (3)).  
Therefore, small values of the Kalman gain can be 
obtained when the norm of the ratio kk QR  is more than 

1. 
The residuals ksRe , Eq. (4), are calculated from the 

difference between measurement vector p
k z and the 

EKF outputs' estimates p
kk xh  )0,ˆ(ŷ .  The predicted 

residuals  p
k r refer to the values obtained from the 

residuals model, given by Eq. (5), 

kkkk r ŷ - z = Res                                                   (4) 
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where: the vectors  ,   and   result from noise effects 

and errors in the modeling. pxnkH and pxn*
kH are 

the Jacobian matrices given by Eqs. (6) and (7) 
respectively: 
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k for the non-square case, which applies for the case 

study, is calculated using Eq. (8). 
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Note that the residuals model, given by Eq. (5), is in terms 
of the Kalman gain kK  which permits to control less or 

more filtering in the state estimations.  Under conditions 
of normal operation and low filtering, the magnitude of the 
residuals is close to zero.  However, a larger magnitude of 
the residuals can be obtained when more filtering is 
designed in the Kalman filter, making it possible to 
analyze its dynamic for purposes of detection and isolation 
of faults.        

The detection of a fault is evaluated in the space of 
the residuals, whereby multiple spaces can be generated 
providing redundancy and increasing sensitivity for 
detection.  Three different kinds of residual spaces can be 
generated: (1) spaces that include residuals (Eq. (4)) 



  

 

versus predicted residuals (Eq. (5)); (2) residual spaces 
that are comprised of two different residuals obtained from 
Eq. (4); and (3) residual spaces that are derived from the 
predictive residuals formulated in Eq. (5).  These residual 
trends can be enclosed by defining a trajectory that best 
represents the normal operating behavior of the system.  
Elliptical trajectories are defined for each residual space.  
Therefore, a fault is detected once any of these residual 
trajectories surpass the elliptical trajectories in any 
residual space. 

Three steps are considered to isolate faults.  First, 
multiple modes are defined in the isolation system: (1) a 
false alarm mode; (2) different single and multiple fault 
modes if  that include sensor, actuator or process faults; 

and (3) unknown fault mode.  Second, for each of the 
single and multiple fault cases if , parameters of the 

residuals model Eq. (5) are associated with each fault 
mode and defined as 

ifP .  Note that the parameters that 

consider the effect of noise and model mismatch, such as 
 ,  and  , can be considered in addition to the 

parameters of the nonlinear model.  Third, the objective 
function of Eq. (9) is utilized to calculate the parameters 

ifP of each single and multiple fault case at each time 

step, 

ub P lb         

Wmin=J
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                                                    (9) 

where the matrix pxpW   is a weighting constant. The 
lower and upper bounds of the parameters to be estimated 
are given by lb and ub respectively.  The function

ki
f , 

which is in terms of the parameters 
ifP associated with 

each fault case if , is given by Eq. (10).  Once a fault is 

detected, every
ki

f is calculated. Then, a false alarm is 

diagnosed when 
kNO , which is obtained by calculating 

the difference between the values of the predicted 
residuals and residual values in normal operation, is 
smaller than all the 

ki
f cases considered.  Otherwise, the 

fault if  is identified by comparing the multiple 

ki
f against each other.  In the case there are inconsistent 

comparisons, an unknown fault is diagnosed. 

  kfkf Res- Pr = 
kiki

                                                    (10)      

Non-isothermal Chemical Reactor  

The hydrolysis of propylene oxide to propylene glycol 
(Bakosova et al., 2009), where the reaction is defined by 
Eq. (11), is simulated using CHEMCAD through a 
nonisothermal CSTR reactor. 

283263 OHCOHOHC                                            (11) 

Figure 2 shows the P&ID of the system.  The reactor 
has two inputs: (1) the flow of propylene oxide 

 min/3mFPO  which is represented by feed stream 1; and 

(2) the flow of water  min/3mFW , given by feed stream 

7, which is proportional to the opening of the control valve 

given by unit operation number 5. The output  min/3mFr  

of the reactor is given by product stream 6. The jacket of 

the reactor is fed with cooling water flow  min/3mFc , 

given by feed stream 5, which is proportional to the 
opening of the control valve denoted by unit operation 
number 3.   

 
Figure 2: CSTR P&ID Diagram Using CHEMCAD 

The dependence of a reaction rate constant on the 
temperature is described by the Arrhenius equation, given 
by Eq. (12) and the reaction kinetics, which is in terms of 

the concentration of the propylene oxide  3/ mkmolCPO  

and water  3/ mkmolCW , and is of the second order, given 

by Eq. (13). 

rRT

E
-

0ek=k                                                              (12) 

rRT

E
-

0WPO ekCC=r                                                (13) 

 

Figure 3: Concentration Propylene Glycol 
Control Loop Trajectory 

Two PI controllers maintain the temperature of the 

reactor  KrT and the concentration of the propylene 

glycol  3/ mkmolCPG  within a desired range.  The 

temperature in the reactor is controlled by manipulating 
the jacket cooling flow, which is proportional to the 



  
 

 

opening of the valve with unit operation number 3. On the 
other hand, the concentration of glycol is controlled by 
manipulating the water flow through the opening of the 
control valve with unit operation number 5.  Figures 3 and 
4 show the performance of the controllers whereby the 
black (dashed) lines correspond to the set point trajectories 
and the red (thin) lines represent the process variables. 

 

 

Figure 4: Reactor Temperature Control Loop 
Trajectory 

Fault Case Scenario 

The multiple fault case, simulated using CHEMCAD 
(Massey, 2002), is the combination of both sensor and 
actuator faults.  The faults are simulated at t=250-400min.  
The sensor fault is created through inserting a constant 
bias in the reactor temperature sensor.  This fault generates 
an instantaneous change in the reactor temperature and a 
fast response in the controller temperature, therefore 
causing changes in the temperature of the jacket.   

 
Figure 5: Reactor Temperature under Sensor and 

Actuator Fault 
 
The actuator fault is created by modifying the 

coefficient of the control valve of the jacket.  The flow of 
the cooling jacket decreases and creates an increment in 
the reactor and jacket temperatures. Figures 5 and 6 show 
the reactor and jacket temperature trajectories under these 
two faults.  These trends are similar to the single sensor 

and actuator fault cases, making the task of isolation a 
formidable one. 

Fault Detection and Isolation Results 

The parameters of the residuals model, given by Eq. 
(5), are obtained and listed in Table 1.  The elliptical 
trajectories are calculated from the normal operation data 
in which nine residual spaces were created.  Figure 7 
shows an example of the residual spaces created in normal 
operation. 
 

 

Figure 6: Jacket Temperature under Sensor 
and Actuator Fault 

Table 1. Parameters of the Residuals Model 

Parameters CSTR 
α  T7--5 10*8.43  10*2.85  1.52  

η  T4- 12.029.010*8.5200  

γ  T7-6- 5.27e  10*6.72  1.63  

 
Figure 8 shows the isolation results for the multiple 

fault case considered.  The results are summarized in 
Table 2 in which good isolation results were obtained.  
During the first 30 seconds, some incorrect detection and 
isolation statements are generated. These errors are 
obtained because both the CSTR and the Kalman state 
estimator start at different initial conditions, consequently 
the magnitude of the residuals is big enough to generate 
these FDI errors, until the state estimator reaches 
convergence. Some false alarms are confirmed in the 
isolation statement given by the blue bars, the multiple 
fault is indicated by the cyan bar. 



  

 

 

Figure 7: Residual Values 3 versus Predicted 
Residual Values 3 

 

Figure 8: Isolation Results Sensor and Actuator 
(Valve) Fault 

Table 2. Fault Detection and Isolation Results 
CSTR Case Study 

Criteria Actuator-Sensor 
Fault 

Total Number of Detections 207 
Pct. of Correct Isolation of the 
Fault [%] 

94.7 

Pct. of Correct Detection [%] 72.9 
Pct. of Correct Isolation of False 
Alarms [%] 

80.4 

 
To better understand how the isolation mechanism is 

performed, Fig. 9 shows the residuals trajectories for the 
multiple fault case before the fault is isolated.  The green 
line corresponds to the residual values and the blue line 
illustrates the predicted residual values.  Notice that the 
difference between the predicted residuals and the residual 
values, defined as 

ki
f in Eq. (10), is captured by the 

detection mechanism.  Figure 10 shows the results after 
the parameter estimation is calculated, in which the faulty 
residual values are matched using the residuals model and 
the estimation of the parameters associated with each fault. 

 

Figure 9: Residual Values and Predicted Residual 
Values versus Time 

 
Figure 10: Residual Values and Predicted Residual 

Values versus Time After Isolation 

Conclusions 

A model that predicts the residuals dynamic behavior 
is formulated in this paper and used with the purpose of 
fault detection and isolation. The approach is based on a 
nonlinear state estimator and the estimation goals are 
based on performing high filtering over the measurements.  
In this way, the magnitude of the residuals will be 
important enough to be analyzed.  In using this residuals 
model, a better understanding regarding the residual 
trends, when a fault occurs, can be studied and further 
utilized to isolate faults efficiently.  The detection is 
performed by analyzing the residual trends of both 
residuals signals and predicted residuals.  Multiple fault 
modes are defined and validated through parameter 
estimation for the isolation mechanism.  The approach has 
the advantage of verifying false alarms. 

Having a restricted number of measurements available 
makes the objectives of detection and isolation a 
formidable task.  However, it has been demonstrated that 
the residuals modeling based approach can deal with this 
restriction.  A nonlinear process, simulated using 
CHEMCAD, was utilized to successfully validate the 
proposed approach, showing acceptable performance 
under both closed-loop and open-loop situations.  These 



  
 

 

results serve as important evidence to extend the FDI 
formulation to other nonlinear applications. 
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Appendix:  CSTR Model Parameters 

The CSTR simulation parameters are: 

The preexponential factor or frequency factor,  1
0 mink , 

is 1110*2.4067 ; which is utilized in the Arrhenius 
equation (given by Eq. 11). 
The activation energy,  kmolkJE , is 84666.3 

The universal gas constant,  KkmolkJR  , is 8.314 

 1mink , defined in Eq. 11, is the specific reaction rate. 

 KTr
  is the reactor temperature. 

 3m-minkmolr , defined by Eq. 12, is the rate of 

consumption of reactants. 

The volume of the reactor,  3
r mV , is 3. 

Three molar concentrations are considered: (1) 
concentration of the propylene oxide, POC ; (2) 

concentration of the water, WC ; and (3) the concentration 

of the propylene glycol, PGC . 

 
 

 minmF 3
r  is the inlet/outlet flow rate of the reactor and 

represented by feed stream 4 (shown in Fig. 1).   

The propylene oxide flow rate,  minmF 3
PO , is held 

constant at approximately 0.012.  The water flow, 

 minmF 3
W , is proportional to the opening of the control 

valve denoted by unit operation 5.  The flow rate through 
the control valve is given by: 

Pk
Rang

U
cv

cr 







 5W

1
1

100
F  

where the rangeability, Rang , is 10.  The valve position, 

 %Ucr , is obtained from the propylene glycol controller.  

The differential pressure of the valve,  barP , is assumed 

constant at 0.1.  The coefficient of the valve, cv5k , is 

0.721. 

Similarly, the coolant flow,  minmF 3
c , is proportional to 

the opening of the control valve, denoted by unit operation 
3, and calculated using the following equation: 

Pk
Rang

U
cv

cc 







 3c

1
1

100
F  

where the valve position,  %Ucc , is obtained from the 

reactor temperature controller. The coefficient of the 
valve, cv3k , is 1.152. 

References 

Bakoov, M., Puna D., Dostl P., and Zvack J. (2009).  Robust 
stabilization of a chemical reactor. Chemical Papers, 
63(5), 527-536. 

 
Castillo, I., Edgar, T.F., and Dunia R. (2010).  Nonlinear model-

based fault detection with fuzzy set fault isolation. 
IECON 2010 - 36th Annual Conference on IEEE 
Industrial Electronics Society, Nov., 174-179.  

 
Isermann, R. (2005).   Model-based fault-detection and diagnosis 

- status and applications.  Annual Reviews in Control, 
29(1), 71-85. 

 
Massey, N. (2002). Incorporating Reality Into Process 

Simulation.  
http://www.chemstations.com/content/documents
/Technical_Articles/nmreality.pdf  

 
Simon, D. (2006).  Optimal state estimation: Kalman, H infinite 

and nonlinear approaches. John Wiley & Sons. 
 
Venkatasubramanian V., Rengaswamy R., Yin K., and Kavuri S. 

(2003).  A review of process fault detection and 
diagnosis: Part I: Quantitative model-based methods. 
Computers & Chemical Engineering, 27(3), 293-311. 


