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Abstract 

Most industrial model predictive controllers (MPC) use the traditional two-layer structure developed in 
the early 1980’s, where the upper layer defines optimal steady-state targets for inputs and outputs, while 
the lower layer calculates the control moves that drive the system towards these steady-state targets. As a 
rule, both layers use continuous quadratic programming (QP) formulations to derive the optimal 
solutions. On the other hand, the advances in mixed-integer programming (MIP) algorithms and their 
successful utilization to solve large scheduling problems in reasonable time show that MIP formulations 
have the potential of being advantageously applied to the multivariable model predictive control 
problem. In this paper we present a mixed-integer quadratic programming (MIQP) formulation for the 
steady state targets calculation layer, and show that several difficulties faced in the MPC practical 
implementation can be overcome with this approach. In particular, it is possible to set explicit priorities 
for inputs and outputs, define minimum moves to overcome hysteresis, and deal with digital or integer 
inputs. The proposed formulation was applied to a simulated industrial system and the results compared 
with those achieved by a traditional continuous MPC. 
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Introduction
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Most industrial model predictive controllers currently 
in use are based on the algorithms developed in the early 
1980’s (Qin and Badgwell, 2003). These algorithms have 
two main functions, i.e., to reduce the process variability 
through better dynamic control, and to move the operating 
point closer to the constraints, which in general results in 
significant economic benefits. In order to perform these 
functions, the usual practice is to adopt a hierarchical 
structure with two layers, where the upper layer deals with 
the steady-state problem of defining optimal targets for 
inputs and outputs, while the lower layer, responsible for 
the dynamic problem, calculates the control moves that 
drive the system towards these steady-state targets. 

The upper layer solves an optimization problem 
aiming at minimizing a linear combination of the projected 
steady–sate values of the inputs, and simultaneously 
minimizes the square of the moves to be imposed on these 

inputs. Linear relations among inputs and outputs, and 
constraints limiting the allowable range of both kinds of 
variables are also imposed. As a result of these constraints 
the problem may be infeasible, and this fact demands the 
implementation of a relaxation strategy in order to 
guarantee that some kind of solution will always be found. 

The lower layer involves an optimization problem that 
includes constraints only on the inputs, which guarantees 
that a feasible solution can always be found.  

We propose to replace both optimization problems by 
a mixed-integer (MIP) formulation, thus building a hybrid 
MPC. Several advantages may result from such a 
formulation; for instance, the possibility of assigning 
explicit priorities for the outputs, i.e., the definition of a 
preferential order of constraint relaxation in case the initial 
steady-state problem proves infeasible. The inputs can also 
receive explicit priorities to select the order in which they 



  
 

 

are to be moved to adjust each output. The formulation 
also makes it possible to set a minimum limit for control 
moves, which is adequate for valves subject to hysteresis. 

The MIP formulation also allows the controller to deal 
with discrete inputs, either manipulated variables or 
disturbances, i.e., variables that can assume only a set of 
discrete values like, for instance, 0 or 1 (on or off).  

Hybrid formulations for MPC have already been 
developed, and successfully used in industrial applications 
as described for instance by Bemporad and Morari (1999), 
Morari and Barić (2006), and Zabiri and Samyudia (2006). 
Nevertheless, most of these contributions address the 
control of hybrid systems, while we are focusing on the 
development of a mixed-integer algorithm based on the 
traditional MPC that can be advantageously applied even 
to continuous systems. 

One instance of such a possible advantage can be 
identified in systems where two or more inputs present 
similar influence on the outputs. Due to the intrinsic 
multivariable characteristic of the process and the 
controller, the inputs will be moved at the same time. But 
frequently, a better approach would be to use one of them 
for smaller moves and the other for larger ones. This is the 
case when valves of different dimensions are set in parallel 
lines with precisely the intention of allowing better 
adjustment of the inputs. The larger valve should only be 
used for larger flowrate changes, since smaller ones may 
not be actually implemented due to valve hysteresis.  

Another difficulty, also related to the multivariable 
nature of the controller, is the change in independent 
variables that have only a small influence on an output, 
especially when this variable hits a constraint. This is the 
case, for example, of the feed flowrate, which is an input 
that affects almost every output in the plant. The controller, 
as a rule, aims at maximizing the feed but this may be 
prevented by almost any output hitting a constraint. To 
cope with this situation, a frequent practice is the outright 
elimination of the response model relating the feed and 
several less-important outputs. The undesired side-effect of 
this practice is that the controller will be unable to move 
the feedrate when this is the only solution to avoid 
constraint violation on such outputs, thus compromising 
the overall performance.  

Another opportunity for improvement concerns the 
relaxation algorithm used in the steady state target 
calculation, which basically involves transferring some 
constraints into the objective function through terms that 
minimize the violation of such constraints. This relaxation 
frequently results in violations of the limits of variables 
that are currently within these limits, which is a puzzling 
change in the controller behavior. This happens because 
there is no straightforward way to determine which and 
how many limits should be relaxed. Additionally, when 
violations are unavoidable, some inputs are no longer 
minimized (or maximized) without any obvious reason for 
the plant operators.  

Continuous MPC formulation 

According to Sotomayor et al. (2009), the MPC target 
calculation layer, also called steady-state linear optimizer, 
solves at each sampling instant, a QP problem where the 
objective is to force one or more inputs to their bounds, 
while keeping the outputs inside the bounds. This problem 
may be defined as follows: 
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where: 
u   = inputs implemented at time 1−k ,  

*u  = vector of steady-state targets of the inputs, 
*y   = vector of steady state targets of the outputs,  

yδ = vector of slack variables for the controlled outputs,  

0G  = steady-state gain matrix of the process, 

k = the present time,  
n  = settling time of the process in open loop,  

210 ,, WWW  = weight vectors,  
UL uu , = bounds of the manipulated inputs,  
UL yy ,  = bounds of the controlled outputs. 

 
In the above, ŷk+n|k represents the contributions of the past 
inputs to the predicted output at time step k+n, i.e., at the 
end of the time horizon. 

The solution of the problem defined by equations (1) 
and (2) generates the input targets that are transferred to 
the MPC dynamic layer. The version of MPC we consider 
in this work is a modification of the quadratic dynamic 
matrix control (QDMC) as described in García and 
Morshedi (1986) and Soliman et.al (2008). This version 
solves the following optimization problem: 
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where: 
 

[ ]Tkpkkkkkk yyyy ||2|1 ,,, +++= L    

spy = set-point to the system output. This set-point is 

usually made equal to*y .   

[ ]Tkmkkkkkk uuuu |1|1| ,,, −++= L  

[ ]Tkmkkkkkk uuuu |1|1| ,,, −++ ∆∆∆=∆ L  

[ ]Tknkkkkkk yyyy ||2|1 ˆ,...,ˆ,ˆˆ +++=  

Uu∆  = upper limit to the control moves,  
m = control horizon,  
p  = prediction horizon,  

Λ,Q and R are weighting matrices. 

 
In the equations above,

kky |l+ represents the predicted 

output at time step l+k , based on information available at 
time step k, including the planned control moves. This 
prediction also includes the effect of measured 
disturbances that were not shown for the sake of simplicity. 

The dynamic matrix A relates future input changes ku∆ to 

predicted outputs ky . 

This formulation is similar to the structure of several 
MPC packages widely applied in refining and 
petrochemical processes. 

Steady-State Optimization using MIQP Approach  

We propose to replace the steady state target 
calculation described by equations (1) and (2) by a mixed-
integer quadratic problem (MIQP) as follows: 

Objective function: 
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where: 

jµ = minimum movement tuning parameter for input 

Nmjj ,,1, L=  

u
jλ  = profit tuning parameter for input Nmjj ,,1, L=  

 u
jπ  = priority parameter for input Nmjj ,,1, L=  

y
iπ  = priority parameter for output Ncii ,,1, L=  

 iϖ  = weight parameter for output violation, 

Nci ,,1L=  
y
iz   = decision to enforce the limits of output i (binary 

variable – if equal to 0 then the limits are relaxed), 
Nci ,,1L=  

u
jz   = decision to move input j (binary variable), 

Nmj ,,1L=  

Nm = number of inputs ( Nmju j ,,1, L= ) 

Nc  = number of outputs ( Nciyi ,,1, L= ) 

 
In order to allow the inclusion of constraints for the 

minimum movement of the inputs, we introduce the 

variables 0, ** ≥∆∆ −+
jj uu  , such that: 

−+ ∆−∆=∆ ***
jjj uuu     Nmj ,...,1=∀   (6) 

Equality constraints 

Equations defining the amount of upper and lower 
limit violations for each CV: 
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where: 
L
iy  = lower operation limit for output i 
U
iy = upper operation limit for output i 

Additionally, 

0≥v
iy  Nci ,...,1=∀  (9) 

 

Equations defining the decision to satisfy the limits of each 
output. 

Lower limit: 

( )1* −+≥ y
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Upper limit: 

( )1* −≥− y
ii

U
i zMyy      Nci ,...,1=∀  (11) 

U
iy   = upper limit for output i 
L
iy  = lower limit for output i 

M = big-M constant. 

Equations defining the decision to move each input 

u
ij Mzu ≤∆ +*  Nmj ,...,1=∀  (12) 

u
ij Mzu ≤∆ −*  Nmj ,...,1=∀  (13) 

Minimum movement to be applied to an input if the 
decision to move it is taken. 
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where: 
L
ju∆  = minimum change to be applied to input j, once the 

decision to move it is taken. 
 
The formulation described above applies only to the 

steady-state targets calculation layer. The dynamic layer 
used in this study is a traditional MPC solved by a QP 
algorithm.   

Mixed-integer quadratic programming solver 

The MIQP problem described in the previous section 
was solved by the Outer-Approximation method (Duran 
and Grossmann, 1986), consisting of a series of QP 
subproblems and MILP master problems. In order to 
describe this algorithm we consider the optimization 
problem shown by eq. (15): 

P 

UL

TT

xxx

BAx

ts

xDCxx
x

≤≤
≥+

+=

0

..

2

1
minϕ

 (15) 

where x  is the vector of free variables ix ( ni ,,1L= ), 

which includes both continuous and discrete variables (in 
this paper we consider that the discrete variables are 

binary) and is divided into thecI and bI subsets, 
comprising the continuous and the binary variables, 

respectively. VectorsLx and Ux contain the upper and 
lower bounds forx , which can also be described as: 

[ ]U
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L
ii xxx ,∈  cIi ∈∀  (16) 

{ }1,0∈ix  bIi ∈∀   (17) 

C is an nn ×  positive definite matrix, D is an 
−n dimensional vector, A is an nm×  matrix, and B is an 
−m dimensional vector, where m  is the number of 

constraints.  
The algorithm works according to the following 

sequence:  
 
1 – Solve problem P as a relaxed QP, i.e., set[ ]1,0∈ix , 

bIi ∈∀  and let kNLPx , , with 0=k , be the solution 
vector.  If the solution is integral, which means that every 

bNLP
i Iix ∈∀,0,  has a value of 0 or 1, then this solution is 

optimal for P. Otherwise, proceed with the algorithm. 
 

2 –Linearize the objective function around kNLPx , , set 
k = k + 1 and solve the following MILP: 
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which will result in a new optimal solution kMILPx , . 
  

3 - Fix the binary variables kMILP
i

k
i xx ,= , bIi ∈∀  and 

solve P with only the c
i Iix ∈∀,  as free variables, thus 

obtaining kNLPx , . If the NLP objective function value 
kNLP,φ is equal to kMILP,φ within a given tolerance, the 

algorithm converged and kNLP
ix ,  is the optimum solution. 

Otherwise, proceed to step 2. 
 



  

 

The QP subproblem was solved using the QL 
algorithm, written in FORTRAN by Schittkowski (2005), 
while the MILP master problem was solved by lp_solve, 
which is a freely available LP/MILP solver written by M. 
Berkelaar at Eindhoven University of Technology. 

Process simulation 

The proposed formulation was applied to a simulation 
of a Fluid Catalytic Cracking unit (FCC), as described by 
Moro and Odloak (1995).  

The FCC is one of the most important refining 
processes, and transforms intermediate oil fractions into 
light and more valuable hydrocarbon products. The FCC 
converter, which is the main equipment of such units, 
consists of three major sections: the separator vessel, the 
regenerator and the riser. The riser is a tubular reactor 
where at the bottom the preheated liquid feed is injected, 
and mixed with hot fluidized catalyst flowing from the 
regenerator. This hot catalyst provides the energy for feed 
vaporization and for the endothermic cracking reactions. 
These reactions generate lighter hydrocarbons and also a 
high carbon-content, solid coke, which is deposited over 
the catalyst surface resulting in its deactivation. The 
catalyst is reactivated in the regenerator by burning the 
coke in a fluidized bed.  

The MPC configuration used here was taken from the 
actual industrial implementation and includes 33 outputs 
and 11 manipulated inputs, and covers the plant subsection 
from the preheat train to the fractionator column. This 
configuration results in an MIQP with 55 continuous and 
44 binary variables, as well as 165 constraints. 

Although each one of the variables was kept active in 
the simulated test described in the next section, we will 
focus on the control of just one variable, the regenerator 
temperature, which is mainly affected by the air injection. 
The air is injected through 3 different pipes and adjusted 
by 3 flow controllers, FC01, FC01A and FC02, as depicted 
in Figure 1. 

 

Figure 1.   regenerator air subsystem 

FC01 controls the flow in the main injection line and 
is responsible for about 60% of the total air. FC01A works 
as a complement to FC01 and is designed for frequent 
small adjustments. FC02 is responsible for about 15% of 

the total air flow and is connected to the regenerator 
second stage. 

The best practice for this system consists in using the 
larger valve, i.e. FC01, only for aggressive control moves, 
while the smaller ones should be used to deal with the 
regular fluctuations. The application of frequent 
movements on the larger valve, besides being ineffective 
due to hysteresis, generates wear and tear that may lead to 
premature failure. 

The usual approach adopted by control engineers to 
adjust the controller behavior in such cases, is to increase 
the move suppression term (Λ in eq. (3)) of the input 
responsible for the larger valve. This usually does not 
result in the desired behavior, and impairs the MPC ability 
to deal with situations when aggressive control actions are 
necessary. 

In this simulated test, we show that the mixed-integer 
formulation is able to generate this behavior, i.e., to move 
the larger valve only for larger flow modifications, and still 
provide adequate regulation of the regenerator. 

Simulated Testing 

In this simulation, we evaluated the performance of 
the MIQP algorithm and compared it with the MPC 
currently used to control the plant. The system is allowed 
to reach steady state and then a change in the allowable 
range of the regenerator temperature – a controlled 
variable – is imposed. This change affects only the lower 
limit of the temperature, which is raised from 680oC to 
700oC. The results are depicted in Figures 2 through 5, 
where the solid lines represent the behavior with the MIQP 
formulation, and the dotted lines the behavior with the 
traditional QP algorithm. 

As it can be seen in Figure 2, the temperature profile 
is similar in both cases, with the MIQP algorithm being 
slightly faster but equally accurate. 

 

 

Figure 2.   Regenerator temperature with the 
MIQP formulation (T-MI) and with the 

traditional QP (T-QP). 

The behavior of the manipulated variables related to 
the air injection can be seen in the subsequent figures. 

It can be noticed that with the MIQP formulation the 
manipulated variables stay more or less constant, while no 
setpoint changes are imposed on the controller. On the 



  
 

 

other hand, it is capable of vigorous action when such 
change happens. As previously described, this is exactly 
the kind of behavior that we were aiming for with this 
mixed-integer formulation 

 

Figure 3. Main air flow to the Regenerator 
with the MIQP formulation (Air1-MI) and with 

the traditional QP (Air1-QP). 

Figure 4. Secondary air flow to the Regenerator with the 
MIQP formulation (Air1A-MI) and with the traditional QP 

(Air1A-QP). 
 
It is to be expected that better results will be obtained 

once the controller is retuned to utilize more freely the 
characteristics of the hybrid approach.   

 

 

Figure 5. Air flow to the Regenerator second 
stage with the MIQP formulation (Air2A-MI) 

and with the traditional QP (Air2A-QP). 

Conclusions 

In this paper we have presented an MIQP formulation 
for the calculation of steady state targets that are generally 
used in industrial MPC algorithms. This formulation was 
applied to a simulated industrial case, and compared to the 

traditional continuous MPC. The results show that the 
desired behavior is obtained, even without any changes in 
the tuning parameters previously used. 

As a follow-up to this work, we intend to develop an 
analogous MIQP formulation for the dynamic layer and 
integrate it to the steady state layer. The resulting 
algorithm will then be tested in a simulated process, and 
after validation, in an industrial refining unit.  
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