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Abstract 

With the widespread availability of model predictive control (MPC), nonlinear MPC provides a natural extension to 
include nonlinear models for trajectory tracking and dynamic optimization. NMPC can include first principle models 
developed for off-line dynamic studies as well as nonlinear data-driven models, but requires the application of 
efficient large-scale optimization strategies to avoid computational delays and to ensure stability, robustness and 
superior performance. This study presents the application of the recently developed advanced step NMPC (asNMPC) 
strategy. This approach solves the detailed optimization problem in background and applies a sensitivity-based update 
on-line. Two large-scale process case studies: detailed distillation control and multi-step operation for steam 
generation in a power plant. In both cases, efficient and robust controller performance is achieved with nonlinear 
dynamic optimization. 
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Introduction

Linear Model Predictive Control (MPC) has been widely 
applied for advanced control for over 30 years. Its key 
advantages are that it serves as a general-purpose MIMO 
controller, facilitates the addition of constraints on inputs 
and outputs, and is well adapted to the slower time scales 
in process control. Most MPC implementations rely on 
linear dynamic models in either state-space or step 
response form, and standard formulations enable the 
treatment of feedforward disturbances, offset correction 
for model mismatch, and robustness to noise.  
 
Moreover, MPC extensions have been developed to handle 
empirical nonlinear models including neural networks, 
Volterra series, and Wiener and Hammerstein models. 
Moreover, hybrid logic models have been developed that 
include linear models with binary variables and multi-
models. Finally, nonlinear MPC has also been developed 
with first principle differential-algebraic models, which 
allow a direct link to off-line dynamic simulation and 
planning.  The evolution of MPC to NMPC requires the 
application of nonlinear Differential Algebraic Equation 
(DAE) models, particularly first principle models that 
describe the process over a wide range. This extension is 

essential for nonlinear processes that exhibit wide swings 
in operation, require frequent product transitions, and 
consist of multi-stage and non-standard operations. 
Surveys of NMPC can be found in Qin and Badgwell 
(2000), Allgoewer and Zheng (2000), Camacho and 
Bordons (2007) and Findeisen et al. (2007). In addition, 
NMPC is a natural vehicle for Dynamic Real-time 
Optimization (D-RTO) as it provides compatibility with 
the controller and process dynamics and is readily adapted 
to handle on-line uncertainties due to noise and process 
variations. Numerous applications of D-RTO have been 
described in Groetschel et al. (2001). 
 
On the other hand, the realization of NMPC requires the 
application of a fast nonlinear programming (NLP) solver 
for time-critical, on-line optimization. Clearly, if the NLP 
solver cannot compute the desired input within a single 
sampling time, it cannot exploit the current state of the 
process and performance will deteriorate. Moreover, 
stability of the controller is based on an instantaneous 
injection of the input, once the process state is obtained. 
Online computation of this input by an NLP solver leads to 
a delay that degrades performance and may even 



  
 

 

destabilize the control system (Findeisen and Allgoewer, 
2004; Santos et al., 2002).  The past five years have seen 
the development of modifications to NMPC that address 
computational delay. Findeisen and Allgower (2004) 
extended the NMPC approach as well as its stability theory 
to account for computational delay. In addition, a number 
of fast NMPC strategies have been developed by Diehl et 
al. (2002), Ohtsuka (2004), Nagy et al. (2007), Franke and 
Doppelhammer, 2007; Bartusiak (2007) and others. 
Among these methods is an advanced step NMPC 
(asNMPC) approach that is based on NLP sensitivity, 
which requires very little on-line computation (Zavala et 
al., 2008a).  
 
The next section briefly develops the asNMPC controller 
and summarizes the solution strategy, development of the 
sensitivity-based control scheme and stability properties 
for asNMPC. Following this, we discuss the importance of 
the modeling environment and implementation for this 
optimization-based controller. The third section presents a 
distillation case study within the AMPL optimization-
based modeling environment, while the fourth section 
presents a power generation case study within a 
simulation-based modeling environment. These case 
studies contrast different modeling and formulation 
characteristics on performance, and also demonstrate the 
potential for further improvement. The fifth section 
discusses related, on-going work for sensitivity-based 
NMPC along with future challenges. The final section 
summarizes the paper and provides conclusions.  

Development of Fast NMPC 

Consider the optimization problem for nonlinear 
model predictive control written over the moving time 
horizon shown in Figure 1. 

 ,       (1) 

where x(k) is the state of the plant at time k and u(k) is the 
corresponding manipulated input variable. For the horizon 
starting at time tk, zl and vl are the predicted states and 
inputs at step l. From the solution of this problem, we 
obtain u(k) = v0 and inject it into the plant. In the nominal 
case, this drives the state of the plant towards x(k+1) =  
f(x(k), u(k)). Once x(k+1) is known, the prediction horizon 
is shifted forward by one sampling instant, to time tk+1 and 
problem (1) is solved with x(k+1) as the initial condition 
to find u(k+1). This recursive strategy gives rise to the 
ideal NMPC controller (neglecting computational delay). 
 
For this approach we desire that the optimized objective 
J(x(k)) be a Lyapunov function in order to guarantee 
stability of the closed-loop system. To satisfy this, we 

assume the terminal penalty satisfies Ψ(z) >  0,  for all z in 
Xf\{0} and that a local control law u=hf(z) can be defined 
on Xf, so that for f(z, hf(z)) in Xf, for all z in Xf and  
 

Ψ(f(z, hf(z)) - Ψ(z)  ≤ - ψ(z,  hf(z)) for all z in Xf. 
  
Also, the optimal stage cost ψ(x, u)  satisfies αp(|x|) ≤   
ψ(x,  u) ≤ αq(|x|) where αp(|x|) and αq(|x|) are K 
functions. These assumptions apply to radial basis (e.g., 
tracking-type) cost functions and also allow certain 
economically based cost terms. In particular, the use of 
economic objectives within MPC formulations is also 
addressed in a number of studies (Bartusiak, 2007; Odloak 
et al., 2002; Sbarbaro and Johansen, 2005; Huang et al., 
2011a, 2011b; Kadam and Marquardt, 2007; Engell, 2007; 
Rawlings and Amrit, 2008; Diehl et al., 2011; Wuerth et 
al., 2009). 
 
Now consider the state of the plant, x(k-1), at tk-1 and that 
we already have the control action u(k-1). In the nominal 
case the system evolves according to the dynamic model in 
(1) starting at tk-1, and we can predict the future state 
exactly (i.e.; x(k) = f(x(k-1), u(k-1))) and compute the 
future control action by solving problem (1) in advance. If 
this problem can be solved before tk, then u(k) will already 
be available without on-line computational delay. For this 
case, it is also easy to prove (Zavala and Biegler, 2009a) 
that this strategy has identical nominal stability properties 
as the standard or ideal NMPC controller. 

 
Of course, a realistic controller must also be robust to 
model mismatch, unmeasured disturbances and 
measurement noise. Here, NMPC provides a mechanism to 
react to these features with some inherent robustness. In 
particular, this tolerance to mismatch and disturbances can 
be characterized by input-to-state stability (Magni and 
Scattolini, 2007; Zavala and Biegler, 2009). Moreover, in 
the presence of these uncertainties, a realistic extension of 
our NMPC strategy is to consider a perturbed solution 
from problem (1) that considers the actual state x(k) and 
not just its prediction.  
 

 
Figure 1: Moving Hor izon for  asNMPC 

 
To develop the perturbed solution within the framework of 
the interior point NLP solver, we can introduce additional 
slack variables and equations in order to represent problem 
(1) equivalently as: 

min F(x, p0), s.t. c(x, p0) =  0, x ≥ 0.          (2) 



  

 

  
where x contains all the variables of problem (1) and p0 is 
a nominal parameter value (i.e., the initial condition for 
z0). Note that the NLP (2) can be formulated by 
discretizing the dynamic model using collocation on finite 
elements, known as a direct transcription formulation 
(Betts, 2010; Biegler, 2010). If we obtain the solution with 
p0 set to the predicted state, then we require a perturbed 
solution of (2) for the parameter p set to the actual state, 
x(k). In particular, this solution also contains the new input 
u(k). 
  
An approximate perturbed solution can be obtained 
through NLP sensitivity analysis, and this task is 
particularly efficient for interior-point NLP solvers. In 
particular, the IPOPT solver addresses problem (2) by 
applying Newton's method to the following equations: 

 
∇F(x, p0) +  ∇c(x, p0) λ − ν = 0       (3) 

c(x, p0) =  0 
XVe = µ e 

 
where X = diag(x),  V =  diag(ν), and the sequence of  
barrier parameters µ is reduced to zero so that the solution 
of a sequence of problems (3) converges to the solution of 
problem (2). From the optimality conditions of (2) 
evaluated at the solution x* one can obtain, under mild 
regularity conditions of the NLP (Fiacco, 1983) a second 
order estimate of the perturbed solution to: 
 

min F(x, p), s.t. c(x, p) = 0, x ≥ 0.          (3) 
 
i.e., ∆x ~ x*(p) - x*(p0) from the linear system: 
 

(4) 

 
where A* = ∇c(x*, p0) and W* =  ∇xxL(x*, λ∗, ν∗, p0 ) = 
∇xxF(x*, p0)+ ∇xxc(x*, p0)Tλ ∗. Because the KKT matrix in 
(4) is identical to the Newton iteration matrix used in 
IPOPT, it is already available in factorized form. Hence, 
once the new state x(k) is known, the change from p0  p 
is noted and the desired approximate solution can be 
obtained with a single on-line backsolve (Zavala et al., 
2008a). As described in Zavala et al. (2008a) and Zavala 
and Biegler (2009a), this on-line step usually requires less 
than 1% of the dynamic optimization calculation. 

 
The resulting advanced step NMPC (as-NMPC) controller 
therefore consists of the following steps: 
 
1. Obtain x(k-1) and u(k-1) from the previous cycle, 

evaluate z0|k-1 =  p0 =  f(x(k-1),u(k-1)) and solve (1) in 

background with p0 (open square in Figure 1) as initial 
condition. This yields the blue profile in Figure 1. 

2. Once the measured (or estimated) state x(k) (black dot 
in Figure 1) is obtained from the plant, set this value 
to p and obtain the perturbed solution on-line using 
the linear system (4) derived from (2). This yields the 
red profile in Figure 1. Extract u(k) (shown in red) 
from the perturbed solution and inject into the plant.  

3. Set k = k+1 and return to Step 1. 
 

Note from the above steps that the advanced step 
NMPC controller is able to handle the nonlinearity of the 
system since it updates the KKT matrix at each time step, 
while avoiding the difficulty of computational delay.   
 
Summary of Advanced Step Properties 
 

As mentioned above, asNMPC enjoys the same 
nominal stability properties as with the related ideal 
NMPC formulation (which cannot be implemented without 
computational delay). Moreover, in the case of model 
mismatch, and measurement and process noise, asNMPC 
also has input to state (ISS) stability. Zavala and Biegler 
(2009a) showed with a small nonlinear example that the 
amount of uncertainty that can be tolerated by asNMPC is 
comparable (up to second order) to ideal NMPC. 
Moreover, this robust stability property has been extended 
to input to state practical stability (ISpS) by Huang et al. 
(2011) to include a wide range of observers including 
Extended Kalman Filters.  

 
The advanced step concept has also been extended to 

optimization formulations for moving horizon estimators 
(MHE), which provide on-line parameter and state 
estimation (Zavala et al, 2008b). Again, an NLP 
sensitivity-based strategy is used that predicts the next 
measurement, solves the MHE optimization problem in 
background and uses sensitivity of the KKT system to 
update the state and parameter estimates, once the new 
measurement is obtained. When combined with asNMPC, 
the advanced step MHE performs very well (Zavala and 
Biegler, 2010) and leads to offset-free formulations to deal 
with state and output disturbances as well as state and 
parameter estimation (Huang et al., 2010; Huang et al., 
2011c). 

   
More recently, asNMPC formulations have been 

extended to deal with economic objective functions so that 
D-RTO can be performed directly, without the need of a 
tracking function (Huang et al, 2011a,b). Because this 
approach leads to the optimization of the actual plant, and 
not to a setpoint determined by off-line optimization, 
significant performance improvements can be realized 
(Zavala and Biegler, 2009a). Finally, recent work has also 
seen the extension of asNMPC to incorporation of 
uncertainty within the moving horizon state estimation and 
optimization problems. This approach allows flexible 



  
 

 

extensions to uncertainty models and confidence intervals 
over the prediction horizon.  
        
Finally, both asNMPC and asMHE strategies have been 
applied to a number of process applications including 
distillation columns and chemical reactors. Two 
particularly large-scale applications include an air 
separation column with 1520 DAEs, 117,000 variables and 
240 degrees of freedom as well as an LDPE 
polymerization reactor with about 10000 DAEs and 350, 
000 variables. Despite their large size, both of these 
asNMPC/asMHE applications require only a few CPU 
seconds of on-line computation (Zavala and Biegler, 
2009a; Huang et al, 2009).  
 
Implementation Issues 
 

The large-scale demonstrations of the advanced-step 
strategy for NMPC and MHE mentioned above were 
obtained using an efficient NLP solver (IPOPT) coupled to 
a state-of-the art optimization environment (AMPL). This 
environment allows communication to MATLAB and data 
handling tools. In developing these applications, some 
important requirements are needed to realize these 
implementations efficiently.  
 

The asNMPC and asMHE strategies require the fast 
solution of the moving horizon NLP problem in order to 
provide background solutions within sampling times.  The 
NLP formulation for (1) can be realized from first 
principles differential-algebraic (DAE) models through the 
application of orthogonal collocation on finite elements. 
This leads to a large-scale algebraic model suitable for an 
efficient NLP solver. Nevertheless, efficient solution of the 
resulting NLP problem (1) requires careful attention to 
develop smooth, well-defined functions as well as well-
conditioned derivative matrices. Guidelines for developing 
these models are noted in Biegler (2010).  In particular, 
models with internal calculation loops lead to a 
deterioration of these properties and introduce 
convergence noise and inaccurate functions and 
derivatives. In particular, for poorly conditioned problems 
even small levels of convergence noise can cause 
difficulties for NLP solvers.  

  
In the solution of problem (1), the keys to efficient 

performance rest on two factors. First, to achieve fast 
(nearly quadratic) convergence requires exact first and 
second derivatives as well as effective methods for inertia 
detection and correction of the KKT matrix in (4). As 
described in Wächter and Biegler (2006), regularization 
terms are added by IPOPT if A is rank deficient, or the 
nullspace projection of W is not positive definite. This 
ensures a well-defined Newton step to solve (3). Second, 
the large linear system that represents the Newton step for 
(3) requires the dominant CPU time for the NLP solver, 
and is determined by the sparse matrix package and the 

exploitation of sparsity of the model equations. As noted 
in Zavala and Biegler (2009b), the formulation of the 
collocation model and the choice of sparse linear solver 
have a huge influence on the performance of the NMPC 
implementation.  

To perform the sensitivity calculation, the 
requirements for NLP implementations apply to the 
sensitivity analysis as well. In particular, at the solution of 
(1) it is important that the regularization terms for the 
KKT matrix be set to zero. This signals that the inertia of 
the KKT matrix is correct, SSOC and LICQ are satisfied 
and the NLP sensitivity analysis can be applied correctly. 
The concepts of NLP Sensitivity have been tailored to the 
algorithm in IPOPT, and are compatible with its suite of 
linear decompositions and solvers. The resulting 
sensitivity approach is embodied within open source 
software, called sIPOPT, and is described in Pirnay et al. 
(2011). 

Distillation Case Study 

High purity distillation applications represent 
interesting challenges for modeling and model reduction, 
control and optimization. These issues have been 
addressed in a number of nonlinear control studies (see, 
e.g., Balasubramhanya and Doyle, 1997; Kumar and 
Daoutidis, 2003; Levine and Rouchon, 1991). In this 
section we discuss a case study where we implement the 
advance step controller to a large-scale binary distillation 
column. The model consists of the so-called MESH 
equations for each tray (Diehl, 2001). In other words, we 
have equations for mass and energy balances, 
thermodynamic equilibrium, and composition summation, 
for each tray, the condenser, and the reboiler. Furthermore, 
we assume that the dynamics of the vapor phase are 
negligible. This leads to an index 2 system of DAEs (Diehl 
2001), which can be reduced to index 1 using 
transformations described in Cervantes and Biegler (1998) 
and Lopez-Negrete (2007). After applying the index 
reduction scheme and numbering the trays from bottom to 
top with the reboiler being i=0 and the condenser i=NT+1, 
the model is given by the following equations. Note that 
the coefficients for the physical property equations 
(enthalpy, Antoine equation, etc.) can be found in Diehl 
(2001, 2002). 

 
Mass balance: For each stage, the overall mass balance 
must hold, and the rate of change of the molar hold-up 
(Mi) is given by the difference in the flows to and from the 
adjacent stages 

iiiiii FLLVVM +−+−= +− 11
  (1) 

 
with Vi and Li being the vapor and liquid flow rates. Here 
the molar feed flow Fi  is entering the column at stage 
i=21 (all other feeds are set to zero). For the condenser, 
the distillate is given by D, thus we have 
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TNTNTN LDVM  (2) 

 
On the other hand, for the reboiler the bottoms flow 

rate is B. 
 

BVLM −−= 010
  (3) 

 
Moreover, the reflux ratio is modeled with 
 

 (4) 

Additionally, the tray component-wise mass balance, 
assuming that only liquid molar holdup is of importance, is 
given by 

 

ifiiiiiiiiiiiii zFxLxLyVyVxMxM ,1111 +−+−=+ ++−−
  (5) 

 
where xi is the molar fraction of the volatile component in 
the liquid phase. Using (5) the above equation yields 
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For the reboiler and condenser we have, 
 

)()( 00001100 xyVxxLxM −−−=  

)( 111 +++ −=
TNTNTNTNTN xyVxM  , 

(7) 

 
respectively. 

 
Equilibr ium and Summation Equations: The total 
pressure Pi on each tray is assumed to be constant, with a 
pressure drop ∆Pi from top to bottom.  

 
1,,1,1 +=∆+=− Tiii NiPPP   (8) 

 
The pressure of the condenser is set to PNT+1= 93.9 

kPa, while the pressure drop was set to 250 Pa per tray for 
the stripping section and 190 Pa per tray for the rectifying 
section. Thermodynamic equilibrium was modeled using 
Raoult's Law, so that the pressure of each tray is 
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where the vapor pressures are computed using Antoine's 
Equation 
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Note that the tray temperatures are implicitly defined 
by Equation (14). However, to reduce the index of the 
model, we need the time derivative of the temperature, 
which is determined by applying the implicit function 
theorem to Equation (14) to yield 
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The partial derivatives of the vapor pressures can be 

obtained from the Antoine Equations above. 
 
Moreover, to account for non-equilibrium behavior in 

the mixtures tray efficiencies αi are considered in the 
summation equations. Thus for each tray we have 
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and for i=0 (reboiler) the term simplifies to  
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Energy balance: The liquid enthalpy is determined with 
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and the vapor enthalpy is given by 
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In addition, expressions for the pure liquid ( )(, i

L
ji Th ) 

and vapor enthalpies ( ),(, ii
V

ji PTh ) required in the above 
equations can be found in Diehl (2001). On the other hand, 
the energy balance for the trays are given by 

 

 

(16) 
 

 
For the reboiler the added heat duty is QR, and a loss term 
(Qloss) is also considered, thus 

 

        (17) 

 



  
 

 

The energy balance for the condenser is 
 

   (18) 

 
where the condenser heat duty is QC. The partial 
derivatives of the previous equations can be derived from 
Equations (16) and (19). Note that substituting equations 
(5)-(7), (10)-(12), and (16) into the energy balance 
equations yields a set of purely algebraic equations for the 
vapor flow rates and the condenser heat duty. 

 
Hydrodynamics: To determine the liquid flow rates from 
each tray we use the Francis weir formula. For that we first 
need to determine the liquid volume holdup of each tray. 
These are related to the molar volumes through the molar 
volume ),( ii

m
i TxV  by the following equation 

 
),( ii

m
ii

v
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and the molar volumes are computed as the sum of the 
molar volumes of the pure components weighted by their 
molar fraction 
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where )(1, i

m
i TV  and )(2, i

m
i TV  are the temperature dependent 

molar volumes of pure Methanol and n-Propanol, and 
expressions for these equation can also be found in Diehl 
(2002). Finally, the liquid flow rates are calculated by the 
Francis weir equation  given by 

 
2
3
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i

v
iiii

m
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where iW  is the weir constant. 

For this example we considered 60 s sampling times, 
and 10 sampling times in the predictive horizon. As 
determined by trial and error, this long prediction horizon 
allows us to determine a reasonably accurate, approximate 
NMPC solution to an infinite horizon formulation. The 
continuous time DAE model is transformed into a discrete 

time model using collocation. Thus, using 3 point Radau 
collocation, the NLP consists of 19814 variables and 
19794 equality constraints. To account for plant model 
mismatch we added noise to the differential variables 
(total molar holdup and liquid compositions at each tray). 
The noise was assumed uncorrelated, zero mean and 
Gaussian with variance 10-4 for the holdups and 10-6 for 
the compositions. 

 
The control variables of this problem are the reboiler 

heat QR and the reflux ratio R. In the objective function for 
the NLP we consider only temperatures from trays 14 and 
28, since they are much more sensitive to changes than the 
overhead and bottom product streams. We also include the 
distillate flow rate and condenser heat duty in the 
objective.  Note that we have numbered the trays from 
bottom to top. Also, we consider the penalization to 
changes in the inputs R and QR. Finally, set point 
information and objective function weights are 
summarized in Table 1. 

 

 
Objective  

function weights 
Set point 1 Set point 2 

T14 [K] 104 351.0321 356.6504 
T28 [K] 104 337.4470 346.9535 
D [mol/s] 10-1 1.1152 18.3859 
QC [J] 10-1 8.955x105 1.6221x106 

R [-] 102 - - 
QR [J] 102 - - 

Table 1: Set point information and objective function 
weights for the distillation column example. 

 
Figure 1 shows the simulation results comparing the 

advanced step NMPC with the ideal case.  The average 
solution time of the NLP was 9.4 CPU s, while the 
advanced step takes an average of 0.063 CPU s. Note that 
this implies that the computational delay has been reduced 
to less than 1%, and thus the performance of the NMPC 
should improve. Both the ideal and advanced step NMPC 
strategies were able to perform the set point change, 
however the latter adds practically no computational 
delays, which is important for real time optimization 
schemes. 
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Figure 1: asNMPC control of a binary distillation column (a) Temperature of tr ay 14, (b) Temperature of tr ay 

28, (c) Reboiler  heat, and (d) Re flux rate. 
 

GE Case Study 
 
A numerical study for the use of NMPC in the startup 

and loading of a power plant is presented in this section. 
Reduction of startup time and fuel consumption in fossil 
fuel power plants is receiving increased attention in part to 
reduce operating costs and become more competitive in 
electricity markets, and also to have a more agile response 
to compensate the volatility of renewable sources in the 
electrical grid. 

 The use of NMPC on combined cycle plants has been 
reported in (D'Amato, 2006), an industrial application 
addressing a limited section of the startup. This example 
analyzes a potential use of NMPC in an extended scope 
including additional phases of the startup, more actuation 
devices and increased range of validity of component 
models.     

The plant under consideration consists in a 
combination of a gas turbine, a three-pressure steam 
generation system and the corresponding steam turbines 
(see Figure 2).  The process of generating electrical energy 
from the fuel’s chemical energy can be described as 
follows. Ambient air is pressurized in a compressor and 
directed into a combustion chamber that burns natural gas. 
The gasses resulting from combustion are expanded in the 
gas turbine to produce mechanical power, and then enter 
the steam generator. In turn, the steam generator includes a 

multiplicity of heat exchangers carefully arranged to 
transfer the hot gas thermal energy into three water 
streams, converting sub-cooled liquid into super-heated 
steam at three different pressures (low, intermediate and 
high). Finally, the resulting high, intermediate, and low 
pressure steam streams are expanded in corresponding 
steam turbines to produce mechanical power. The 
electrical power is generated with two electrical 
generators: one attached to the gas turbine and another to 
the common shaft of the three steam turbines.   

 

 
  
The startup process brings the plant from a state in which 
the turbines have zero rotational speed and there is no flow 
of gas, air, steam or liquid water throughout the plant, to a 
fully operational state in which the plant delivers electric 

Figure 2 Schematic for  power  plant 



  
 

 

power to the grid or to a downstream process. As a result 
of the wide range of operation, the models are essentially 
nonlinear to capture, for example, the full extent of 
pressure-flow characteristics, heat transfer coefficients, 
mechanical properties of metallic components, and the 
thermodynamic properties of steam and gas.   

The model used in the NMPC controller includes 
dynamic equations for energy, mass and momentum 
balance in the main components, described in Table 3. For 
example, detailed descriptions of dynamical models of 
power plant components can be found in Thomas (1999) 
and Casella and Leva (2006). This example focuses on the 
loading stage that begins when the steam turbines reach 
full speed and with the generators synchronized to the 
grid, and ends when both gas and steam turbines at full 
load. During this process, the steam bypass valves are 
gradually closed, while the gas turbine fuel valve and 
steam turbine control valves are gradually open. The main 
operational constraints are valve amplitude and rate limits, 
drum level upper and lower bounds, maximum 
temperatures and maximum stresses in steam turbine rotor. 
The rotor stresses include a mechanical component due to 
centrifugal forces and the torque transmitted to the shaft, 
and a thermal component due to the temperature gradients 
originated from the mismatch between the steam and the 
rotor metal temperatures through the steam turbine (see, 
for example, Boley (1985) and Timoshenko and Goodier 
(1970)). The model used here is further complicated with 
steam property calculations, performed with numerical 
subroutines, some of which are iterative in nature. The 
output constraints are implemented as soft constraints, and 
they are enforced using an l1 penalty function added to the 
objective function of the NLP. 
 

Table 2: Power  plant components. 
 
The MPC control problem consists in minimizing the 

distance between the generated power and the target 
dispatch power, subject to all the operational constraints. 
The manipulated variables are the opening of the gas 

turbine load valve, the cascaded bypass valve, and the HP 
and IP bypass valves. Also, it is assumed that the initial 
state is available at every control step.        

After discretizing the DAE model using Radau 
collocation and 3 collocation points, the resulting 
optimization problem has 13870 variables and 12510 
equality constraints. A sampling time of 60 seconds and a 
prediction horizon of 10 steps have been used in this 
example. The numerical performance of MPC in this 
application is analyzed through closed loop simulations 
where the plant model and the controller model have 
similar structure. The actual state x(k) is obtained by 
simulating the plant model during one control interval, 
starting at initial conditions x(k-1) and using the inputs 
u(k-1). To account for modeling, measurement and 
estimation errors, the actual state has been perturbed with 
white noise before being used by the controller. Figures 3 
and 4 compare the closed loop operation results of the 
ideal NMPC (i.e., negligible computational delay is 
assumed), NMPCdelay (the NLP solution time is added as 
delay), and asNMPC during a 50 minute operation. The 
NLPs for the controllers are implemented using IPOPT 
through the C++ interface. In this case, first derivatives are 
approximated using finite differences, and the Hessian is 
approximated using the Gauss-Newton approach.  The 
efficiency of IPOPT is reduced because derivatives are not 
exact, and simplifications are done in the Hessian. This has 
an impact in the number of iterations, and thus the time 
needed to solve the NLP increases. For example, the 
distillation case study shown above the NLP has almost 
6000 more variables than here. However, since for that 
case we used exact first and second derivatives, the 
average solution time is 9.4 CPU s and here it is 50.23 
CPU s.  Moreover, when using exact derivatives we can 
set stricter tolerances; for the distillation column IPOPT 
converges with a tolerance of 10-8, while here we had to 
set it to 10-3.  

The advanced step implementation shows no apparent 
degradation of performance with respect to the ideal 
implementation. In fact, in Figure 3 compares the values of 
the inputs computed with the asNMPC, ideal NMPC, and 
the naïve implementation that considers the computational 
delay of solving the NLP. Note that the ideal and asNMPC 
overlap. On the other hand, when we consider the delay of 
solving the NLP online we see that the gas load oscillates, 
and thus the performance of the controller is degraded. 
Moreover, since the power output of the gas turbine is 
related directly to this input, we expect that this output will 
also oscillate, and if the delay was much longer this could 
potentially destabilize the system. Moreover, the average 
solution time for the NLP in this simulation is 50.23 CPU 
seconds while the advanced step computation takes an 
average of 0.98 CPU seconds. This drastic increase in 
computational time, when compared to the previous 
example, it is due to two reasons: IPOPT requires more 
iterations to converge due to numerical inaccuracies in 
derivative computations, and function evaluations are  

Component Functionality 
Steam turbine Expands inlet steam to a lower pressure producing 

mechanical energy   
Gas turbine  Burns fuel and expands hot gasses to a lower 

pressure producing mechanical energy 
Drum  Receives feed-water and mixture of water and steam 

from evaporator and produces saturated steam  
Evaporator  Receives heat from GT exhaust hot gasses, to boil 

down-comer water and send the water and steam 
mixture to the drum. 

Down-Comer  Vertical pipe taking liquid water from the drum and 
feeding the evaporator 

Super-Heater Uses heat from GT exhaust to increase temperature 
of steam  

Reheater  Uses heat from GT exhaust to increase temperature 
of steam expanded in the HP turbine 



  

 

slower due to internal computation loops in the calculation 
of physical properties (e.g., steam tables). Nevertheless 
note that in this case that solving the approximate NLP in 
between sample times in the asNMPC implementation is 
still possible, and the online computational delay is 
reduced from almost one minute to less than one second.  

In Figure 4, we show some outputs from the plant. In 
particular, here we show the temperatures of the steam 
coming out of the High Pressure (HP) and the Intermediate 
Pressure (IP) steam turbines. These variables have been 
scaled with respect to their upper bounds to protect 
intellectual property. However, here it is important to note 

that the response of the plant satisfies process constraints, 
and the behavior of both the ideal and asNMPC are very 
close. In other words, the asNMPC behaves as an ideal 
controller, but has a much smaller on-line computational 
delay, thus improving the performance of the controller. 

 
 

 
 
 
 

  

  
Figure 3: Input values from the closed loop simulation of the power plant. 

 
   

  
Figure 4: Per formance outputs from the closed loop simulation of the power  plant. 
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Related and Future Work 

Here we consider the extension of asNMPC in a 
number of directions: coupling with state estimation, 
advanced NLP sensitivity, economic objective functions 
and the incorporation of uncertainty.  

An advanced step approach has been developed in 
relation to state estimation problems. In particular, Moving 
Horizon Estimation is proposed as a superior constrained 
state estimator, and on-line implementations of it can be 
achieved with the aid of NLP sensitivity. For example, 
Zavala et al. (2008a) introduce an asMHE strategy, where 
the associated NLP is solved in between sample times 
using approximate measurement information, and then the 
solution is updated on-line once the true measurement is 
obtained. In this case, covariance information is computed 
via the Extended Kalman Filter (EKF) equations. Lopez-
Negrete and Biegler (2011) propose a related method 
using a different MHE formulation. Here, the initial 
condition information is extracted from the smoothed 
solution of a previous MHE, and the covariance 
information is extracted directly from the optimality 
conditions of the NLP using the covariance-reduced 
Hessian relationship described in the same work.   

Next, the application of NLP sensitivity can be 
extended to further reduce on-line computation. A 
promising strategy is to reconfigure the advanced step if 
the background computation requires more than one 
sampling time. Under these conditions, a more 
sophisticated sensitivity calculation is required based on 
the Schur complement of the KKT matrix. In a similar 
manner, the asNMPC method can be extended to deal with 
changes in active sets in the sensitivity calculation. 
Preliminary results show that there is little additional work 
required to obtain better performance in these directions. 

In addition, while economic objectives can be directly 
incorporated with problem (1), it is unlikely that Lyapunov 
stability can generally be proved for such functions. 
Instead, it is likely that such problems need to be 
convexified in order to preserve stability properties (Diehl 
et al., 2011; Huang et al., 2011a). In particular, Huang et 
al., 2011b demonstrate a tuning strategy that allows 
economic terms to be regularized so that they can be 
bounded below by K -functions that can be used to ensure 
Lyapunov stability.   

Finally, the presence of model mismatch and 
unmeasured disturbances is typically handled through state 
estimation. However, such an approach has clear 
limitations particularly if measurements are not 
sufficiently informative. An alternate approach is to 
incorporate uncertainty within a robust for the receding 
horizon NLP problem. A straightforward approach to 
extend the NLP formulation is to approximate the 
uncertainty distribution through a discretization, thus 

leading to the solution of multi-scenario NLP problems. 
Although more expensive to solve, this approach leads to 
conservative solutions to the optimization problem but 
with guaranteed feasibility. Such an approach has been 
applied recently to NMPC strategies that include 
uncertainty from weather forecasting information (Zavala 
et al., 2009c).   

Conclusions 

We present an advanced approach for nonlinear MPC 
that allows the use of complex nonlinear models for on-
line optimization, but with significant reduction in on-line 
computation costs. This advanced-step concept leads to 
process performance similar to ideal NMPC, but usually 
with 2-3 orders of magnitude less on-line computation. 
The key concept to this result is the use of NLP sensitivity, 
to compute fast approximations of NLP solutions on-line, 
with more detailed computations performed and updated in 
background. In particular, we describe the application to 
optimal control problems to derive NMPC formulations 
that are suitable for on-line implementation. These 
implementations are demonstrated with two large scale 
problems; a binary distillation column and an industrial 
power plant. Furthermore, we compare two different 
implementations of the NLP using IPOPT. In the first we 
compute derivative information using automatic 
differentiation via AMPL (i.e., exact derivatives), while in 
the latter these data are obtained with finite differences for 
first derivatives and second derivatives replaced by a 
Gauss-Newton approximation.  

Comparing the performance the advanced step NMPC 
(asNMPC) implementation used for the distillation case 
study with that of the power plant we can point out the 
following. Both implementations behave very similarly to 
their ideal NMPC counterparts. Thus, the error in the 
approximated solution from the sensitivity update tends to 
be negligible. However, an important difference between 
the implementations arises. When using exact derivative 
information (e.g., the distillation column), we note a 
significant improvement in the behavior of the NLP solver. 
In the distillation case study IPOPT takes about 10 times 
less time to converge than in the power plant example. In 
addition, when using numerical approximations of the 
derivative, the solver is unable to converge to the same 
small tolerance used in the other implementation. 
Therefore, using exact derivative information and avoiding 
internal computation loops in the models can dramatically 
reduce the computational time required to solve the NLPs 
associated with the controller.  

Current and future work deals with the extension of 
asNMPC in a number of directions, including performing 
state and parameter estimation in an efficient way, 
spanning longer background solution times with more 
sophisticated NLP sensitivity strategies, and incorporating 



  

 

uncertainty using robust NLP formulations directly within 
NMPC.  
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