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Abstract 

An artificial pancreas (AP) to treat type 1 diabetes mellitus is currently being designed using the latest control 
technology. There are many challenges to this undertaking, many due to the fact that this is a biological system, making 
this device high risk while presenting challenges for sensing and delivery. A controller for this system, zone model 
predictive control, has been designed to control to a zone, not a set-point, which can result in unnecessary and dangerous 
overcorrection. The AP design includes a parallel multi-component safety system, the Health Monitoring System (HMS). 
The components of the HMS focus on specific safety concerns, such as hypoglycemia. In the hypoglycemia prediction 
component, noisy sensor data are pre-processed and, when imminent hypoglycemia is predicted, notifies the physician.  

Insulin delivery vehicles are readily interchangeable in this AP design. Alternative routes, such as the respiratory and 
intraperitoneal routes, are being explored and incorporated into alternative systems. These routes tend to be faster and 
safer than the SC route and may be able to improve control. All of these challenges and opportunities are being explored 
with the goal being an automated AP that can be used in daily life. 
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Diabetes is a chronic disease only controlled by 
constant vigilance. Chronic elevations, and likely 
fluctuations, of the blood glucose may result in long term 
complications (blindness, kidney failure, heart disease, and 
lower extremity amputations).  Conversely, attempts at 
normalizing glucose concentrations also increases the risk 
of serious health issues related to hypoglycemia (<70 
mg/dL).  Despite the use of insulin infusion pumps and 
programs that promote intensive diabetes management, the 
average A1c (an indicator of long-term blood glucose 
control) reported by major diabetes treatment centers 
remains higher than 8% (Bellazzi, Arcelloni et al. 2003), 
well above the recommended goal of 6.5-7%.  Many 
factors contribute to this failure: (a) the difficulties in 

correctly estimating the amount of carbohydrates in a 
meal; (b) missed meal boluses; and (c) anxiety about 
anticipated hypoglycemia, resulting in patients giving 
themselves less insulin, especially overnight.  

It has always been difficult to achieve compliance 
with complicated medical regimens, such as the 
administration of insulin three or more times a day.  As 
long as diabetes treatment demands constant direct 
intervention, the vast majority of people with diabetes will 
not meet treatment goals.  An expanding area of research 
addressing diabetes is working on developing automated 
closed-loop systems that integrates glucose readings and 
insulin delivery without the on-going active intervention 
of the patient.  



  
 

The reasons for difficulty in safely achieving optimal 
glycemic control in patients with type 1 diabetes are many, 
and could in large part be addressed by beta-cell 
replacement or a mechanical, automated closed-loop 
system referred to as an artificial pancreas (AP).  Although 
significant progress has been done regarding beta-cell 
replacement, a medical solution to diabetes using that 
approach is currently not widely available.  On the other 
hand, recent advances in subcutaneous (SC) glucose 
sensors and insulin delivery pumps have made the 
development of a closed-loop system using these 
components a feasible solution for the near future.   

The long-term goal of this research is to develop an 
AP that contains a SC continuous glucose monitor (CGM) 
and an insulin delivery system for type 1 diabetes patients.  
These two components are connected by the Artificial 
Pancreas System (APS©) that hosts the control and safety 
algorithms that use data from the CGM to determine the 
appropriate insulin delivery (Dassau, Zisser et al. 2008). 
See Figure 1 for an illustration of the AP components. 

 

Figure 1. Illustration of the Artificial Pancreas device 
components for clinical testing 

The challenges to design such a system are: (a) 
accuracy of the SC continuous glucose monitor; (b) time 
lags between the blood glucose concentration and the 
interstitial SC glucose measurement when the glucose is 
changing rapidly; (c) delays in the onset of insulin action 
via the SC route; and (d) prolonged insulin action of 4-6 
hours following a subcutaneous injection (Bequette 2005; 
Harvey, Wang et al. 2010; Cobelli, Renard et al. 2011; 
Hovorka 2011). 

In other words, a SC glucose monitor and a SC insulin 
delivery system cannot perfectly mimic normal -cell 
function.  However, initial studies have demonstrated that 
an automated closed-loop system using SC glucose sensor 
and SC insulin delivery systems will allow better diabetes 
control than current manual control methods. In the 
following sections we will describe several promising 

technologies for the artificial pancreas (AP) that provides 
a view on the design and control challenges of the AP and 
the translation of advance control and system design in the 
medical field. 

Control Strategies for the AP 

The AP is a high risk device, and must have a robust 
and safe control system. This is made more difficult by the 
fact that it is being applied to a biological system, and 
redundant sensors are not available. Thus, the safety 
system must rely on the same sensor as the controller. 

Algorithms designed to control a system, biological or 
otherwise, often are designed using a mathematical model 
of the system. These models can be simple linear models 
to complex sets of non-linear PDEs (Hovorka, Canonico et 
al. 2004; Dalla Man, Raimondo et al. 2007; Dalla Man, 
Rizza et al. 2007; Farmer, Edgar et al. 2008). When 
designing these controllers, a balance must be made 
between of ease of design and implementation and quality 
and performance. 

The controller at the heart of the AP has been 
designed using various strategies, from the simple 
proportional-integral-derivative (PID) control approach 
(Steil, Panteleon et al. 2004; Castle, Engle et al. 2010), to 
the complex approach of fuzzy-logic, which aims to 
imitate the decision-making of an expert, in this case the 
physician (Atlas, Nimri et al. 2010). In recent years, the 
most widely used approach has become model predictive 
control (MPC), first published by Parker et al. (Parker, 
Doyle III et al. 1996; Parker, Doye III et al. 1999) for the 
management of glucose concentrations in subjects with 
type 1 diabetes. See Figure 2 for a block diagram of the 
MPC strategy.  

 

Figure 2. Block diagram for the MPC strategy for type 1 
diabetes. 



  

 In the MPC formulation, an explicit model of 
glucose-insulin dynamics can be incorporated. The MPC 
strategy is to make prediction using the internal model and 
compare these with the actual output (glucose 
concentration) and calculate a set of manipulated inputs, in 
this case insulin. Several human clinical trials using MPC 
with encouraging results were published by different 
groups in the recent years, (Dassau, Zisser et al. 2010; 
Hovorka, Allen et al. 2010; Kovatchev, Cobelli et al. 
2010; Elleri, Allen et al. 2011; Hovorka, Kumareswaran et 
al. 2011; Zisser, Dassau et al. 2011) and others are 
ongoing. See Figure 3 for an example of a recent trial. The 
results of the clinical trials are quite encouraging: as 
demonstrated in Figure 3, glucose concentrations remains 
for most of the time in the (80 – 180 mg/dL) range with 
minor time in the hyperglycemia range in the postprandial 
part of the trial. As observed, if an intrinsic feed-
forwarded insulin bolus is given (the first two meals) 
glucose control is superior to the unannounced case. 
However, such action requires manual intervention from 
the user. An overaggressive control action in an attempt to 
avoid postprandial hyperglycemia may result with 
hypoglycemia that may be life-threatening to the subject. 
Hence, control design needs to be conservative and may 
err toward minimizing control action to prevent low 
glucose concentration. 

Figure 3.  Summary of a 28 h clinical trial with two 
announced meals and one unannounced meal using an 

MPC-based controller. 

 Safety and advanced control design 

Early MPC control design (MPC, PID,) were 
designed as a setpoint regulation problem. However, 
normal glucose physiology does not have a setpoint and 
glucose may fluctuate between 70 – 140 mg/dL in the 
postprandial period and between 70 – 99 mg/dL in fasting 
conditions. Hence, clinically inspired control design will 

aim to stabilize glucose concentration in a zone rather than 
a virtual setpoint. The controller, Zone Model Predictive 
Control (zone-MPC), is designed such that few control 
moves are made when the sensor is in the region of 
normoglycemia to lessen the effect of noise. An extention 
of the zone-MPC controller called multi-zone-MPC has 
also been designed, in which four zones have been 
incorporated into the design (Grosman, Dassau et al. 
2011). A multi-zone approach provides additional degrees 
of freedom to improve glucose regulation by allowing 
more aggressive control action in the tight glycemic range. 
The safety system, Health Monitoring System (HMS), is 
executed in parallel to allow the controller to operate 
independently.  

Controller: zone-MPC 

The role of zone-MPC in the AP is to maintain BG in 
a predefined range, increasing or decreasing insulin 
delivery accordingly, when the CGM measurement or 
predictions violate the boundaries of the zone. At the heart 
of the controller is a predictive model that is used to 
approximate insulin-to-glucose dynamics in the subject. 
The model describes the dynamic relationship between G 
and u based on a set of a priori-identified model constants 
contained in the vector β. Given a set of glucose and 
insulin infusion data, the model can be used to predict the 
future glucose values, Gp, given a proposed set of future 
insulin infusion amounts, up. In general, this is expressed 
as: 

 p pG f G,u,u ,β  (1) 

where G is a vector of recent CGM values, u is a vector of 
previous insulin infusion amounts, up is a vector of 
proposed near-future insulin infusion amounts, β is a 
vector of the constant model parameters, and Gp is the 
vector of predicted near future CGM values that will result 
from up.  

The only manipulated variable is up; manipulation of 
this variable allows optimization of the balance between up 
and Gp. This optimization problem, that minimizes a cost 
function, is the basis of the control law; the control law 
maps process knowledge and previous data into optimal 
insulin infusion amounts. The cost function in the zone-
MPC is composed of two terms representing the deviation 
of predicted CGM values from a desired glycemic zone, 
and the deviation of proposed insulin infusion amounts 
from the basal insulin infusion profile. Mathematically, the 
optimization problem is formulated in the following 
manner: 

 
2 2

min   ( )
MPC

zone
zMPC MPC p MPC b

u
J u G R u u       (2) 

subject to the model dynamics of Eq. (1), with uMPC = uP. 



  
 

In Eq. (2), ub is the patient’s basal insulin infusion 
profile. R is a tuning factor that both accounts for the 
different units of the two terms and weighs their relative 
contributions. The vector uMPC contains the set of 
proposed near-future insulin infusion amounts. It is the 
manipulated variable because it is adjusted in order to find 
the minimum in JzMPC. Gp

zone is a variable quantifying the 
deviation of a model-predicted CGM values Gp outside a 
specified glycemic zone, and is determined by making the 
following comparisons:
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where the glycemic zone is defined by the upper limit GZH 
and the lower limit GZL. Thus, if all the predicted glucose 
values are within the zone, then every element of Gp

zone is 
equal to 0, and consequently JzMPC is minimized with uMPC 
= ub for that time of day, i.e., the algorithm defaults to the 
patient’s current basal insulin infusion rate. On the other 
hand, if any of the predicted glucose values are outside of 
the zone, then Gp

zone > 0 and thus the first term in Equation 
2 contributes to the cost function. In this case, the near-
future proposed insulin infusion amounts uMPC will deviate 
from the basal, ub, in order to prevent out-of-zone 
deviation in Gp

zone from happening, which will also 
contribute to the cost function. Then, a quantitative 
balance is found in the optimization, based on the 
weighting factor R. At each control cycle, only the first 
element of uMPC is delivered as an insulin dose to the 
patient through the insulin pump. The process is then 
repeated when a new CGM reading becomes available. 
For technical details, see (Grosman, Dassau et al. 2010). 

Controller: multi-zone-MPC 

Multi-zone-MPC is an extension of zone-MPC in which 
the number of control zones have been increased to four, 
allowing for safer and more efficient control (Grosman, 
Dassau et al. 2011). The blood glucose concentration was 
be divided into four zones: zone 1, hyperglycemia, BG > 
180 mg/dL; zone 2, near normal glycemia, 140 < BG <180 
mg/dL; zone 3, normoglycemia, 80 < BG < 140 mg/dL, 
and zone 4, danger of imminent hypoglycemia, BG < 80 
mg/dL, chosen by reference to medical expertise (Nathan 
et al., 2008 and Moghissi et al., 2009), These zones are 
included into the cost function used in the multi-zone-
MPC that is described by the following equation: 
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where r
kG  is a binary function that yields the values of the 

upper bound of the normoglycemia zone (140 mg/dL) 

when 'G k>140 mg/dL, and the values of the lower bound 

of the normoglycemia zone (80 mg/dL) when 'G k <80 
mg/dL. Qk and Rk are predicted blood glucose 
concentration dependent optimization weights as listed in 
Table 1. P and M are the output prediction horizon, and 
control horizon, respectively. 

Table 1. Multi-zone-MPC weights as function of 
glucose concentration 

Zone Glycemia zones Qk/ Rk 
1. 'G k >180 mg/dL 2E-4 

2. 140< 'G k ≤180 mg/dL 2 

3. 80≤ 'G k ≤140 mg/dL 0 

4. 'G k <80 mg/dL 2E10 

 
The multi-zone-MPC predicts P steps in every control 

sample. Qk and Rk switch values according to the 

predictions. If 80≤ 'G k ≤140 mg/dL then Qk is set to zero. 

If 'G k >180 mg/dL for at least a single prediction then Qk 
and Rk are switched to Qk=1 and Rk=5000. Otherwise, 
Rk=0.5 for all prediction and Qk switches according to 

each 'G k value. The switching is based on glycemia 
predictions in order to prevent future deviation from the 
quiescent control zone. The deviations above 140 mg/dL 
are all calculated as a deviation to 140 mg/dL, and all 
deviations below 80 mg/dL are calculated as a deviation to 
80 mg/dL. This introduces a smooth switching out of the 
quiescent control zone. 

Table 1 describes the various glycemic zones and the 
control weights ratio (Qk and Rk) used for the multi-zone-

MPC. In zone 1 ( 'G k >180mg/dL) control actions are 
constrained to prevent insulin over-dosing. In zone 2 

(140< 'G k ≤180 mg/dL) most of the control actions are 

implemented. In zone 3 (80≤ 'G k ≤140 mg/dL) the 
controller is quiescent to deviation in glucose 

measurements. In zone 4 ( 'G k <80 mg/dL) the controller 
is allowed to respond fast to potential hypoglycemia.  

Safety system: HMS 

Hypoglycemia is one of the major concerns of 
individuals using manual intensive insulin therapy as well 
as the automated AP. The research community has been 
developing several methods to predict, alert, and prevent 
pending hypoglycemic events, as described by (Palerm 
and Bequette 2007; Buckingham, Chase et al. 2010; 
Dassau, Cameron et al. 2010; Eren-Oruklu, Cinar et al. 
2010; Hughes, Patek et al. 2010). 

The HMS functions as a process monitoring module 
that is executed in real time and parallel to any controller. 
Several components designed for specific safety concerns 
will comprise the HMS. The principal section is the Low 
Glucose Predictor (LGP), which serves as an additional 



  

safeguard in the AP device against risks of hypoglycemia. 
The zone-MPC algorithm controls the delivery of insulin, 
while the LGP evaluates the trend of the glucose from a 
different perspective. The LGP uses a more conservative 
algorithm to make an independent assessment of the risk 
of hypoglycemia and add an extra layer of safety to ensure 
the health of the subject. When LGP indicates that 
hypoglycemia is imminent, the HMS will generate an 
audible and visual alert to the investigator and send short 
and multimedia message services (SMS and MMS) to the 
physician in charge with a profile of the current trend and 
prediction for the upcoming 15 minutes.  

 

Figure 4. Overview of HMS algorithm 

The LGP has three major sections: a pre-processing 
section to get the CGM data ready for prediction; a core 

algorithm section to calculate the rate of change, make 
predictions, and determine if hypoglycemia is imminent; 
and an alarm mode section to prepare the audible and 
visual alerts (see Figure 4).  

The pre-processing section is used to filter the CGM 
data and prepare them for accurate prediction. This is a 
necessary step because CGM may include noisy data 
points such as missed data points, and shifts due to 
calibration. These issues are all addressed in the pre-
processing section, detailed below. 

The first component of the pre-processing section is 
shift detection. In order to make a better and more accurate 
prediction, shifts introduced to the system, such as 
calibrations, must be detected so that the shift does not 
produce a non-physiologic rate of change estimate. A shift 
in the signal is detected when the change in the raw signal 
is large (>4mg/dL/min, considered to be non-physiologic 
(Dunn, Eastman et al. 2004)) and then the next point 
continues roughly the same trend as before the shift, but 
with an offset. When a shift is detected, the points after the 
shift can be considered more accurate, and the same offset 
can be applied to the points before the shift to reflect the 
true trend. 

Due to electrical noise and interference, CGM data 
are often noisy; therefore filtering the data using 
physiologically-based parameters is used to ensure that 
data reflect accurately the glucose value. The algorithm 
filters the data using a noise-spike filter to reduce the 
impact of noise spikes, written as follows:
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where k is the sampling instant, GF(k-1) is the previous 
filtered value, GF,NS(k) is the filtered value resulting from 
the noise-spike filter, Gm(k-1) is the measurement, and ΔG 
is the maximum allowable step change (Seborg , Edgar et 
al. 2011). The data are then passed through a low pass 
filter to damp high frequency fluctuations from electrical 
noise, written as follows: 

,( ) ( ) 1 ( 1)F F NS F
F F

t t
G k G k G k

t t 
  

        
 (6)  

where GF is the filtered value, Δt is the sampling time, and 
τF is the filter time constant (Seborg , Edgar et al. 2011). 
The filter is the second component of this section. 

The last component of the pre-processing section is 
interpolation, in which recent data gaps are interpolated so 
that the most recent data can be used for prediction.  

The objective is to ensure that the HMS will make an 
accurate prediction despite a missing data point. When a 
point is missing, its value will be extrapolated to allow a 
prediction to be made at that point in time. The algorithm 
then extrapolates gaps of up to 20 minutes linearly. This is 



  
 
extremely important when the trend is negative and 
nearing the hypoglycemia threshold. 

The next section in the LGP is the core algorithm, in 
which the rate of change is calculated to make a prediction 
and issue an alarm if hypoglycemia is imminent (in the 
next 15 minutes). 

The rate of change is calculated and the trajectory is 
projected through the hypoglycemia threshold, TH, to 
decide if hypoglycemia will occur within the prediction 
horizon, PH, based on findings and clinical evaluation 
from Buckingham et al. (2010) and Dassau et al. (2010). 
The rate of change calculation is performed using the first 
derivative of the Lagrange interpolation polynomial as 
follows: 
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(7) 

where j=k-A+1:k (Harvey, Dassau et al. 2011). 
The alarm mode will be activated if hypoglycemia is 

predicted or if the current measurement is below the 
hypoglycemia threshold (70 mg/dL) and the rate of change 
is negative (G’F(k)<-0.1 mg/dL/min). However, if the 
current measurement is above 110 mg/dL, alarm mode is 
not activated, because the proximity of the hypoglycemia 
threshold is too small. In addition, if the rate of change is 
below -3 mg/dL/min, which is considered non-physiologic 
below this value. 

 

Figure 5. Example SMS text and MMS CGM graph. 

If at least 30 minutes have elapsed since the last 
warning, the alarm mode will issue an audible and visual 
alarm on the AP device HMI and send a text message to 

the user or attending physician. The secondary alert via 
text messages uses the SMS and MMS technology. The 
SMS sends the text only message while the MMS sends an 
attached chart showing the trending of recent glucose 
values and the predicted values for the next 15 minutes 
(see Figure 5). Although only smart phones can receive a 
chart, the text message can be received by any cell phone. 
The SMS and MMS are redundant to the active alarm in 
the AP device.  

The visual and audible alarm that appears on the AP 
device clearly indicates that the individual with type 1 
diabetes should eat approximately 16 grams of 
carbohydrates. The user may select the “ignore” button of 
the HMS warning. In that case, at the next cycle, i.e. 5 
minutes later, if the prediction is that glucose 
concentration is predicted to be < 70 mg/dL or is < 70 
mg/dL, then a new alarm will sound and appear. 

The user may select the “accept” button and treat with 
carbohydrates as recommended. The system will continue 
to perform a new analysis of the glucose prediction based 
on the new data point in the background, but it will not 
activate any warning for the following 30 minutes. The 
alert system will be blocked. This time is to allow the 
effect of ingesting carbohydrates to take place. After 30 
minutes, if the calculation continues to predict that the 
glucose is < 70 mg/dL in the next 15 minutes or is actually 
< 70 mg/dL, then a new visual and audible alarm will be 
raised and a new text message will be sent. 

In silico testing 

Comparison of multi-zone-MPC and zone-MPC was 
conducted on 100 in silico adult subjects following a one 
meal scenario of 75 g of CHO given at 8pm using the 
Food and Drug Administration (FDA)-accepted 
UVa/Padova metabolic simulator (Kovatchev, Breton et 
al. 2009). Control was enabled after two hours of open-
loop response. As can be seen in Figure 6, multi-zone-
MPC (a) outperforms the zone-MPC (b) with extended 
time in the near normal glucose range without any severe 
hypoglycemic events. 

Magni et al. (2008) introduced the control variability 
grid analysis (CVGA) for measuring the quality of closed-
loop glucose control on a group of subjects. The nine 
categories in the CVGA grid represent different levels of 
control as follows:  accurate control (A-zone); benign 
deviation into hypoglycemia (Lower B-zone);  benign 
deviation into the hyperglycemia range (Upper B-zone); 
benign control (B-zone); overcorrection of hyperglycemia 
(Lower C-zone);  overcorrection of hypoglycemia (Upper 
C-zone);  failure to mange hypoglycemia (Lower D-zone); 
failure to mange hyperglycemia (Upper D-zone) and 
erroneous control (E-zone). It is a method for visualization 
of the extreme glucose excursions caused by a control 
algorithm in a group of subjects, with each subject 
presented by one data point for any given observation 
period. A numeric assessment of the overall level of 



  

glucose regulation in the population is given by the 
summary outcome of the CVGA. 

 

 

Figure 6. Population response of the zone-MPC (a), 
multi-zone-MPC (b), and the histogram of the population 
glucose distribution (c). 

Figure 7 depicts the CVGA for the multi-zone-MPC 
and the Zone-MPC. As can be seen the multi-zone-MPC 
significantly reduces the risk of hypoglycemia and at the 
same time lowers the hyperglycemia levels. It should be 
noted that the majority of the results as presented in Figure 
2 are in the B zone that represent benign control which is 
extremely encouraging for a 75 g unannounced meal 
challenge. The superiority of the multi-zone-MPC 
approach is demonstrated by the minimization of severe 
hypo- and hyper-glycemia with some of the more complex 
in silico subjects.  

 

Figure 7. Comparison between control variability grid 
analysis (CVGA) results of multi-zone-MPC (black 

asterisks) and Zone-MPC (white circles). 

The combination of zone-MPC and HMS were also 
evaluated in silico using the UVa/Padova 100 subject 
metabolic simulator. The protocol included 3 
unannounced meals (2 large meals and a snack) and an 
overnight period. An example of a subject that did have an 
HMS alert and treatment of 16g of carbohydrates is in 
Figure 8. The HMS alert was invoked only 5 times for the 
entire cohort. For all 100 subjects, 0% of time was spent 
below 70mg/dL, and 81% of time was spent between 70-
180mg/dL, considered the safe zone.  

 

Figure 8. Example of subject with an HMS alert and 
hypoglycemia treatment. 

The CVGA of with all 100 subjects is in Figure 9. 
Note that only 13% of the subjects are in the B-zone, 
representing benign control, while 87% are in the A-zone, 
signifying good control. 



  
 

 

Figure 9. Control variability grid analysis (CVGA) 
results of zone-MPC with HMS. 

Alternative design for the Artificial Pancreas   
One of the foremost challenges for the AP is actuation 

delay due to slow pharmacokinetic (PK) characteristics of 
the SC delivery route (PK peak at 50 min and residence 
time of 6-8 h). As a result of this delay, an AP based on 
the SC route cannot respond quickly enough to an 
unannounced meal and cannot blunt postprandial glucose 
excursions. 

 

Figure 10. Pharmacokinetics of intraperitoneal, inhaled, 
and SC insulin delivery (Lee, Dassau et al. 2011).  

Two alternative insulin delivery routes, intraperitoneal 
(IP) and Technosphere® Insulin (TI) (see Figure 10) 
showed faster PK characteristics that can improve the 
design of future AP systems. The novel design of the AP 
using these fast acting alternative routes may enhance BG 
regulation by reducing actuation delays, especially during 
meal time. This section describes the design of alternative 
APs utilizing the respiratory or IP insulin delivery routes 
to improve BG regulation. 

Respiratory route using TI 
The semi-automated AP with TI combines the SC and 

TI insulin delivery methods to replicate the normal 

physiological insulin secretion at meal time. Rapid acting 
TI captures the first and cephalic phase and a Continuous 
Subcutaneous Insulin Infusion (CSII) pump that is 
controlled by zone-MPC delivers the basal and any 
supplemental meal-related insulin. It should be noted that 
the TI insulin in this example is an unmeasured 
disturbance to the control algorithm and, as such, the 
system was designed to work with or without TI. 

To evaluate the performance of the semi-automated 
AP with TI, a protocol of a single large unannounced meal 
(100 g- carbohydrate) after an overnight period was used 
on the UVa/Padova metabolic simulator, and the result 
was compared to the fully automated closed-loop AP 
using the SC route (with zone-MPC).  Average BG, CGM, 
and insulin delivery plots are given in Figure 11 to show 
differences in the controller action with and without the 
input of TI insulin (Semi-automated and Closed-Loop, 
respectively).   

 

 

Figure 11. Population result of a semi-automated AP with 
TI (inhaled insulin) vs. SC-based AP. 

The closed-loop AP based on the SC route 
successfully managed BG within normoglycemia (70 – 
180 mg/dL) during the overnight period. However, the 
average BG went up to 280 mg/dL after the meal (black 
dashed line) and stayed in the hyperglycemia (BG > 180 
mg/dL) region until 1 pm due to the actuation delay of SC 
insulin and 7-15 min lag in the CGM (McGarraugh 2009).  

In contrast, the semi-automated AP with TI, 
effectively blunted the BG rise (BG peak = 203 mg/dL) 
and significantly decreased the duration in the 
hyperglycemia region (1.9 h). Additionally, the CSII 
delivered considerably less insulin in the postprandial 
period (~5 h after the meal) in the semi-automated AP 
with TI compared to the fully closed-loop AP via the SC 



  

route, which decreases the risk of postprandial 
hypoglycemia.  

IP route 

An alternative AP design based on IP delivery was 
also developed based on zone-MPC with an IP PK/PD 
model. The closed-loop AP using the IP route (see Figure 
12), the controller effectively blunts the BG peak (228 
mg/dL), and the average duration in the hyperglycemia 
region decreased to 1.5 h. Also, due to the fast clearance 
rate of IP insulin, the controller can be more aggressive 
(e.g. bolus-like action at meal time) without the risk of 
hypoglycemia compare to the SC based AP (see Figure 12, 
black dashed line). 

 

Figure 12. Population result of fully automated closed-
loop AP based on intraperitoneal vs. SC insulin.  

Conclusions  

The zone-MPC controller has been designed to 
control BG to a normoglycemia zone. This dampens the 
effect noise and non-physiologic sensor fluctuations on 
controller action, resulting in smoother and safer control. 
The inclusion of HMS, a parallel safety system, allows for 
adverse events to be monitored independently. Using 
LGP, one component of HMS, hypoglycemia can be 
predicted and prevented by informing the physician to 
administer rescue carbohydrates using redundant means, 
both a pop-up on the AP device and SMS/MMS message 
via telemedicine. 

A prominent challenge in the design of the AP is the 
delays in insulin delivery and absorption using the SC 
route. This may be alleviated by utilizing alternative 
insulin delivery routes with faster PK. As presented above, 
both the semi-automated AP with TI and the closed-loop 
AP using the IP route showed superior performance over 

the current closed-loop AP using the SC route without 
imposing hypoglycemia risk.    
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