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Abstract

This paper presents an overview of results and fu-
ture challenges on temperature control and cost opti-
mization in building energy systems. Control and eco-
nomic optimization issues are discussed and illustrated
through sophisticated simulation examples. The paper
concludes with effective results from model predictive
control solutions and identification of important direc-
tions for future work.

1. Introduction

The need for control in buildings usually resides
in the mechanical and electrical systems that are in-
stalled to maintain a comfortable and safe indoor en-
vironment. A wide range of these systems can be
found in buildings including heating, ventilating, air-
conditioning (HVAC), lighting, security, elevators, es-
calators, fire detection and abatement. All these sys-
tems use energy and produce useful work as output. In
the case of HVAC, energy is used to maintain temper-
ature, humidity, and air quality at levels in accordance
with the building purpose. The energy process is illus-
trated in Figure 1.
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Figure 1. Energy process in a building

As with any generic process control problem, the
objective is to satisfy the output requirements in the
most efficient way and hence with the least amount of
input (energy). Because energy is a cost, control in
buildings, as in most other applications, can be trans-
lated to an economic optimization problem. In simple
mathematical terms, the problem can be stated as the
minimization of the integral of the energy usage subject
to constraints on the measured variables (see Section 2
for an example). The real problem, however, is more
complex because the constraints are not linear and the
true goal is to minimize the energy cost (not just the en-
ergy usage), which is also nonlinear and time varying.

Although economic optimization might be the
overall goal, it is very difficult to address this directly.
The reason for this stems from the many constraints
and intermediate objectives that are the result of build-
ings being large complex processes. The design pro-
cess for control in buildings has therefore traditionally
been from the bottom up [1]. What this means is that
control logic is designed around each constraint and in-
ternal objective and then coalesced to form the overall
control strategy. The rest of this section describes con-
trol problems at these lower levels in buildings and for
the sake of brevity, focuses on results in the literature
specific to the building control problem.
Single variable regulation: This is the most basic con-
trol task and involves maintaining a variable to a set-
point by manipulating a device. An example would
be maintaining 72 degree temperature in a conference



room by moving a damper to regulate the amount of
cooled air entering the room. Feedback control is the
most common solution for these problems and PID is
the most common algorithm that is used. There are sev-
eral issues that arise in buildings that make the single
variable feedback problem more challenging. Exam-
ples are: hysteresis, stiction, static non-linearity, time
variance, capacity problems, dead-zones, quantization,
time-delays. Many of these problems are more preva-
lent in buildings compared to other control applications
because the low cost nature of the industry leads to un-
reliable and inaccurate components [2].
Multi-variable control: Many of the single variable con-
trol problems in buildings are part of broader multi-
variable control problems. The approach of treating
each problem in isolation is common though and the
design therefore becomes that of a decentralized multi-
loop strategy. Cascaded control is used in buildings typ-
ically via multiple PID controllers. A specific example
of a multi-variable control problem is the regulation of
both humidity and temperature. Different devices are
used to control these variables but a change in one af-
fects the other. Most often, interactions of these types
are ignored and control performance is sub-optimal [3].
Scheduling: There are many scheduling problems in
buildings used to determine when to turn on and
off equipment to satisfy load demands. Time-based
scheduling is common where algorithms are used to de-
termine when to turn on a device in order to reach de-
sired conditions by a certain time. A specific example
of this is ”optimal start”, which is used to turn on heat-
ing or cooling devices in buildings so that temperatures
in zones are at setpoints when the occupancy time is
reached [4]. Other types of scheduling problems in-
volve determining how to operate multiple devices in
series or in parallel. Devices that are in series are most
commonly handled using split range control or state-
based logic [5]. An example is moving from heating
to cooling by splitting the output of a PID controller
so that it maps on to two device inputs. Examples of
parallel systems would be equivalent devices that serve
different parts of a building. For example, a building
might have multiple air-ventilation systems for differ-
ent sections of a building. Coordination of these sys-
tems is rare, but algorithms are sometimes deployed to
take account of start-up and shut-down events in order
to minimize load spikes.
Constraint imposition: There are a myriad of safety fea-
tures built into all types of building systems. These may
be hardware or software based and the goal is to prevent
damage to the equipment by constraining the range of
operation. More expensive pieces of equipment such
as chiller systems will have more safety measures to

prevent damage to components. The state of the art in
the buildings area is that the safety and operational con-
straints are usually implemented in parallel to the con-
trol logic. Conflicts then often arise between the two
sets of logic and safety-trips are common.
Resource management: A typical building will have
significant redundancy meaning that demands can be
met by using different combinations of equipment. An
example for an HVAC system is when both the venti-
lation rate and the temperature of the air delivered to
spaces can be varied to achieve a desired heat transfer
rate. The control logic used to determine these trade-
offs is usually based on experience that has been built up
over years. Mode changes and so-called ”supervisory”
control logic is used to manage this kind of redundancy
but the design is once again bottom up and it is rare
to find system level optimization built into the design
of these strategies. Some of the scheduling problems
mentioned earlier could also be grouped in this resource
management category and there is an obvious similarity
between these two problem areas.

Fault tolerance. In addition to faults resulting from
equipment failure, many building system components
are non-ideal. Examples were given earlier of non-
linearity that is prevalent in building systems and con-
trol logic has to be designed to, at least, be robust to
these expected operational deficiencies. Adaptive con-
trol at the PID level has been used in buildings to ad-
dress static nonlinearity and time-variant behavior [6].
Also gain scheduling and static gain inverters can be
found. Filtering including smoothing and spike removal
is also used in control logic. The system redundancy
mentioned earlier coupled with the decentralized con-
trol design also means that there is a certain amount of
fault tolerance built in to most building systems. This
means that setpoints can be met under most conditions
even when some items of equipment have failed. This is
useful from an operational point of view but can lead to
energy penalties and make fault detection difficult be-
cause faults are masked by the redundancy [7, 8].
Opportunities: Modern control systems in buildings are
implemented on a digital communication network that
has different layers with the higher levels being IP-
based over Ethernet. The higher level control devices
are equivalent to PCs and usually connect out to the In-
ternet. Traditionally, the building control system has
been separate from the rest of a building’s business and
telecommunication IT infrastructure. However, because
both networks are essentially the same, there is a con-
vergence underway, particularly as building owners see
the economic benefits of combining parts of the net-
works rather than installing parallel duplicates.

As network communication components have be-



come commoditized this has allowed for an increasing
number of devices in a building to be connected to a
network. This interconnectedness is creating new op-
portunities for control design as data from many sources
can be accessed at any point on the network. However,
the evolution of the networking infrastructure has out-
paced the development of control algorithms that can
take advantage of these new capabilities. The design, as
mentioned earlier, is still decentralized multi-loop that
is built from the bottom up. Opportunities therefore
exist for broadening the control design to encompass
groups of systems so that system-level optimization can
take place at a higher level than is currently done.

If the ultimate goal of control in buildings is one
of (constrained) economic optimization, this can be
achieved in one of two ways. Either optimization is
carried out for the entire building whereby total energy
costs are minimized, or costs at several sub-levels are
minimized independently. Only in theory would be pos-
sible to find the (Pareto) optimal point by optimizing a
building in its entirety, because this would demand that
all information be available with certainty to a central
location, known as the economic calculation problem
in economics [9]. This is not possible in practice and
any efforts to try to model an entire building will be
hampered with significant inaccuracy and uncertainty.
The theoretical optimal solution will therefore be unre-
alizable in practice and may also lead to building-wide
problems when models, predictions, or measurements
break down.

The alternative approach of breaking the optimiza-
tion problem into smaller pieces is the only practically
realizable option for a large building (see Figure 2). Al-
though this approach may lead to a sub-optimal point,
the approach has several important advantages. First,
inevitable uncertainty and modeling errors will only af-
fect localized parts of the building thus resulting in risk
diversification and enhanced robustness. Second, the
approach is an incremental change over current state
of the art thereby making it more viable for industrial
adoption. Moving up the system hierarchy to the point
where price signals are available is nevertheless a radi-
cal improvement over current practice that could lead to
significant economic benefits. Finally, once economic
optimization is implemented performance could be fur-
ther enhanced by incorporating cooperative strategies
that take advantage of the potential to share informa-
tion between each of the independent optimizing agents
(e.g., [10]).

The two research efforts presented in this paper
adopt this more system-centric approach to control de-
sign by applying model predictive control (MPC) meth-
ods to building applications. Both of the MPC control

strategies that are described are multi-variable in nature
and thus take advantage of the ability of building con-
trol systems to consolidate measurements from several
sources. The proposed control strategies also incorpo-
rate economic optimization as well as setpoint regula-
tion. This is an important improvement over the cur-
rent state of the art that is made possible by employing
control logic at a high enough level where an economic
(price) signal is measurable. The rest of the paper is
organized as follows: In Section 2 results on advanced
higher level control of buildings are presented followed
by an overview of existing results on the problem of
control of cooling units in Section 2 as well as illus-
trative results. Next, in Section 3, load shifting tech-
niques for energy optimization are discussed, followed
by a discussion on future directions in Section 4. Fi-
nally, we present the conclusions in Section 5.

2. Cooling Plant Control

In this section, we review results on control of
cooling units. We first present an overview of con-
trol results on cooling units (including experimental as
well as simulation based studies) then focus on cool-
ing units using a Vapor Compression Cycle (VCC) as
the cooling mechanism. We then discuss classical con-
trol approaches for VCC, followed by model-based ap-
proaches for control of VCC units, and present some
illustrative results.

2.1. System Description and Control Relevant
Issues

In the recent past there have been a significant num-
ber of simulation and experimental-based studies on the
modeling and control of cooling systems including re-
frigeration systems for food preservation, roof top cool-
ing units, and chillers (see, e.g., [11, 12, 13, 14, 15, 16,
17] and the references therein). For the sake of high-
lighting the key control relevant issues, we focus here
on VCC, a representative (and quite commonly used)
cooling mechanism in HVAC systems, for which ex-
cellent models (validated using experimental data) cov-
ering various regimes of operations of vapor compres-
sion cycles have been reported in a series of papers (
[18, 19, 20, 21] and [22] for an excellent review).

A vapor compression cycle (VCC) refers to a type
of thermodynamic machinery that transfers heat using a
compressible fluid referred to as the refrigerant. The
most common realization of a VCC consists of four
components: a compressor, condenser, expansion valve,
and an evaporator. In a VCC unit, the refrigerant en-
ters the compressor as a superheated vapor and is com-



Figure 2. Centralized versus distributed optimization

pressed to a higher pressure, resulting in superheated
vapor. From the compressor, the superheated refrigerant
vapor enters a condenser (typically placed outdoors),
condensing to a sub-cooled liquid at the condenser exit
as a fan blows the ambient air over the condenser. The
high pressure sub-cooled liquid then flows into an ex-
pansion valve which decreases the pressure and temper-
ature of the refrigerant, causing a liquid-vapor mixture
to form. Then, the two-phase refrigerant mixture en-
ters an evaporator that is exposed to the environment
to be cooled. The environment temperature is above
the temperature of the refrigerant, resulting in the evap-
oration and subsequent heating of the refrigerant to a
superheated vapor at the evaporator exit. The cooling
medium (air or water), in turn, is cooled and available to
be distributed for cooling. The superheated vapor from
the evaporator exit then flows back into the compressor,
completing the cycle.

The control objectives are typically defined in
terms of degrees of superheat in the refrigerant at the
evaporator exit and the air temperature (or the tempera-
ture of the cooling medium) at the evaporator exit (the
supply air temperature). Ensuring that superheated re-
frigerant exits the evaporator is of utmost importance in
preventing physical damage in the VCC, as liquid re-
frigerant can damage the mechanical components used
in the compressor. At the same time, maximization of

the two-phase region within the evaporator maximizes
the energy efficiency of the cycle resulting in a tradeoff
between optimality and safety. The manipulated vari-
ables include the compressor speed, the air flow rates
across the condenser and the evaporator and the expan-
sion valve opening. The compressor is the largest en-
ergy consumer, with the energy consumption typically
being a polynomial, increasing function of the compres-
sor RPM.

2.2. VCC Control

In this section, we review applications of classi-
cal control approaches as well as more recent results
on model-based control approaches of VCC.
Classical control approaches: When using single in-
put single output control approaches (classical PI/PID
or various versions of it), the success of the control
structure relies to a large extent on the choice of the
control-loop pairing. The performance of the system
is limited by the inherent nonlinearity and multivari-
able nature of the problem. Typical control loop pair-
ings include superheat-valve opening and cooling load
(captured through evaporator pressure or supply air
temperature)-compressor RPM. Recent results that uti-
lize classical control structures, albeit using tools such
as static decouplers, adaptive PID designs as well as



cascaded control structures [22, 23, 24] demonstrate
better performance over simple PI loops as well as point
to the possibility of improved performance achievable
using advanced control structures.
Model-based control approaches: One example of a
Model-based control design is the use of a reduced or-
der model, developed from a first principles nonlinear
model, for the purpose of control design [22]. In [24]
a model-based predictive controller is presented, where
a discrete time input-disturbance-output model is iden-
tified from ‘data’ obtained from the detailed nonlinear
model used for the purpose of simulations. In particular,
an autoregressive with exogenous terms (ARX) model
of the form shown below is utilized:

y(k) =
ny

∑
i=1

Aiy(k− i)+
nu

∑
i=1

Biu(k− i)+
nd

∑
i=1

Cid(k− i)

(1)
where y(k) and u(k) are the process output and in-
put vectors at sampling instant k (respectively), d(k)
is a vector of measurable disturbances, Ai, Bi, and Ci
are model coefficient matrices (that are estimated using
least-squares regression), and ny, nu, and nd denote the
(maximum) number of time lags in the outputs, inputs,
and disturbances (respectively) and define the order of
the model. For specific outputs, inputs, or disturbances
which do not require the maximum number of lags, the
appropriate elements in the coefficient matrices can be
set to zero. Note that for the VCC, the mixed air tem-
perature (the inlet temperature of the air flowing over
the evaporator) and the ambient temperature are natural
(and measured) disturbance variables that can be incor-
porated as the disturbance variables for improved mod-
eling.
Model Predictive Control (MPC): The key components
of a model predictive controller (see, [25] for an ex-
cellent review) are 1) a model (linear or nonlinear) that
allows prediction of the process states for candidate in-
put trajectories and 2) description of the objective func-
tion/constraints that reflect the desired (or as limited by
physical constraints) behavior of the process. Appli-
cations of MPC are become increasingly prevalent due
to its ability to handle the multivariable/nonlinear na-
ture of the dynamics, constraints and optimality in an
integrated fashion, and has been the subject of several
research studies (see e.g., [26, 27, 28, 29] for recent re-
sults that establish stability guarantees from well char-
acterized operating regions while handling input [26]
and state constraints [27] as well as uncertainty [28],
while enhancing the stability region achievable using
existing control approaches [29]).

Recently, model predictive control formulations
have been implemented on VCC test beds. In [30, 31] a
linear model based (identified from test data) predictive

controller is implemented on a multi-evaporator com-
pression cooling cycle, where the energy efficiency re-
sults from the ability of the MPC to keep the super-
heat at as low values as possible. In [32] a nonlinear
model predictive controller (based on a reduced order,
first principle, nonlinear model) is implemented on a
test bed and performance improvement demonstrated.
In [33], a gain-scheduling approach is utilized to handle
the nonlinearity.

To illustrate the key idea behind a typical MPC im-
plementation, consider a predictive control design [24]
where the inputs to the VCC at sampling instant i are
computed by solving the following constrained opti-
mization problem:

min
umin≤u(k)≤umax

P

∑
k=1
‖ŷ∗2(k)− y2,SP(k)‖Q +‖u1‖r +‖∆u‖R

st: ∆umin ≤ ∆u(k)≤ ∆umax

Eq.1
ŷ∗(k) = ŷ(k)+α +β (i)

y1,min ≤ ŷ∗1(k)≤ y1,max

α = k [y(0)− ŷ(0)]
β1(i) = β1(i−1)+g1 max{0, [y1,min− y1(0)]}
+g2 max{0, [y1(0)− y1,max]}
β2(i) = β2(i−1)+ f [y2(0)− y2,SP(0)]

where the notation, ‖ · ‖Q, refers to the weighted norm,
defined by ‖x‖Q = xTQx and ∆u denotes a vector in
which each element is the difference between succes-
sive input moves. The weighting matrices are diagonal
and used to trade-off the relative importance of the dif-
ferent control objectives. The plant measurement at the
current sampling instant i corresponds to k = 0 or y(0).

In this MPC formulation, the control objective of
supply air temperature set-point tracking is addressed
by penalizing the deviation between the predicted
supply-air temperature from its set-point, y2,SP(k),
weighted by Q(1,1). The predicted superheat is also
bounded between y1,min and y1,max. To reduce the en-
ergy consumption associated with the control action, the
value of RPM is also penalized using the weight r. The
inputs are constrained in a range for which the nonlin-
ear VCC model is known to be valid. In addition to us-
ing hard constraints for the input rates, excessive input
movements are penalized in the objective function using
a move suppression factor with the weighting matrix, R.
When tuning the different weighting matrices, the high-
est importance was initially given to tracking the sup-
ply air set-point. Subsequently, the remaining weight-
ing matrices were adjusted appropriately to achieve rel-
atively smooth input behavior.



To achieve offset free performance, a distur-
bance/bias term is added to the model predictions that
is expressed by combining two constant terms, α and
β (i). The first term, α , is the disturbance due to plant-
model mismatch at the current sampling instant, multi-
plied by a tuning parameter, k. Specifically, α is de-
fined as the difference between the predicted outputs
at sampling instant i from the previous control calcu-
lation and the measured outputs at i. The β (i) term is
the summation of tracking errors up to and including
sampling instant i. For the superheat (output 1 or y1),
a non-zero tracking error at i is used only if the cur-
rent measurement exceeds the minimum or maximum
superheat. The β term essentially “persists” and influ-
ences the control action until the offset is eliminated. It
can be understood as operating the same way as the in-
tegral mode in a PI controller. The tuning parameters,
g1, g2, and f , are used to trade-off the input aggressive-
ness and the amount of offset (for the parameter values,
see [24]). Figure 3 demonstrates the effect of the α and
β . In the nominal case (no corrections), there is consid-
erable offset in the supply air temperature. After adding
the feedback term to account for plant-model mismatch,
this offset is significantly reduced but not eliminated.
Zero offset is only achieved after also including the er-
ror accumulation term in the formulation.
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Figure 3. Supply air temperature responses us-
ing various combinations of the bias terms in
the proposed MPC design

Next, closed-loop simulation results for MPC and
PI control are compared. For these simulations, con-
stant disturbances are assumed. That is, the ambient air
conditions (temperature and humidity) and the inlet air
temperature to the evaporator (the mixed air tempera-
ture) are maintained at constant values. Using the re-
sults in [34], for the PI loop pairing, the supply air tem-

Table 1. Stand-alone VCC closed-loop perfor-
mance metrics

Control strategy

Metric PI Control MPC

ISESA (s · ◦C2) 837 222

TEC (kJ) 10017 9217

perature is paired with the compressor RPM while the
superheat is paired with the expansion valve opening.
The superheat set-point for the PI controller is specified
to be 10◦C. The PI controllers are initially tuned using
the internal model control tuning method and fine-tuned
to minimize the integral of absolute error while main-
taining relatively smooth input trajectories.

Figure 4 displays the closed-loop VCC responses
for the two control strategies (the input profiles
are omitted for brevity) and Table 1 summarizes
their control performances using the metrics ISESA =

∆t ∑
K
i=1

[
T o

a,e,SP(i)−T o
a,e(i)

]2
and the total energy con-

sumption (TEC) over the duration of the simulation (de-
noted by K simulation steps), for the different set-point
step changes. As shown in Figure 4, the proposed MPC
design is able to provide better tracking performance
of the supply air temperature for the different set-point
changes with similar settling times and lower energy
consumption. The third supply air set-point change (to
approximately 23.7◦C) is an infeasible set-point for the
VCC cooling capacity, but note that the predictive con-
troller is able to drive the supply air temperature closer
to this set-point compared to the PI controller. Note,
however, that the infeasibility is merely a result of the
model not being valid at low RPM (or as low as re-
quired) to provide less cooling.

For the MPC design, the superheat is permitted
to “float” between its minimum and maximum value
whereas for PI control, the superheat is maintained at
the constant safety margin of 10◦C. This additional ‘de-
gree of freedom’ for the predictive controller leads to
more accurate tracking and better overall control per-
formance. Note that if the superheat was prescribed
to be maintained at a constant value of 10◦C for the
MPC design as well, the corresponding closed-loop re-
sults would be similar to those obtained when using the
PI controller. In regards to the energy efficiency, the
MPC design required 8% less energy compared to the
PI controller. This is a consequence of using higher
valve openings and lower RPM values resulting from
the multivariable nature of the MPC controller and the
ability to allow the superheat to ‘float’ between accept-
able values.
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Figure 4. Closed-loop output profiles for the
VCC under MPC and PI control.

3. Load Shifting and Demand Reduction
via the MPC Framework

In the United States about 70% of electricity is
consumed in commercial and residential buildings. To
make it worse, the peak demands of building cooling
(or in some regions heating) usually occur around the
same time period during the day, making the electricity
consumption at the peak time (known as demand) ex-
tremely high relative to the average consumption level.
The high peak demand dictates that the power genera-
tion capacity from available power plants has to be at
least equal to the peak demand, or a blackout would
occur. The issues associated with concentrated high de-
mand are twofold. One is that new power plants have
to be built to meet the increased demand. The other is
that during off-peak hours many power plants have to
be shut down or operated at a reduced load, sacrificing
power generation efficiency and overall equipment uti-
lization. The situation is worsened by the integration of

renewable energy such as wind energy, which generates
more during night, which is the off-peak consumption
time. If the peak demand can be reduced by properly
making use of storage capacity or managing the con-
sumption pattern to be more friendly to the power gen-
eration, new power plants need not to be built and the
efficiency of existing power plants is improved. There-
fore, there is great interest to reduce the peak demand
by shifting part of the peak load away from the peak
time.

If large scale electricity storage were available at
a feasible cost, the issue of load shifting would be re-
solved by implementing electrical storage. However,
electricity storage is not currently viable due to the high
cost and limited scales. Since buildings account for the
majority of the electricity consumption and the peak
load is usually caused by building cooling which is a
thermal consumption, it is possible to use the building
thermal storage capacity available in the buildings’ ther-
mal mass to shift the peak load to the off-peak period,
usually before the peak load period, while keeping ther-
mal comfort as the ultimate goal. This strategy is known
as pre-cooling.

Recently, demand response (DR) has become a
promising approach in the electricity market and the im-
plementation of smart grid. DR is an approach to stim-
ulate end users to change their electricity usage from
regular consumption patterns, in response to the time-
varying price or time of use (TOU) price of electric-
ity [35, 36]. Thermal storage in building thermal mass
has been recognized as an important passive asset to
shift demand for decades, and there has been a num-
ber of simulation and experimental studies on reducing
the peak demand by adjusting temperature setpoints of
cooling systems[37, 38, 39].

3.1. Existing Pre-cooling Strategies

With the time of use price of electricity, it is reason-
able to adjust the cooling setpoint to be on the high end
when the electricity price is high, while still maintain
the conform in the buildings. To make use of the ther-
mal mass of the buildings, one can also set the cooling
setpoint to be on the low end prior to the high price time
period. Since the building thermal has been pre-cooled,
it would reduce the cooling need during the high price
period. Several pre-programmed control strategies are
introduced in [40]. The baseline night-setup strategy
is applied in most of the current commercial buildings,
in which the temperature set-points are set at the lower
bound of comfort region during entire occupied hours
and cooling is shut off during the unoccupied period. In
this case, the building thermal mass is not used to take



advantage of the time of use price difference of elec-
tricity. In the step-up strategy, the cooling setpoints are
raised to a higher value during the peak price period,
reducing the demand of electricity during this on-peak
period. In addition, the cooling pre-stored in building
thermal mass can be discharged. The linear-up strategy
is a compromise of the previous two strategies. Xu et
al. (2004) also suggest to extend the pre-cooling period
to unoccupied hours to store more cooling.

Optimal and advanced control techniques for DR
and building energy efficiency constantly emerge, facil-
itating the level of DR from manual to semi-automated
and fully-automated [41]. Some methods, for exam-
ple artificial intelligence-based [42] and reinforcement
learning [43] are model-free but usually need large
amounts of data from specific buildings, meaning that
even though they have been proven successful for a par-
ticular building, the performance cannot be guaranteed
for other buildings. Therefore, modeling still plays an
important role in building energy control. With the help
of various modeling packages, accurate modeling for
large scale buildings is available [44, 45, 46].

Significant peak demand reduction has been shown
by previous studies of optimal demand response con-
trol that takes into account an electricity market where
a time-varying rate is applied. Pre-cooling (or pre-
heating) is the basic action to shift peak demand away
from on-peak periods [47]. In the demand limit-
ing strategy, the zone temperature trajectories are ob-
tained by solving an optimization problem under a
pre-determined target demand during on-peak hours
[48, 49, 50]. However, these methods are open-loop
strategies and are not able to deal with real time dis-
turbances such as building internal loads and weather
changes.

While many studies focused on reducing the energy
consumption or peak demand, there has been less work
on reducing the energy and demand costs of building
energy systems [51]. From the above description it is
evident that a desirable demand response control strat-
egy should accomplish the following objectives simul-
taneously.

1. Be able to optimize the trade-off between the en-
ergy consumption and demand cost by taking ad-
vantage of the time of use price difference, while
maintaining the room temperature to be within the
comfort zone during the occupied period.

2. Be able to make use of the building thermal storage
to store and release cooling dynamically.

3. Be able to handle real time and predicted changes
of load disturbances, weather changes, and even
price changes.

3.2. Feedback and Economic MPC Strategy

Model predictive control is a natural fit for the
building demand reduction to achieve the above desired
objectives. However, it may not be appropriate to apply
the standard MPC strategy that are used for continuous
process operations for the purpose of building demand
reduction for the following reasons.

• The commercial building operations have daily cy-
cles, with only about ten hours of occupied period
where temperature control is of concern. within
this occupied period the price of electricity can
change several times, making it necessarily a dy-
namic operation rather than a steady state opera-
tion.

• The building thermal dynamics is usually slow, in
the order of hours to reach steady state. Therefore,
it is difficult to separate in time scale the economic
objectives and the building thermal dynamics. In
other words, the usual hierarchy of steady state real
time optimization and dynamic predictive control
is not suitable for demand reduction in the thermal
operation of buildings.

• The ambient temperature, which is a major distur-
bance to the building temperature control, hardly
reaches steady states. The ambient temperature cy-
cles in the same time scale as the electricity price
change.

The intertwine of the economic objectives and the
building and disturbance dynamics requires the devel-
opment of an economic MPC strategy. Instead of us-
ing a quadratic control criterion as in the standard MPC
[52], an economic objective function is designed as fol-
lows,

minJ =
N

∑
t=1

[Ec(t) ·∆t ·P(t)]+Dc · max
td≤t≤N

{P(t)} (2)

where J denotes the total electricity expense which is
a combination of energy and demand costs. td is the
time when demand charge kicks in, Ec(t) accounts for
the time-of-use electricity rate and Dc is the demand
charge rate. For example, a rate plan offered by South-
ern California Edison (SCE) [53] divides a day into on-
peak, mid-peak and off-peak periods. It is particularly
designed for medium-sized commercial and industrial
customers. ∆t = 0.25hr is the time interval and N is the
total number of time steps per day.

Eq.(2) is a min-max optimization problem. Ma et
al. [54, 55] convert the minimax problem into a linear
program so that it can be solved by a linear program-
ming routine. Although the power consumption P(k) is



related to the economic objective, it does not indicate
whether the comfort level of the building is achieved.
To do so we must make the economic objective be sub-
ject to the dynamic thermal model constraint and the
temperature of various zones or rooms of the building
be subject to the comfort constraint. A dynamic power
and temperature model can be built as follows.

P(k) = GP(q)Tsp(k)+HP(q)d(k)+VP(k)

T (k) = GT (q)Tsp(k)+HT (q)d(k)+VT (k)

where T (k), Tsp(k), and d(k) are measured zone tem-
perature, zone temperature setpoints for HVAC, and
measured disturbances. VP(k) and VT (k) are the effect
of unmeasured disturbances on the power and zone tem-
perature models. These models are derived from system
identification in Ma et al. [54, 55], where specific care
must be taken in designing the setpoint perturbations.
The MPC constraints are set up as follows.

Tmin(k)≤ T (k)≤ Tmax(k) (3)

Tsp,min(k)≤ Tsp(k)≤ Tsp,max(k) (4)

Pmin(k)≤ P(k)≤ Pmax(k) (5)

The constraint (5) allows one to implement the demand
limiting strategy.

With the inequality constraints and the equality
constraints, the optimization problem is formulated as
a linear program, which can be solved by the Matlab
built-in function Linprog. In each time step, only the
current temperature setpoints Tsp(k) in the optimal solu-
tion is implemented. This optimization procedure is re-
peated and a new problem will be formulated in subse-
quent time steps when new measurement data are avail-
able. Forecast of the measured and unmeasured dis-
turbances with the MPC model or an external weather
forecast model can be incorporated in the economic
MPC problem, Making it possible to implement feed-
forward control actions.

3.3. A Simulation Case Study

Ma et al.[54, 55] report an economic MPC re-
sults of a single story commercial building located in
Chicago, Illinois modeled in EnergyPlus. Shown in Fig.
5, the building is divided into five air-conditioned zones
which include one interior and four exterior zones. A
set of controllable actuators and temperature sensors is
installed in these zones. The impact of building cooling
loads such as occupants, lighting and electrical equip-
ment is included in the EnergyPlus model. The Energy-
plus software is also capable of simulating the external

Figure 5. Five zone division floor plan

loads. A weather file that contains historical measure-
ments of ambient temperature, relative humidity and so-
lar radiation is incorporated.

In the MPC formulation, the zone temperature can
be regulated by real-time constraints. In this work one
day is divided into five periods as described in Fig. 6.
The time periods are determined so that the zone tem-
perature level in each period can be maintained within
an appropriate range, rather than at a constant tempera-
ture setpoint.

1. Period 1 (t1 ∼ t2): The building can be pre-cooled
at as low as 18◦C from the early morning until the
occupied period starts. Cooling is expected to be
stored in the building thermal mass and released
later when necessary.

2. Period 2 (t2 ∼ t3): During the off-peak and mid-
peak occupied hours, zone temperature is main-
tained in lower half of the thermal comfort range
21 ◦C ∼ 23 ◦C with the hope that the stored cool-
ing can be saved for utilizing in on-peak period.

3. Period 3 (t3 ∼ t4): Zone temperature is free as long
as within the comfort range. The stored cooling
in building envelope can be either supplied or re-
leased.

4. Period 4 (t4∼ t5): Maintain zone temperature in 23
◦C∼ 25 ◦C with the contribution of stored cooling.

5. Period 5 (t5 ∼ t1 of the next day): Shut down the
cooling system to avoid needless energy consump-
tion.

Since t2 and t5 are fixed to the beginning and end
of the occupied hours, there are three parameters (t1, t3
and t4) that can be adjusted to set the upper and lower
bounds of temperature constraints. Manipulating t3 and
t4 can be interpreted from Fig. 6 as cutting off the areas
of A and B from the thermal comfort region. Note that
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Figure 6. Five period division in MPC con-
straint formations.

Table 2. Ambient temperature of the simulation
week (◦C)

Sun. Mon. Tue. Wed. Thu. Fri. Sat.
July 1 2 3 4 5 6 7
Ave. 24.0 26.8 28.9 22.4 19.8 21.7 25.6
Hi. 31.7 31.1 34.4 26.1 25.0 27.8 32.2
Lo. 14.7 19.4 23.3 17.2 13.3 11.7 16.7

changing t4 should not affect the control results much
because the MPC controller tends to adjust the zone
temperature trajectories to approach the upper bound of
comfort region during the on-peak period.

The best scenario is selected to be t1 = 2, t3 = 12
and t4 = 12, and this selection is not affected by the
weather conditions. The ambient temperature in that
simulation week varies a lot as indicated in Table 2.
Corresponding simulation results of zone temperature
and power profiles are shown as Fig. 7. It can be ob-
served that the peak loads have been shifted away from
the on-peak period and the on-peak power profile has
been flattened. The impact of ambient temperature to
energy consumption can also be seen clearly. For ex-
ample, the power spike at about 3 a.m. on Tuesday was
caused by the relatively warm night that made the build-
ing thermal mass more difficult to be pre-cooled. Less
power was consumed over weekend than weekdays due
to the different schedules of internal loads (occupants).

The performance of MPC in saving electrical costs
is compared with the baseline night-setup strategy (BL),
the linear-up (LU) and the step-up (SU) [49], in which
setpoints are set to the lower bound of comfort region
until on-peak hour begins, and then raised with a lin-

Table 3. Weekly savings compared to the base-
line

Strategy Energy saving (%) Cost saving (%)
Linear-up 15.29 17.42
Step-up 21.49 24.35
MPC 25.31 28.52

ear and step pattern respectively. Savings in energy
and costs are shown in Table 3. It can be seen that
MPC brings significant savings comparing to the pre-
programmed control strategies.

4. Future Work

The results described in Section 2 this paper clearly
show that increased energy efficiency in the area of
building control is achievable by using advanced con-
trol approaches. The existing results also point to pos-
sible improvements in the directions of improved con-
trol and fault-detection and isolation and fault-tolerant
control of cooling units. In particular, recent advances
in the area of identifying dynamic data-based models
that utilize the strength of rigorous statistical techniques
such as principal component analysis and partial least
squares in conjunction with the idea of utilizing multi-
ple linear models to capture process nonlinearity [56]
can be utilized in the context of modeling of cooling
units for the purpose of control. Furthermore, the area
of fault-detection and isolation and fault-tolerant con-
trol has been severely understudied in the context of
building systems. Results on fault-detection and iso-
lation and reconfiguration-based fault-tolerant control
[57] as well as the recently developed safe-parking ap-
proaches [58] could be adapted to significantly benefit
the area of building control and lead to significant sav-
ings and improved control.

While demand reduction has been formulated as
an economic MPC problem and successfully converted
into a linear program, several issues remain to be tested
for future work. The most important issue is to demon-
strate in a real building or a building complex that the
pre-cooling strategy can bring in significant cost sav-
ing and/or demand reduction. The challenge includes
the ability to build a suitable dynamic model from sys-
tem identification. Since detailed simulation models are
sometimes available, model reduction is an alternative
approach to deriving the MPC model. Another direction
of future work is to incorporate other source of sensor
measurements, including occupant load measurement
by motion sensors and video signals. The economic
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Figure 7. Zone temperature and power profiles in the weekly simulation

MPC problem could also incorporate additional objec-
tives such as air quality and humidity control. With suit-
able measurements and models for these quality vari-
ables, additional savings in energy cost are expected by
tight control of these quality variables.

5. Conclusions

This paper describes the application of advanced
control strategies to energy systems in buildings. Two
new control methods were presented. The first focused
on vapor-compression cycle systems that are used in
many residential and small sized buildings and are re-
sponsible for a large portion of total energy costs. Small
improvements in the efficiency of operation of these
systems can therefore translate into significant cost sav-
ings. An MPC strategy was used that directly handled
inherent interactions in the system enabling improved
setpoint tracking and disturbance rejection. The strat-
egy also included economic optimization whereby the
compressor speed was used as a proxy for energy use.
Important system constraints were also integrated in the
control strategy rather than being implemented sepa-
rately as is the case in most current systems. The control

objective was to satisfy setpoint tracking requirements
within the constraint bounded region of operation and
at the same time minimize the energy used by the com-
pressor. Results showed significant improvements over
the current state of the art.

The second control strategy was designed to ad-
dress the seemingly intractable problem of how to re-
duce energy costs when electricity charges include peak
demand charges during the on-peak period. Demand
reduction has been formulated as an economic model
predictive control problem, which is appropriate for the
nature of the unsteady disturbances and dynamic price
changes that happen in the same time scale as the build-
ing thermal dynamics. In the proposed MPC algorithm,
the min-max optimization problem is transformed into
a linear program which is solved at each time step. The
proposed method aims at minimizing the costs on the
daily basis, where a shrinking horizon is chosen. This
shrinking horizon also allows to eventually handle dy-
namic pricing cases, in which the electricity rate is re-
leased by utility at the beginning of the day based on
load forecast. It was shown by simulation that un-
der the time-of-use electrical pricing structure, MPC
brings substantial cost savings for a simulated building.
Challenges remain in testing the control strategy in real



buildings, large scale buildings, and a group of build-
ings as a complex.

In summary, both of the control methods presented
here show promise as a way to reduce energy costs in
buildings through smarter and more integrated control.
However, there are still a number of issues that need to
be resolved before the technology is able to be adopted
more broadly. One problem is that both methods require
a model of the system that is being optimized. Obtain-
ing a model is not only costly but it is also not clear
whether an accurate enough model could be obtained
under practical conditions. Both approaches fit linear
models to systems that are non-linear and also time-
varying. Further research needs to address the issue
of model accuracy and ascertain by how much the use
of inevitably inaccurate models will affect the perfor-
mance of the control strategies. Robustness also needs
to be analyzed because of the fact that linking several
previously independent control loops makes it possible
that control failure would affect much larger portions
of building operation than would previously have been
the case. Safeguards against these system-wide failures
therefore need to be developed before deployment. Fi-
nally, the issues of tuning and set-up need to be care-
fully researched in the context of the low cost build-
ings environment, and assumption of minimal expertise
available on-site.
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