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Abstract 

This paper discusses the integration of scheduling and advanced control. It gives a brief overview on the 
challenges for today’s production systems, analyses the functional hierarchy for plant operations and 
discusses similarities and differences between the two domains. Possible benefits of a closer integration 
are outlined and the realization of a tighter integration is discussed. This is followed by practical 
integration aspects and before the conclusions the main industrial requirements are highlighted. 
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1. Introduction 
In times when information technologies enable 

theoretically unlimited possibilities to share and to use 
data and when optimization and computing technologies 
have reached the state that many industrial-size problems 
can be solved within a reasonable times, the question 
arises how to create added value from these enhanced 
capabilities? The industries of today are facing merciless 
global competition and many production plants are under 
strong pressure to produce cheaper, faster and more 
flexibly in order to keep up their profitability. More 
products need to be individually tailored and lead times are 
shorter in order to reduce the cost and risk of too high 
inventories, as well as securing profitability in an 
environment of fluctuating prices of raw-materials and 
products. All these factors point towards smaller batch 
sizes and shorter campaigns, which increases the challenge 
of keeping the production costs low and calls for solutions 
that can adapt to changing situations. 

At the same time as much research effort is devoted to 
improving existing mathematical algorithms, new business 
strategies, requirements and models appear, driven by 
economic, environmental and regulatory factors, 
challenging traditional approaches and production 
philosophies.  

Energy plays a more important role than ever, not 
only because of its high cost and volatile pricing (spot 
market prices can vary by a factor of more than 20 
depending on the point in time and are even negative 
occasionally) but also due to the fact that the availability 
of energy may be restricted in the future. This also calls 
for agility and flexibility and optimal management in order 
to make process systems more energy efficient by 
combining the available information in an intelligent way, 
as well as identifying and embedding new performance 
indicators (KPIs) or measures into the decision making 
processes. 

In this paper, the needs and opportunities of advanced 
process control and production scheduling and their 
integration are discussed. We stress the common factors of 
the two domains that result from the solution of 
optimization problems online, under uncertainties and on a 
finite, moving horizon. 

Motivation 

The ongoing “software revolution” in industry has 
resulted in many companies investing in managing the 
process data in a centralized way, for instance through 



  
 

 

process information management systems (PIMS). To 
access, monitor and analyze the relevant data in a useful 
way, Manufacturing Execution Systems (MES) or 
Collaborative Production Management (CPM) solutions 
have recently seen a significant growth and are in fact one 
of the fastest growing businesses in the process industries. 
Their mission is to fill the gap between the process control 
systems and ERP systems. According to ARC (2009) the 
three main categories of CPM solutions are: 

• Plan & Schedule 
• Direct & Operate 
• Track, Analyze & Inform. 

The main task of the first category of tasks “Plan & 
Schedule” is to determine what products to make, when to 
make them, and what equipment to use. The segment 
consists of functions such as short-term production 
planning, plant simulation and modeling, electronic 
routing, finite capacity scheduling, etc. The second 
category “Direct & Operate” focuses on the need to find 
new and better ways to control process equipment and to 
operate the plant, and includes, among others, recipe 
management, dispatching, electronic work instructions, 
resource management, workflow management. The 
purpose of the third category “Track, Analyze and Inform” 
is to gather, store, organize, and communicate data and 
information, including data collection, performance 
analysis, enterprise-level reporting, order tracking, 
messaging, and product genealogy. 

In this paper the main focus is on the two first 
categories. Production scheduling and advanced control 
are not isolated applications but must work seamlessly 
together in order to support the operation of a production 
facility (Fig. 1). 

 

Figure 1. Logical view of a production system 
(Source: ARC, 2010) 

1. The functional hierarchy of process operation 

Figure 2 shows a simplified functional hierarchy of 
the planning, scheduling and control structure of a batch 
production plant. Continuous production can be considered 

as being a batch process with a very long duration of the 
main phase “regular continuous production” but where 
nonetheless other phases as start-up, change of the 
operating mode, shut-down are present, so this scheme 
covers all chemical and biochemical production processes, 
with different realizations of the functions depicted by the 
different blocks.  

 

 
Figure 2: Functional hierarchy of batch production  
 
On the planning layer, the production targets are set, 

i.e. how much of which product should be produced within 
a certain period of time. The scheduling layer transforms 
this plan into planned batches with certain sizes, assigns 
equipment to the batches and sequences the batches. The 
execution of the batches is governed by the recipe control 
system which ideally makes use of production recipes 
which are generated from general recipes based upon the 
scheduling decisions. The recipe execution triggers the 
phases of the recipes and provides the set-points for the 
process parameters in the phases as well as constraints if a 
subordinate continuous optimization is implemented. The 
continuous optimization layer optimizes the trajectories 
during the phases of the batch. If the production is 
essentially continuous, this role is taken by the RTO layer 
that determines an optimal operating point of the plant, 
using the available information from measurements and 
state estimators. The advanced control layer implements 
the optimal trajectory (or set-points in continuous 
production), typically applying linear model-predictive 
control (MPC), and provides reference values to the low-
level (usually single-input-single-output) controllers. Up to 
the recipe control layer, feedback is provided mostly in the 
form of continuous measurements or estimates. This 
information is also used to trigger the transition between 
the steps in the recipe (including re-work or abnormal 
termination of a batch). From the recipe control layer 
upward, only condensed information is provided (end-
times or durations of phases or batches, quality 
information). Equipment availability has to be transmitted 
through this functional hierarchy up to the scheduling 
layer. From scheduling to planning, usually condensed 
information, e.g. the actual production figures as well as 



  

 

updates on resource requirements (durations of operations, 
energy consumption) is provided. 

Of these layers, the continuous optimization layer and 
the advanced control layer may not be present. In those 
cases fixed reference values for the phases of a batch are 
provided to the low-level controllers and implemented – 
more or less well – by these. The scheduling layer in the 
majority of the plants is implemented by humans who take 
the necessary decisions to convert production targets into 
real operations, with or without computer support. The 
recipe execution may be simple, using fixed, pre-defined 
recipes for each product, or more advanced with generic 
recipes defined for the products from which more detailed 
ones are generated automatically. Triggering of the 
transitions between the steps also is often done not 
automatically but by the operators following operating 
rules. The execution of the sequences of steps in batch 
production nowadays is mostly automated. If the plant is 
essentially continuous, the infrequent shut-down and start-
up phases usually are not automated and their execution 
depends crucially on the skills of the operating crew, 
which therefore are trained using model-driven operator 
training systems (Schaich and Friedrich, 2004). 

ERP

Level 4

MES / CPM

Production & 
Control

Level 3

Control systems/sensors

(DCS, PLC, SCADA, BMS, 
process measurements)

Level 0,1, 2
 

Figure 3. Traditional 5-level automation 
pyramid 

In fact, the functional hierarchy shown in Fig. 2 is 
increasingly implemented by a network of functions that 
operate partly independently on a joint data-base of 
measured and computed information A more compact 
representation of the automation levels is shown in Fig. 3, 
where the ERP, MES/CPM and control system layers are 
distinguished. A working integration approach requires, 
nevertheless, a rich data exchange between all layers. 

2. Process control and online scheduling – similarities 
and differences 

Both conventional process control and online scheduling 
are reactive (and partly proactive) activities that have to 
cope with uncertainties and changes of operating 
conditions, targets and outcomes, and therefore employ 
feedback and feed-forward information structures. In 
(continuous) process control, the focus is on the control of 
qualitative properties of streams by changing the operating 
conditions of the plant. The mass flows of the raw 
materials or of the products are usually prescribed 
externally. The challenge is to keep the quality parameters 
constant or to track time-varying set-points for these 
parameters, possibly for changing throughputs. The 
implementation of the desired mass flows as well as the 
control of the inventories are usually taken care of by low-
level controls. Continuous feedback control is mainly 
needed to handle the uncertainties involved, i.e. the 
uncertainty on the dependence of the process outcomes on 
the degrees of freedom that can be manipulated (inputs) – 
lack of models or plant-model mismatch – and the 
existence of external influences that influence the quality 
parameters and the economics of the process – 
summarized under the term disturbances. Process control 
is concerned with meeting the constraints on quality 
indicators, internal states (e.g. maximum pressures or 
temperature variations), and flows in the presence of these 
uncertainties. The effect of the discrepancy between the 
assumed models and the actual plant behavior on the 
control performance has been extensively discussed in the 
control literature under the term robust control. 

Advanced control, mostly in the form of model-
predictive control continues to gain ground across the 
industries. Especially in chemicals production where the 
volumes are lower than in petrochemicals and therefore 
the expected gain of advanced control projects is usually 
lower, in recent years big advances could be observed, 
including nonlinear model-predictive control (NMPC) 
applications to batch processes. Advanced control is 
meanwhile recognized in all major companies as a key 
factor in energy saving, throughput maximization and 
cost-efficient production. 

An exciting trend in advanced control in the recent 
years is to adopt a different view on the task of the control 
layer (Engell and Toumi, 2004, Rolandi and Romagnoli, 
2005, Engell 2007): to ensure and increase the efficiency 
and the profitability of the plant directly rather than to 
obtain good regulatory or tracking performance as a goal 
in itself. This can be achieved by a clever choice of the 
regulated variables (Skogestad, 2000, Engell et al., 2005) 
but also directly by reformulating MPC as an optimization 
of an economics-related cost function over the prediction 
horizon rather than as a tracking problem. In such a 
formulation, constraints e.g. on product purities or due to 
the limitations of the equipment can be expressed directly 
rather than indirectly as targets for regulatory control, 
which always necessitates a safety margin. Thus the 
control task is formulated in a manner which can be 



  
 

 

discussed and agreed upon with the plant operators and 
managers: There is an economic target, there are 
constraints, measured variables and degrees of freedom, 
and the degrees of freedom are utilized such that the target 
is optimized over the prediction horizon while respecting 
the constraints. This also enables to solve 
“unconventional” control problems with many degrees of 
freedom and few targets and constraints. By using rigorous 
nonlinear process models, the tasks of real-time 
optimization (usually based upon a stationary nonlinear 
process model) and model-predictive control (usually 
based upon approximate linear time-invariant dynamic 
models) can be integrated and unified, leading to a more 
transparent formulation, less inconsistencies, and a much 
faster dynamic reaction. The potential of this concept has 
been demonstrated in several studies (Toumi and Engell, 
2004, Ochoa et al., 2010, Würth et al., 2011).  

A relatively easily implementable variant of online 
optimizing control is to determine the necessary conditions 
of optimality (Srinivasan et al., 2002a, b) and to track 
these using conventional control. For instance, in many 
semi-batch processes, the batch time is minimized by 
maximizing the feed rate, taking into account constraints 
on the heat transfer and the accumulation of reactants. This 
can be implemented either in a two-layer fashion where 
the optimal trajectories are computed before the batch is 
started (possibly with a batch-to-batch or intra-batch 
correction) and implemented by simple controllers (cf. 
Gesthuisen et al.. 2004) or the optimization can be 
performed by setting fictitious (very high) targets of the 
feed rate (cf. Arora and Engell, 2007).  

Batch-to-batch improvement of the operational 
strategy (e.g. Gao and Engell, 2005) and tracking of the 
best recorded batches (“golden batch”) are other relevant 
techniques to optimize operations by feedback control. 

Clearly, optimizing control cannot and should not take 
care of all possible manipulated variables in a larger unit 
simultaneously, but only of those that are critical to the 
economic success. Below the optimizing control layer 
there will always be a regulatory layer, usually of classical 
SISO-controllers to stabilize the plant and to control 
inventories and to implement the higher-level decisions 
(e.g. control of the temperature of a cooling fluid). 

The proposal to re-think control as not being mostly 
about stabilization and tracking of set-point trajectories 
and nice transients but about performance optimization 
where good dynamic responses may be helpful but are not 
mandatory still sounds strange to most of the automatic 
control community outside process control. It gives control 
a much broader and more central role in all applications 
where tracking of references is not the primary and natural 
goal. Note that this view has already been also reflected in 
the ISA-95 (ANSI/ISA, 2005) standard where a control 
system has the central and coordinating functional role. 

Similarities of Scheduling and Control 

In contrast to the situation in continuous control, the 
complexity of scheduling problems does not admit a 
monolithic single-layer formulation for real-world 
problems. Uncertainties in online scheduling are related to 
the availability of resources (breakdowns, lack of 
personnel), uncertain yields or unsuccessful production 
steps, uncertain durations of operations, and, often most 
importantly, dynamically changing demands or targets. 

Scheduling and control are both real-time decision 
making functions that have to take into account new 
information at a regular or irregular frequency. In model-
based control and in model-based scheduling, the 
decisions are optimized over a forecast horizon in order to 
take longer term effects due to the inertia of the controlled 
system into account, but only a subset of “next” decisions 
or optimized variables have to be fixed and implemented 
based upon the available information on the new state of 
the system and new requirements. While the design of 
such moving horizon schemes has been extensively 
discussed in the control literature, this topic has so far 
received limited attention in the scientific literature on 
scheduling (Sand et al., 2000; Engell et al., 2001; van den 
Heever and Grossmann, 2003; Mendes and Cerda, 2003; 
Kelly and Zyngier, 2008; Puigjaner and Lainez, 2008; 
Shaik et al., 2008; Engell and Cui, 2010).  

Secondly, scheduling and control have to deal with 
uncertainties and therefore act in a feedback structure. This 
makes continuous control interesting and challenging 
beyond the computation of optimal inputs or trajectories 
(cf. all the work on stability of closed-loop systems) but 
has much less been addressed in scheduling. Scheduling 
has only rarely been seen as an activity that leads to a 
dynamic system with feedback, but it is in fact not 
fundamentally different to optimizing control on a finite 
horizon.  

Feedback can assume different forms, in particular 
direct feedback in regulatory structures, state updates in 
model-based control and model (parameter) updates. 
Scheduling also takes place in a nested feedback structure 
(see Fig. 4.). The information that is fed back can be the 
state of the plant (production capability in ISA-95 terms) 
and an update of the parameters that are assumed in the 
computation of future schedules. 

 

Figure 4: Scheduling in a feedback structure 
(from Engell, 2009) 

The state of the production process in scheduling is 
defined by the amounts of material stored, by the states of 
the resources (binary: operational or not, discrete: last 



  

 

operation was A, B, C, or continuous (rarely)) and by the 
progress of the running operations (discrete or 
continuous). From the scheduling point of view, the state 
(in the sense of process control) of the continuous 
parameters of the material and of the equipment only 
matters as far as it influences the availability of resources, 
the durations of the operations and the amounts of material 
delivered upon termination. Consequently, the intra-phase 
information obtained from the running processes in a 
feedback structure should be an accurate prediction of the 
expected finishing times and of the yields of the running 
batches. 

Both in process control and in online scheduling, the 
difficulty arises from the “inertia” of the processes – the 
energies and masses stored in the plant in the case of 
continuous control and the inventories and the irreversible 
allocations of resources to processing steps in batch plants. 
The lower this inertia, the faster the production process 
can be adapted to changing market conditions. Agility 
roughly is determined by the available range of the degrees 
of freedom relative to the inertia of the system. The 
smaller the inertia and the larger the range of the inputs, 
the faster transitions can be implemented. Translating this 
into online scheduling, the inertia is determined by the 
available resources relative to the work in progress and the 
associated blocking of resources, plus the inertia of the 
procurement of raw materials. The inertia of the plant and 
of the procurement of raw materials and other resources 
causes the need for planning on longer horizons. Planning 
can be understood as the generation of the reference 
trajectories for the plant and for the procurement of 
material, similar to the computation of the optimal 
operating conditions in process control. 

Both in continuous control and in online production 
scheduling, model abstractions and hierarchy are 
employed to improve the tractability of the problems. 
What degrees of freedom are assigned to which layer, how 
the targets and the target satisfaction are communicated 
between the layers, and how much autonomy is assigned 
to the different “players” requires a careful analysis. 

Advances in Scheduling 

Due to the high complexity and the wide range of 
different scheduling problems, there exists no common 
modeling framework for scheduling. Also, scheduling 
technologies are being developed by several communities 
(operations research, computer science, mathematics, 
economics and engineering), which does not always 
contribute to success, as the communities are surprisingly 
isolated. The essential challenge in scheduling is the 
exponentially growing search space, theoretically quickly 
leading to unacceptable computing times for any problems 
of practical interest. However, there are also many real 
problems for which the needed computing times are well 
acceptable. Different methodologies to handle the 
combinatorial complexity have been developed, e.g. 
mathematical programming, expert systems, simulated 

annealing, genetic algorithms, neural networks, constraint 
programming, various heuristics and recently more and 
more hybrid methods combining some of the above 
(Mendez et al., 2006; Akyol and Bayhan, 2007; Li and 
Ierapetritou, 2008; Verderame et al., 2010). 

Major advances in the field of scheduling are: 
• Availability of more efficient mathematical solvers. 

Owing to the continuously increasing solution 
performance, larger problems can today be solved to 
proven optimality. Commercial solvers such as 
CPLEX, XPRESS, and GUROBI have successfully 
embedded elements from constraint programming and 
heuristics to boost the performance and are also able 
to use parallel CPUs to reduce the solution time. 

• The scope of scheduling problems have increased and 
many formulations today (Kondili et al., 1993; 
Pantelides, 1994; Maravelias and Grossmann, 2003) 
are able to take into account inventory levels and 
other resource constraints. Most methods are using a 
discrete time representation, where the solution 
exactness is always somewhat limited. Event point 
concepts (Ierapetritou and Floudas, 1998; Castro et 
al., 2004; Sundamoorthy and Karimi, 2005) formulate 
resource constraints using a continuous time concept 
and have shown superior performance on several 
types of problems. Recently, scheduling problems 
have also been extended by other resource constraints, 
e.g. consumption of utilities (Castro et al., 2011). 

• Integration with the surrounding layers of the 
hierarchy in Figs. 2&3. Integration of scheduling and 
production planning (Van den Heever and 
Grossmann, 2003, Stephanson et al., 2006, Wu and 
Ierapetritou, 2007, Verderame and Floudas, 2008, 
Goebelt et al., 2008, Maravelias and Sung, 2009, 
Engell, 2009) can expand the long-term awareness 
and thus lead to more economical solutions. Even if 
no major breakthroughs have been seen yet in the 
integration towards control (Harjunkoski et al., 2009), 
this activity also contribute to more open models 
where various types of information sources are being 
integrated to the scheduling context.  
 
Another important topic, re-scheduling, has not been 

discussed sufficiently in the literature and it can be 
expected that related aspects become more critical with 
increasing interaction with the control layer and demands 
for more dynamic scheduling solutions.  

3. Integration of Scheduling and Control 

From the point of view of scheduling, control is just a 
necessary means to implement the planned schedules. The 
better the control of the process is, the less deviations from 
the assumed production times and volumes are observed, 
less rework is needed due to better product uniformity, no 
unplanned shutdowns etc. occur. The better the control 
layer works and the less you realize its existence, the 



  
 

 

better. And one becomes less aware of control problems if 
there is ample room for corrections, i.e. the targets that are 
set from the scheduling layer are not too tight. 

The traditional integration between these two 
functions is that the scheduling software (or the production 
planner) computes a schedule and hands it down to the 
shop floor where it is implemented more or less well. 
Deviations are fed back only when they are large enough 
to really upset the schedule. To implement e.g. reporting 
on the true batch times still is somewhat a challenge, as 
this information may not be available electronically and 
automatically. 

From the point of view of control, the schedule 
provides targets that may be more or less easy to realize. 
The looser and more flexible the schedule is, the larger the 
range for corrections if the real evolution of the production 
differs from the nominal case. So the life is best for both 
sides if the schedules are loose and include only few 
transitions, grade and product changeovers etc. Clearly this 
may not be the most profitable way of operation. 

Similar to the integration of continuous optimization 
of the operation and advanced control into online 
optimizing control, the scheduling layer and the 
continuous optimization layer may be integrated to 
simultaneously optimize all major continuous and discrete 
degrees of freedom, which then are executed via recipe 
execution control and advanced process control.  

There are several reasons for such an integration of 
advanced process control and scheduling: 

• Plan sequences that avoid costly set-ups and 
changeovers and reduce the time and the lost product 
during transitions. 

• Reduce maintenance needs and improve equipment 
life-time. 

• Avoid schedules that lead to operational problems. 
• Consider continuous degrees of freedom in the 

scheduling decisions. 
• Use more precise and timely information in 

scheduling. 
 
Below some examples are given where benefits of 

such an integration can be expected. 

Grade transitions in polymer plants 

Here the main target is to minimize the amount of off-
spec material during the transitions for given production 
targets for the different grades within a certain period of 
time. The amount of off-spec product in each transition is 
minimized by solving a dynamic optimization problem and 
simultaneously the due date violations and the overall 
production costs are optimized through scheduling aspects. 
Approaches comprise among others decomposition into 
master and primal problems (Nyström et al., 2005), an 
MINLP approach (Terrazas-Moreno et al., 2007) and the 
formulation of a MIDO problem (Prata et al., 2008). 

Agent-based approaches have also been reported, e.g. in 
Cao et al. (2008). 

Optimizing control of wastewater treatment plants 

Wastewater treatment plants are a representative of a 
class of plants where different operational strategies and 
therefore different control policies with different 
optimization targets are adequate in different situations, 
e.g. minimization of the consumption of energy, 
minimization of the concentrations in the outflow, or 
maximization of the capacity in anticipation of future large 
wastewater flow rates due to heavy rain. The scheduling of 
the different strategies has to consider the possibility of the 
controller to implement the required transients. Busch et 
al. (2007) demonstrated that this problem can be tackled 
by an integrated optimization of the sequence of stages and 
the control policies within the stages. 

Dynamically shifting control targets in batch production 

It has been studied a lot in the control literature to 
optimize batch trajectories (for the main phase or the main 
phases of a batch run). Usually the minimization of the 
batch time has been considered as the natural target of the 
optimization. If this is embedded into the planning and 
scheduling context of the overall plant where pre- and 
post-processing steps have to be performed, and other 
resources as manpower or transport may be limiting, this 
may however not contribute to the economic success at all. 
Depending on whether the step considered is executed on a 
bottleneck or not, other targets may be more important. 
This obviously calls for an integrated approach where the 
economic implications of the strategy on the control layer 
are communicated explicitly and different control policies 
are used in different situations. 

Flexible recipes 

Going one step further, flexibility of the batch recipes 
can be integrated with schedule optimization. (Romero et 
al., 2003, Mishra et al., 2005, Ferrer-Nadal et al. 2008). 
For instance, Capon-Garcia et al. (2011) propose to 
consider variations of the reaction temperatures relative to 
the optimum temperature with respect to the consumption 
of energy to reduce the batch times and thereby improve 
the overall profitability. The modifications of the recipes 
also lead to different schedules. By adapting the recipes, 
bottlenecks can be avoided or alleviated. This integration 
requires that the flexibility in the recipes and the influence 
of possibly several recipe parameters on all relevant cost 
values and production targets are modeled explicitly and 
that this model is taken into account on the scheduling 
layer. 

A variant of recipe flexibility is to adapt the transition 
condition between the phases of a batch production in 
order to influence the resource utilization favorably. 



  

 

When batch production processes require constrained 
resources as e.g. cooling power or electric energy, these 
constraints should also be taken into account in 
scheduling. Beyond choosing suitable starting times of the 
steps of the recipes, the required consumption of utilities 
can be influenced by the control policies within the 
batches, e.g. the required cooling power can be traded 
against the duration of a phase of a batch run. This calls 
for a fully integrated mixed-integer dynamic optimization.  

An example for such a situation is the production of 
sugar. Here, first the syrup is produced from the raw 
materials from which the sugar is then crystallized in a 
number of stages with recycles. The batch crystallizers and 
the continuous stage are coupled by the consumption of 
steam, and the temporal uniformity of the steam 
consumption is crucial for the energy efficiency of the 
plant. The steam consumption can be influenced both by 
the scheduling of the start times of the runs of the 
crystallizers and by the operating policies both in the 
continuous and the batch stages. Scheduling and control 
should therefore be considered in an integrated fashion (de 
Prada et al., 2008). 

Metals 

There are a large number of control challenges in e.g. 
steel and aluminum production, for instance in hot rolling 
where typically preset models are used. Due to the 
presence of disturbances, the process should be monitored 
and controlled closely. At the same time, scheduling a 
steel plant is far from trivial and often requires nested 
decision steps (Harjunkoski and Grossmann, 2001). 
Practically, this calls for an integration of control and 
scheduling systems, and an information exchange between 
scheduling and control is more realistic than a fully 
integrated mathematical modeling approach. The main 
information from the process should capture equipment 
conditions and start and end times of batches. This calls 
for an MPC-type of scheduling approach, where new 
schedules must always be linked to actual production 
situation, taking into account the “inertia” discussed 
above. In many steel plants there are still no advanced 
control systems (level 2 systems) implemented to enable 
this integration but as it provides obvious economical 
benefits, in most modern plants integrated data acquisition 
systems have been implemented. How to make use of this 
enormous amount of data is still a research issue. The 
dynamics of the availability and the pricing and of 
electricity is also a pressing issue for energy intensive 
industries (Paulus and Borggrefe, 2011). 

Power Generation 

In power generation there are several aspects to 
consider that ask for integration of various layers. With the 
increasing generation from sources of renewable energy , 
unit commitment problems become more dynamic and 
scheduling together with optimal control should derive the 

most economical strategies for power production, taking 
into account the partly stochastic consumer behavior and 
the resulting stress for the equipment (Cossent et al. 2011). 

In conventional coal power plants, scheduling plans 
load changes, which are implemented by sophisticated 
control solutions that minimize the consumption of 
“lifetime”, through e.g. thermal stress. The information 
about “lifetime cost” can be provided from the control 
layer to the scheduling as an option to improve the overall 
economics, also fulfilling asset optimization targets 
(Antoine et al, 2008) 

4. Approaches to the integration of scheduling and 
control 

How can scheduling and control be brought closer 
together? It is natural that the stakeholders in both areas 
try to push their capabilities and expand their applicability 
to cover a larger problem scope, i.e. advance in the 
adjacent territory.  

The control community is trying to reach upwards 
towards scheduling within an MPC framework (Busch et 
al., 2007, de Prada et al., 2011). There are fewer 
approaches known to us where the scheduling community 
has tried to reach down to the APC level using the typical 
scheduling type of models and approaches. Possibly the 
main reason for this is that considering APC also requires 
to take into account more detailed representations of 
continuous dynamics which are represented by a 
completely different type of models. The scheduling 
community rather is looking upwards in the hierarchy 
towards the integration of planning and scheduling and 
supply chain optimization.  

 
Monolithic solution 

 
The ideal solution would in fact be a monolithic 

solution, where both the scheduling and the control 
problem characteristics are fully represented (left-hand 
side of Fig. 5). The main benefits of such an approach are 
the availability of all information and that available 
degrees of freedom are fully utilized. It cannot and need 
not be distinguished anymore which decisions belong to 
control and which to scheduling. The MPC-based 
approaches to polymer grade transitions are examples that 
follow this philosophy.  

This type of problems has been tackled also in the 
context of model predictive control (MPC) by extending it 
to models with switched dynamics (Bemporad and Morari, 
2000, Gallestey et al., 2003; Perea-Lopez et al., 2003, The 
concept of introducing binary variables for automated 
selection of a correct controller strategy has been relatively 
successful in continuous processes, e.g. cement 
production.  

To enable to true integration, also the optimization 
models should be constructed in a manner, where the two 
problems to be integrated do not anymore exist separately. 



  
 

 

This requires a completely new way of thinking, in order 
not to put the main focus in only one part of the problem, 
while the other part is only seen as a “complicating 
factor”. It is worthwhile to cite Shobrys and White (2002) 
highlighting the mental hurdles of integration: “There 
exists significant disagreement about the proper 
organization and integration of these functions, indeed 
even which decisions are properly considered by the 
planning, scheduling or control business process.” So it is 
a challenge already before starting the actual technical 
development. 

a b

c d

Schedule
&

Control

Schedule

Optimize

Control

Figure 5.  Monolithic and collaborative solution approach 
 
The key challenge for the fully integrated approach is 

how to solve the resulting extremely challenging mixed-
integer dynamic optimization problems, which typically 
are nonlinear and non-convex. Presently, one type of 
problems that seem amenable to this approach is where 
dynamic optimization problems on finite horizons include 
sequencing decisions with not too many discrete 
alternatives, as in polymer grade changes or other single 
unit sequencing problems. Here reformulations by 
complementarity constraints (Baumrucker and Biegler, 
2009, Stein et al., 2004) or multiple-shooting based 
approaches (Sager, 2009) are very promising. By suitable 
re-parameterization of the optimization problems, discrete 
variables can sometimes be avoided and standard NLP 
techniques can be applied (de Prada et al., 2011). 
Generally speaking, the resulting problems are hybrid 
dynamic optimization problems (Engell et al., 2000) for 
which theoretical characterizations of the optimal solutions 
exist (Shaikh and Caines, 2007)) but have not yet been 
transformed into efficient algorithms. 

On the other hand, problems which are predominantly 
classical scheduling problems but are augmented by a 
small number of degrees of freedom that result from the 
presence of some adaptable parameters in the recipes seem 
to be tractable as long as the models for the interaction of 
the continuous degrees of freedom and the discrete 
problem are simple, e.g. linear dependencies (Capon-
Garcia et al., 2011).  

For large numbers of discrete decision variables as 
they result in even small-sized batch scheduling problems 
combined with nonlinear continuous dynamics, a brute-
force integrated approach does not seem promising in the 
near future. 

Hierarchical approach 

A hierarchical solution strategy (right-hand side of 
Fig. 5) seems to be currently the only realistic approach to 
tackle industrial size problems, as it leads to sub-problems 
of reduced complexity.  

In the hierarchical approach, three layers have to be 
considered: 1) The scheduling layer that takes the 
decisions on batch sizes, assignment to resources, 
sequencing and possibly timing, 2) the trajectory 
optimization layer that improves the profitability by 
computing optimal batch trajectories, and 3) the control 
layer that implements these trajectories in the presence of 
uncertainties or directly realizes an economically optimal 
operation. If the optimality of the operating parameters of 
the continuous sub-problems can be established by the 
tracking of necessary conditions of optimality, or an 
economically optimizing control target is used, the 
optimization of the continuous operation degrees of 
freedom can be implicitly performed by the control layer. 

Classical hierarchical solution 

As the scheduling problem encompasses a number of 
production phases and batches whereas the continuous 
optimization and control is concerned with single phases 
or possibly few connected phases and decomposes by 
pieces of equipment, it is natural that the scheduling 
system acts as the coordinator in the cooperative approach. 
One scheduling system may interact with several local 
controllers for different pieces of equipment. The 
schedules are computed based on nominal information 
about the durations of the tasks and their consumption of 
the most relevant resources. After a schedule has been 
determined, it is transferred to the optimization and control 
layer where optimal trajectories during and, if applicable, 
between the phases are computed and implemented. The 
real durations of the steps, energy consumptions etc. are 
fed back to the scheduling layer to update the scheduling 
model. Ideally, the scheduling layer will only fix resource 
allocations and sequencing decisions but leave the precise 
timing of the steps to the control layer which tries to 
maximize the revenue by making use of variable operating 
policies. Communication of the economics of the 
operation is crucial here. As more detailed information is 
available on the control layer, the revenue function can be 
more precise than on the scheduling layer.  

In each hierarchical decision problem, a crucial 
question is how to handle uncertainties (Engell, 2009). The 
scheduling decisions must be based on a simplified model 
of the lower layer, comprising the main factors that 
influence feasibility and performance, but not all factors. 
This introduces a mismatch between the model and reality, 
in addition to the presence of all kinds of disturbances and 
unforeseen events during the execution of the schedules. 
This model can be based upon the assumption of the best 
execution, an average execution, or an average execution 
with some slacks to avoid infeasibility. In the first case, 



  

 

infeasibility will result in a large fraction of the cases, and 
mechanisms for repair must be implemented, in the last 
one the potential may not be realized because there is no 
incentive to finish faster or produce more than planned. 
This dilemma can to some extent be overcome by fast 
feedback, not only of reported results but also of predicted 
executions, and frequent re-scheduling. An additional 
improvement can be expected if not fixed plans are 
communicated and executed but communication is done 
via a revenue function that indicates e.g. what the 
economic implications are of a shortening or prolongation 
of the processing times of some steps or batches or of the 
delivery times of a product or of additional quantities 
produced. Then on the optimization and control layer the 
remaining degrees of freedom can be used to perform as 
well as possible economically, not only to meet the 
planned execution. 

This issue of on which assumptions the schedules are 
based is not only relevant for the implementability of the 
schedules but also for the interaction with the upper layer 
(“promise to produce”). Neither constantly too optimistic 
nor constantly too conservative prediction will be helpful 
here. Therefore, the issue of fast and accurate feedback of 
the current situation on the optimizing and control layers 
and of frequent updates of the nominal resource (time, 
manpower, energy) consumption of the steps or batches is 
vital for a smooth functioning of the overall production 
control. 

As the schedules cannot be realized as planned all the 
time, repair mechanisms must be implemented to restore 
feasibility and to avoid suboptimal behavior, as e.g. 
waiting for the next operation, although all conditions to 
start it are already satisfied and no constraints restrict the 
starting time. Such mechanisms could be implemented 
either on the scheduling layer or on the control layer. 
Practically this task is usually delegated to the plant 
operators.  

Cooperative solution 

What can be imagined as the future way of interaction 
between scheduling, optimization and control for problems 
with a high combinatorial complexity? The overall 
scheduling and optimization problem has a natural primal 
decomposition: after a schedule has been determined on 
the basis of a nominal, simplified model of the overall 
system, the remaining (few) discrete  and continuous 
degrees of freedom can be optimized for this proposed 
schedule, similar to the optimization which is performed 
during the execution of the production steps. Often, a 
decomposition approach according to the different units 
and hence parallel computations are possible. The results 
of this optimization can be fed back and be used to 
evaluate and to “polish” the schedule. This is similar to the 
algorithmic treatment of two-stage MILPs as proposed in 
(Till et al., 2007). For the upper level optimization, meta-
heuristics appear to be promising because they can handle 
cost functions which are non-convex and can only be 

evaluated numerically. As discussed in (Tometzki and 
Engell, 2011), meta-heuristics are efficient in particular 
when a good initial solution (obtained here from a nominal 
resource consumption model on the scheduling layer) is 
available. 

Despite the tight interaction of scheduling and 
continuous optimization in such a scheme, during the real-
time execution deviations from the nominal plan will be 
the rule rather than the exception and appropriate 
mechanisms for fast re-scheduling must be implemented. 
(see e.g. Vin and Ierapetritou, 2000, 2001). Scheduling 
based on timed-automata (Subbiah et al., 2011) may be a 
promising technique for this task that is somewhat in 
between rigorous re-optimization and purely heuristic 
schedule modification and provides good solutions within 
short computation times. The robustness of the computed 
solution can be enhanced by taking the uncertainties into 
account explicitly using a two- or multi-stage 
representation (Balasubramanian and Grossmann, 2004; 
Sand and Engell, 2004, Hüfner et al., 2009). 

Most reported contributions in the literature have 
focused on the mathematical formulations of integration 
problems. This is a very challenging research area and 
many of the results at hand are unfortunately capable of 
tackling only laboratory-scale problems, partly because the 
industry has been unable to provide full-size case studies 
as the whole area of integration is still quite young. 

5. Industrial requirements and state of the art 

In the long-term, the industry needs to respond to a 
number of changes that are driven by economics, scarcity 
of raw materials, legislations and geo-politics. The reasons 
for the changes stem from e.g. growing populations and 
the need to produce according to even higher standards 
consuming less raw materials and energy, raw-material 
price increase, demographic changes and global 
competition and more demanding customers. All this calls 
for increased operational efficiency and faster adaptation 
to changing situations. It is expected that the market for 
CPM/MES is growing faster than that for base automation 
(Frost & Sullivan, 2010), see Fig. 6. As manufacturing 
sites become more flexible, complex and interconnected, 
the role and importance of optimization can be also 
expected to grow. This also puts more pressure on 
improving the interfaces and plug-ability of any kind of 
industrial scheduling, control and production optimization 
solutions that play an important role in MES. Standards 
such as ISA-88 and ISA-95 have become common and are 
often listed as basic functionalities as they can be expected 
to reduce problems in combining solutions from different 
MES-vendors. 



  
 

 

 

Figure 6.   MES Market forecast (Frost & 
Sullivan, 2010) 

By using standardized interfaces it is in theory 
possible to link any two functional IT-components within 
a plant and modern DCS systems enable to do this. 
Because of the multitude of options it is very important to 
carefully investigate and analyze what essentially makes 
sense and can bring added value to the production process.  

The concept of Collaborative Process Automation 
Systems (CPAS), as discussed e.g. in Hollender (2009) is 
an attempt to create an application-enabling environment 
for process control, advanced process control, and 
operations management applications, plus human 
empowerment applications such as decision support and 
advanced analytics. The second generation, CPAS 2.0 
(ARC, 2010), expands the vision beyond the traditional 
distributed control system (DCS) scope, and presents an 
environment designed for agility and adaptability. 

The challenge to meet all requirements is immense. 
The connectivity to control refers to a holistic control 
system with different kinds of process control tools, for 
example: 

• Model predictive control (MPC) 
• Statistical process control (SPC) 
• Fault detection and classification (FDC) 
• Data reconciliation 
• Online optimization 

 
There are numerous potential opportunities to 

innovate new ways of using the available information and 
defining which exact system components should interact. 
The approach of optimizing scheduling and control 
problems completely isolated from each other may lead to 
suboptimal solutions – or even worse – into two systems 
that work against each other while merely focusing on 
increasing their local performance. 

In the European project F3 “Flexible Fast Future 
Factory”, a new production concept for medium and small-
size chemical production is investigated: modularized 
continuous intensified production units which make it 
possible to adapt the capacity of a plant to the evolution of 
the market by adding identical parallel production lines, 
hence reducing the engineering cost for the extension 
drastically. The project also aims at a future 
standardization of the modules to reduce the cost of the 
modules. Compared to traditional batch production, better 
reproducibility and less consumption of energy and 

solvents is targeted, leading to a more sustainable 
production and lower cost. Finally such modularized 
plants can be deployed in a decentralized manner, close to 
or on the site of the provider of raw materials or the 
customer to reduce transportation cost and environmental 
impact. Also included in this concept is the idea of 
adapting the larger modules (called process equipment 
containers, PEC) by exchanging or adding internal 
modules (process equipment assemblies, PEA) such that 
different products with different requirements e.g. on 
residence times or post-processing can be produced in a 
single train. This concept leads to new challenges for 
automation (the modules should bring their own 
automation soft- and hardware that can be seamlessly 
integrated into the overall automation system) and 
planning and scheduling because now on a weekly or 
monthly horizon also rearrangements of the equipment in 
order to produce a certain product portfolio must be 
considered. 

 

Figure 7.   Future electricity grids (Source: 
ABB) 

Another emerging requirement stems from the smart 
grid concept and stronger integration of renewable energy 
forms (Fig. 7). This means that electricity networks 
become more dynamic. The more renewable and 
unplannable energy forms (e.g. wind and solar) we use, the 
more uncertain the power availability also becomes. What 
is more, not only the availability but also pricing of 
electricity will fluctuate. This adds another complex 
dynamic system to take into consideration, with many 
similarities to a control system of today.  

The topic of industrial demand side management, i.e. 
how flexibly a plant can react to dynamically changing 
energy price and availability conditions is a direct example 
of integrating scheduling with a dynamic system (e.g. 
Palensky and Dietrich, 2011). It is clear than more 
structured energy management strategies are needed, 
possible even linking emission control directly to 
scheduling. This will also be enforced by more strict 
legislative requirements, e.g. plans within European Union 
to enforce energy efficiency on the industry. 

In general, despite the potential benefits outlined 
above, the integration between scheduling and advanced 
control is still more a theoretical issue than practice. There 
are still only a few success stories that have been applied 
in industry. These represent however specific problem 
types that cannot be easily generalized. In the successful 



  

 

cases, mainly a strong contribution from the industry has 
also been necessary, which indicates that a close 
academic-industrial collaboration is vital. 

The main challenges for the implementation of 
integrated solutions seem to be the following ones: 

• Modeling. Integrated solutions require high-fidelity 
representations of both the scheduling problem and 
the dynamics of the plant. The cost of modeling in 
both domains is still much too high and the process is 
quite time-consuming and this is a main obstacle to 
even the exploration of the potential benefits of 
integrated solutions. 

• Optimization algorithms. Here not only the 
demonstration that the problem can be solved in 
reasonable computing times is crucial but also the 
robustness of the solution when implemented online. 

• Interaction with the user / human operator. A painful 
lesson learnt in advanced control is that if solutions 
are not accepted by the operators, they are not used in 
the long term, even if a benefit could be demonstrated. 
If two complex systems are interacting or are 
integrated, the challenge of providing sufficient 
insight and interaction to the operators is huge.  

• Automation systems and components. The automation 
of a process plant is provided by a DCS which ideally 
would come from one vendor, but often large systems 
contain modules from multiple companies. Integration 
of different software systems for different functions 
acting on a joint open data structure will be needed 
because not every vendor of good MPC solutions is 
also the best choice for providing a scheduling 
solution and vice versa.   

• Systems engineering. The design of integrated 
systems is a challenge for which no guidelines are 
available: 

o What roles do the system components have? 
o How much intelligence is placed on which 

levels? 
o Who triggers whom in the communication? 
o How to balance individual requirements and 

the collaboration? 
o How to ensure convergence in case of 

diverging targets etc.? 

Conclusions 

An overview of the main advances and challenges 
within integration of scheduling and control has been 
given. It can be concluded that there is still a long way to 
go until such an integration will become reality, and that 
the challenges are technical, business-related as well as 
psychological. It would definitely speed up the 
development, if industry and academia could commit to 
collaboration with the target of aiming at systematically 
tackling at least some of the above challenges. So far, 
partly due to little interaction, it is hard to prove the 

business value of the integration, as well as the technical 
feasibility on a plant scale. 

Nevertheless, as can be seen by the recent 
developments in the energy markets, the world is changing 
rapidly and new challenges for dynamic optimization may 
arise quickly.  
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