
  
   

MONITORING, FAULT DIAGNOSIS, FAULT-
TOLERANT CONTROL AND OPTIMIZATION: DATA 

DRIVEN METHODS 

John MacGregor*and Ali Cinar# 

*ProSensus, Inc. 1425 Cormorant Rd., Ancaster, ON Canada 
john.macgregor@prosensus.ca 

*McMaster University, Chemical Engineering Dept., Hamilton, ON 
macgreg@mcmaster.ca   

#Department of Chemical and Biological Engineering, Illinois Institute of Technology, 
Chicago, IL 60616   cinar@iit.edu 

 

Abstract 

Historical data collected from processes are readily available. This paper looks at recent advances in the 
use of data-driven models built from such historical data for monitoring, fault diagnosis, optimization 
and control. Latent variable models are used because they provide reduced dimensional models for high 
dimensional processes. They also provide unique, interpretable and causal models, all of which are 
necessary for the diagnosis, control and optimization of any process. Multivariate latent variable 
monitoring and fault diagnosis methods are reviewed and contrasted with classical fault detection and 
diagnosis approaches.  The integration of monitoring and diagnosis techniques by using an adaptive 
agent-based framework is outlined and its use for fault-tolerant control is compared with alternative 
fault-tolerant control frameworks. The concept of optimizing and controlling high dimensional systems 
by performing optimizations in the low dimensional latent variable spaces is presented and illustrated 
by means of several industrial examples. 
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Introduction
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The optimization, control and monitoring of processes 
involves employing models that enable us to learn from 
the data being collected from the process. These models 
could be models whose structure is based on fundamentals 
and whose parameters are estimated from plant data 
(mechanistic models), or they could be models whose 
structure and parameters are all identified from plant data 
(data-driven or empirical models).  The key issue is not the 
type of model used, but whether or not that model, in 

terms of its structure and assumptions, is appropriate for 
the application.  For example a mechanistic model imposes 
a structure that embodies many assumptions, some of 
which may not be entirely justified.  In particular, 
assumptions are needed about the structure of the 
disturbances in the system (rarely available from theory), 
and many information-rich variables (such as the 
mechanical parts of the system – e.g. agitator torque, 
vibration sensors, etc.) that the modeler does not know 



  
 
how to incorporate into the mechanistic model are often 
omitted. Empirical models can easily capture these latter 
two sources of variation, but if the structure of the model 
is not properly addressed, empirical models can provide 
misleading results. 

In this paper, we focus on the proper use of data-
driven (empirical) models for the monitoring, control and 
optimization of processes.  In particular, we focus on latent 
variable models because, as we will show, they provide the 
proper structure to allow them to be built from plant data 
and be used for monitoring, control and optimization. But, 
the nature of the data will always determine the limitations 
of these models and one of the themes of this paper is the 
discussion of the limitations imposed by the available data.  
Although some of these issues are not present with the use 
of mechanistic models, the nature of the available data still 
has a major impact on the ability to independently estimate 
many of the mechanistic model parameters. 

 
1.1. Causality 

Perhaps the major issue with data-driven models is the 
issue of whether or not they model causality among the 
variables and if so, what variables are related causally.  
We say that a model causally relates two variables if it 
correctly shows that a change of a certain magnitude in 
one will result in a change of a certain magnitude of the 
other.  In data-driven models causality among variables is 
determined entirely by the nature of the data and by the 
structure of the empirical model.  If independent variation 
is not present in certain manipulated variables, then no 
causality information for the effects of those individual 
variables will be present in the data, nor in any model built 
from them. However, as we will discuss, if a proper 
structure is used for the empirical model (namely, a latent 
variable structure), a causal model may be obtained from 
such process data, although only in a reduced dimension of 
the latent variable space.   

Causal models are not always useful or even desirable 
in some situations (e.g. passive applications such as 
monitoring and soft sensors), but are critical in other 
situations (e.g. active applications such as control and 
optimization).  In situations where the model is to be used 
in a passive sense, such as monitoring or soft sensors, one 
actually wants a non-causal model, one that simply models 
the correlation structure existing among all the variables in 
the plant during normal operation where only “common 
cause” variation is present.  In monitoring, the concept is 
to capture in the model the acceptable “common cause” 
variations in the process and use the model to detect any 
deviations from such behavior. With soft sensors 
(inferential models) the concept is to enable prediction of a 
variable of interest from data collected under such routine 
plant operation. However, in situations such as control and 
optimization where the model is to be used actively to alter 
the operation of the process, causal models are required.  
Similarly, for fault diagnosis or interpretation of causal 
effects among variables some form of causality is required.  

 

1.2. Changing nature of data. 
Over the past few decades with the advent of process 

computers and LIMS systems, companies have collected 
massive amounts of routine plant data.  These data are of a 
very different nature from typical R&D data that are 
usually collected under designed experiments.  Almost all 
statistical texts are aimed at the analysis of this latter type 
of data where all the variables are independently varied. 
Collecting such data on a process involves major 
identification experiments whereby independent variation 
is introduced into all manipulated variables.  Data 
collected under routine operation are unlike these data.  
The number of measured variables is often very large, and 
most of the variables are highly correlated because their 
variation is due to a small number of underlying variations 
(latent variables) such as raw materials, environmental 
factors or normal process variations introduced in 
combinations of variables by operating personnel. These 
variations in the process data define a causal subspace 
within which the process moves, but they do not provide 
causal information on individual variables. This issue lies 
at the heart of defining useful data-driven models 
developed from these data.  Data-driven models, such as 
standard statistical regression models and artificial neural 
network models that do not explicitly recognize the nature 
of these process data are of limited or no value to the 
engineer trying to use these data. 

 
1.3. Concept of Latent Variables and Latent Variable 
Models 

Latent variable (LV) models such as PLS (Partial 
Least Squares or Projection to Latent Structures) are 
unique among regression methods in defining the high 
dimensional regressor and response spaces (X and Y) in 
terms of a small number of latent variables (T) that define 
the major directions of variation in the process data.  The 
basic LV model is defined as: 

X = TPT + E     (1) 
Y = TCT + F     (2) 

where X are (n×k) and (n×m)  matrices of observed values, 
and T=XW* is an (n×a) matrix of latent variable scores (a 
<< k).  P, C and W* are matrices of loadings estimated 
from the data. n is the number of observations, and k and 
m are the number of regressor and response variables. The 
number of statistically significant latent variables a is 
determined by methods such as cross-validation, 
jackknifing, etc. The selection of which variables are x’s 
and which are y’s is the user’s choice and is only 
dependent upon the objective for which the model is being 
developed. All X and Y data are just measurements 
collected from the process with errors (E and F) and the 
concept of dependent and independent variables has little 
place in latent variable models.  The model is symmetric in 
X and Y in that it defines both X and Y in terms of 
underlying LVs (T) and does not force any assumed a 
priori directional dependence among them.  The scores are 
defined in terms of the X’s (T = XW*) simply because 
these variables (X) are usually assumed to be the ones 



  

 

available when the model is to be used. (Maximum 
Likelihood LV methods that define T’s in terms of both X 
and Y are less useful for this reason).  The fitting of LV 
models to plant data is always a well-conditioned and low 
dimensional problem because the LVs are orthogonal, and 
only as many are used as are statistically important to the 
objective.  

Perhaps the most subtle but critical difference 
between LV models and all other regression models is that 
they are the only ones that simultaneously model the X 
and Y spaces.  All other regression models only model the 
Y space, something that is acceptable only if the X space 
is of full statistical rank (i.e. there is meaningful 
independent variation in all x variables).  A model for the 
X space is essential if the effective dimension of the X 
space is less than the number of X variables.  It is this 
simultaneous modeling of the X and Y spaces that leads to 
unique solutions for the LV models and non-unique 
models (an infinite number of solutions) for all other 
regression models.  Through this joint modeling of X and 
Y LV models are the only regression models that are 
unique and interpretable.  This also allows them to handle 
significant amounts of missing data (the algorithms 
automatically impute the missing data to lie on the low 
dimensional X and Y model planes), and it allows for 
checking the integrity of new incoming data through tests 
that check whether the new observations lie on the model 
planes (SPE) and within the LV region defined by the 
training data (T2). These latter points make them ideally 
suited for soft sensor applications and for monitoring 
processes (section 2).  Another underappreciated point is 
that LV models built from plant data do provide causal 
models in the low dimensional LV space (this issue is 
critical for any active use of the models for optimization 
and control – see section 3). 

 
1.4. Other regression methods. 

There has been a proliferation of papers in recent 
years that propose many other data-driven methods for 
building models from process data for inferential models, 
process monitoring, etc. These include Independent 
Component Analysis (ICA), Artificial Neural Networks 
(ANN), and Support Vector Machines (SVM).  In our 
opinion these methods fall within the class of regression 
methods/classifiers that provide no allowance for 
modeling the X-space and thereby assume the data to be 
full rank in any interpretation or use of the models.  
Although we recognize that these methods can be useful in 
some cases, even with process data, they do not provide 
unique models, nor allow for interpretation, nor provide 
any form of causality. They also have limited ability to 
handle missing data or test for outliers in new data.  

 
Monitoring and Diagnosis 

The purpose of process monitoring is to detect 
abnormalities in process operation.  These may range from 

sensor and actuator faults to more complex process 
problems such as catalyst poisoning or fouling. If 
abnormal (out-of-control) operation is declared by the 
monitoring system, the next step is to find the source cause 
of the deviation (fault diagnosis).  Fault diagnosis can be 
conducted by associating process behavior patterns to 
specific faults or by relating the process variables that have 
significant deviations from their expected values to various 
process states such as catalyst poisoning or equipment that 
can cause these deviations.   

A large variety of techniques have been proposed for 
the first approach to associate directly the trends in process 
data to faults (Patton et al., 1989, Frank, 1990, Gertler, 
1998, Venkatasubramanian et al., 2003).  Their common 
characteristic is that they can be implemented on closed 
sets:  The set of all faults to be identified are listed and 
associations between data and faults are created. This 
association can be made by using mechanistic models, 
black-box models such as ANNs and hidden Markov 
models (HMM), or statistical classification techniques 
such as discriminant analysis and SVMs. Their success 
depends on the type of process and the modeling approach 
used.  For electro-mechanical processes that can be 
described accurately with mechanistic models, model-
based residuals can be used for fault diagnosis (Patton et 
al., 1989, Gertler, 1998).  Their successful use has also 
been reported in simulated chemical systems for diagnosis 
of sensor or actuator faults (Mhaskar et al., 2006, El-Farra 
and Ghantasala, 2007). However, their performance would 
be limited for processes that cannot be described 
accurately by mechanistic models.  Often this is due to 
uncertainties, time-varying or nonlinear behavior, 
complexity of the process that makes the development and 
maintenance of the mechanistic model too expensive. A 
detailed comparison of traditional fault detection and 
diagnosis (FDD) approaches and multivariate LV SPC 
approaches contrasts the strengths and limitations of both 
classes of techniques (Yoon and MacGregor, 2000). ANN, 
HMM or SVM based diagnosis systems have been very 
successful in various fields such as medical diagnostics. 
But their success in chemical process diagnosis has been 
limited and they have a high computational (training) cost 
when additional source causes need to be added to the 
fault set or multiple simultaneous faults need to be 
diagnosed.   

Contribution plots provide an indirect approach to 
fault diagnosis by first determining process variables that 
have inflated the monitoring statistics (T2 or SPE). These 
variables are then related to equipment, process behavior 
and disturbances.  This approach relies on the availability 
of expert plant personnel that can interpret the contribution 
plots and associate the trends in the plots with process and 
equipment behavior.  Knowledge-based systems can 
facilitate and automate the interpretation and association 
effort (Cinar et al., 2007).  This approach has significant 
advantages in diagnosing complex process problems.  The 
tradeoff is the availability of expert plant personnel as 



  
 
opposed to an automated monitoring and diagnosis tool. 
 
2.1. Multivariate statistical process monitoring 
 Multivariate statistical process monitoring (MSPM) 
methods are gaining acceptance in industry because they 
provide more accurate information about the process, give 
warnings earlier than the univariate methods, and rely on 
statistics that are easy to compute and interpret.  MSPM 
relies on statistical distance concepts expressed by 
Hotelling’s T2,  representing the deviation within the 
model plane of an new observation on the process from its 
desired state, and the Squared Prediction Error (SPE), 
representing the residual or squared distance of the new 
observation from the model plane. If the process has a few 
variables that are independent, T2 can be computed by 
using all process variables.  If the number of variables is 
large and there is significant collinearity among some of 
them,  principal components analysis (PCA) or PLS can be 
used. If only process variables are used for monitoring, 
MSPM charts are based on principal components (PC).  
When both process and quality variables are used, and the 
two blocks of data need to be related as well, the MSPM 
charts are based on the latent variables (LV) of PLS. Both 
PCA and PLS based charts summarize the information 
about the status of the process by using two statistics, the 
T2 and the squared prediction error (SPE) computed by 
using the information collected at each sampling time.  
The T2 chart indicates the distance of the current operation 
from the desired operation as captured by the PCs or LVs 
included in the development of the PCA or PLS model of 
the process.  Since only the first few PCs or LVs that 
capture most of the variation in the data are used to build 
the model, the model is a somewhat accurate but 
incomplete description of the process. The SPE chart 
captures the magnitude of the error caused by deviations 
resulting from events that are not described by the model. 
The T2 chart indicates a deviation based on process 
behavior that can be explained by the model while the SPE 
chart indicates a significant deviation that cannot be 
explained by the model (the prediction error is inflated). 
The T2 and SPE charts must be used as a pair and if either 
chart indicates a significant deviation from expected 
operation, the presence of an abnormal process operation 
must be declared. 

The T2 statistic based on process variables at sampling 
time k is 

T 2 = x ! x( )T S!1 x ! x( )  

where the vector of mean values x  and covariance matrix 
S are estimated from process data. 
      The T2 charts based on PCs use  

T 2 = ta
TS!1ta  

and follow an F or a Beta distribution with a and n-a  
degrees of freedom for the F distribution, and a/2 and (n-a-
1)/2 for the Beta distribution, assuming that the data 
follow a multivariate Normal distribution (Jackson, 1991). 
a denotes the number of PCs, ta is a vector of a scores and 
S is the a×a estimated covariance matrix. 

The orthogonal distance of the observation x(k) from 
the projection space is the prediction error e(k) gives a 
measure of how close the observation at time k is to the a-
dimensional space and is used for computing SPE(k).  
  SPE(k) = e(k)T e(k) = ej

2 (k) =
j=1

n
! (x j (k)" x̂ j (k))

2

j=1

n
!  

where x̂ j (k) is computed from the PCA or PLS model.  
To include the information about process dynamics in 

the models, the data matrix can be augmented with lagged 
values of data vectors, or model identification techniques 
such as subspace state-space modeling where the state 
variables correspond to LVs can be used (Negiz and Cinar, 
1997).  

 
2.2. Fault Diagnosis 
2.2.1. Fault diagnosis using contribution plots 

When T2 or SPE charts exceed their control limits to 
signal abnormal process operation, variable contributions 
can be analyzed to determine which variable(s) caused the 
inflation of the monitoring statistic and initiated the alarm.  
The variables identified provide valuable information to 
plant personnel who are responsible for associating these 
process variables with process equipment or external 
disturbances that will influence these variables, and 
diagnosing the source causes for the abnormal plant 
behavior. The procedure and equations for developing the 
contribution plots are given in Kourti and MacGregor  
(1996). The computed values of the contributions of each 
process variable are plotted on a bar chart for comparison 
to determine which variable(s) caused the abnormal 
operation in the MSPM charts. 

Investigating the dynamic pattern of contribution plots 
is more effective in fault diagnosis rather than the single 
time snapshot of contributions. Contribution plots can be 
plotted over time following an alarm signal in MSPM 
charts. The variation of the contributions over time can 
also be summarized by plotting sum the contributions over 
a time period (Undey et al., 2003). Rapid detection of the 
variables responsible for inflating the monitoring statistics 
is necessary because the contributions smear over time as 
the effects of the abnormality spreads over other variables. 
On the other hand, inspection of contributions over a 
period is desirable to filter out instantaneous spurs caused 
by measurement noise or errors.  

 
2.2.2. Fault diagnosis with statistical methods 

When a process can be represented by a few PCs, the 
biplots of PCs and SPE provide a visual aid to identify 
data clusters that indicate normal operation or operation 
under a specific fault. For processes that need to be 
described by a higher number of PCs and for automation 
of diagnosis PCA and discriminant analysis techniques can 
be integrated (Raich and Cinar, 1996). The FDD system 
design includes the development of PC models for normal 
operation (NO) and abnormal operation with specific 
faults, and the computation of threshold limits using 
historical data sets collected during normal plant operation 



  

 

and operation under specific faults. If score or residual 
tests exceed their statistical limits, the PC models for all 
faults are used to carry out the score, residuals, and/or 
angle tests to determine the proximity of current process 
operation to one of the data clusters indicating a specific 
fault.  Discriminant analysis is performed by using PC 
models for various faults to diagnose the source cause of 
abnormal behavior.  

The angles between principal coordinate directions of 
current data and regions corresponding to operation with 
different faults can be used for fault diagnosis, to 
complement distance-based methods (Raich and Cinar, 
1997). The method uses angles and a similarity index 
defined by using the angle information (Krzanowski 
1979). A suitable discriminant could be the minimum 
angle between the test point and the mean of the various 
clusters of fault data, with the vertex positioned at the 
mean of NO. Decision boundaries for angular 
discriminants describe open-ended conical regions in 
space. 

A likely cause for abnormal behavior can be assigned 
by pattern matching by using scores, residuals, angles, or 
their combination. Combining the information available in 
scores and residuals usually improves the diagnosis 
accuracy. If none of the known fault models provide an 
adequate match to the observations. These observations 
could be considered as a new group, modeled, and added 
to the discrimination scheme. Unlike NN or SVM based 
diagnosis methods, additional source populations can 
easily be incorporated into the discrimination scheme 
without retraining the whole diagnosis system.  

Detection and diagnosis of multiple simultaneous 
faults is an important concern. Most FDD techniques rely 
on the assumption of a single fault. In a real process, 
combinations of faults may occur. An intervention policy 
to improve process operation may need to take into 
account each of the contributing faults. Diagnosis should 
be able to identify major contributors and correctly 
indicate which, if any, secondary faults are occurring 
(Raich and Cinar, 1995). Since process behavior due to 
different faults is described by different models, it is useful 
to have a quantitative measure of similarity or overlap 
between models, and to predict the likelihood of successful 
diagnosis. Similarity measures can identify combinations 
of faults that may be masked or falsely diagnosed, and 
provide information about the success rates of different 
diagnosis schemes incorporating single and combinations 
of faults. Using these guidelines, multiple faults occurring 
in a process can be analyzed a priori with respect to their 
components, and accommodated within the diagnosis 
framework. 

When the region spanned by the model for one (outer) 
fault contains the model for another (inner) fault, their 
combination may not be easily diagnosed. Idealizing the 
two fault regions as concentric spheres, the inner model 
region is enveloped by the outer model. Consequently, the 
outer fault will be diagnosed and the inner fault will be 

masked. Faults causing random variation about a mean 
(such as sensor noise) move a process less drastically off-
target than step or ramp faults. Ramp or step faults tend to 
be the outer models and mask secondary random variation 
faults. Overlap of regions is likely to exist for most 
processes under closed--loop control, the multiple fault 
scenario is further complicated for such processes. 

 
2.3. Integration of Monitoring and Fault Diagnosis 

It is difficult to predict SPM and FDD techniques that 
would perform effectively for all possible abnormalities a 
process can experience. A monitoring and FDD system 
that includes several techniques as alternatives, 
dynamically analyzes the performance of every technique 
in detection and diagnosis of different faults, and selects 
and prioritizes the most effective technique for each fault 
scenario is desirable. 

A hierarchical agent-based system can create a 
flexible environment for automated and adaptive 
monitoring and FDD of complex chemical processes. A 
combined monitoring and FDD environment with agent-
based systems has been developed at IIT as a part of a 
complex framework for Monitoring, Analysis, Diagnosis 
and Control with Agent-Based Systems (MADCABS). 
MADCABS contains agents with several alternative SPM 
and FDD techniques and an agent management layer that 
dynamically identifies the best performing agents and 
techniques, and provides accurate results by using agent 
performance evaluation, performance-based consensus, 
and adaptation.  MADCABS consists of three hierarchical 
layers (Figure 1). In the physical communication layer, 
software representing the process units and their 
connections, and sensor and actuator representations are 
generated. Communication agents in this layer manage the 
communication between MADCABS and a process or 
simulator and update the values in the sensors and the 
actuators. The process supervision layer has modules for 
data preprocessing, SPM, FDD, control and decision-
making. Each of these modules includes a number of 
agents with different techniques for the same task and they 
collaborate with each other during the execution of their 
tasks. Manager agents in the agent management layer 
monitor the performances of agents in process supervision 
layer under specific states of process operation, rate their 
performances and adjust the confidence level to an agent 
based on past performances under similar operating 
conditions. 

Three different PCA-based techniques are used to 
illustrate this monitoring approach. Agents that use PCA, 
multi-block PCA (MBPCA) and dynamic PCA (DPCA) 
are implemented where PCA and DPCA agents monitor 
each unit in the process and a MBPCA agent monitors the 
entire process using data from each unit. T2 and SPE are 
used by monitoring (fault detection) agents to detect 
abnormal operation. Each monitoring agent generates two 
monitoring statistics, (T2 and SPE). Hence, six statistics 
are observed by six different fault detection agents, and up 



  
 
to six flags can be raised when the monitoring statistic 
goes outside the control limits.  A fault detection organizer 
(FDO) keeps track of all the fault flags given by its fault 
detection agents, declares consensus fault based on a 
consensus criterion, and triggers the diagnosis agent. 
Historical performance-based consensus scheme yields 
fewer missed alarms and faster detection than a voting-
based scheme, since the system has the capability to 
predict which monitoring agents should be assigned a 
higher performance value during consensus on the basis of 
their experiences for similar faults in history (Perk et al., 
2010). Combinations of monitoring agents yield fewer 
false alarms since it is unlikely for all good techniques to 
flag a false alarm simultaneously. The most effective 
criterion was the time-averaged-performance-with-history 
criterion, which uses information about the performances 
of fault detection agents for similar fault magnitudes in 
history and forms consensus decision on the basis of the 
expected performances of fault flagging agents. 
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Figure 1: The interlayer and intralayer information 
    flow in MADCABS 

 
After an abnormality is detected by the FDO, the 

diagnosis organizer (DO) is triggered for the faulty unit. 
DO is responsible for getting estimates from different fault 
discrimination agents, requesting performance estimates 
from the diagnosis manager for each fault discrimination 
agent for the current fault state, forming a consensus 
diagnosis decision via a performance-based criterion, and 
triggering agent adaptation (Figure 2). Classification 
techniques such as Fisher’s discriminant analysis (FDA) 
and PLS discriminant analysis (PLSDA) and diagnosis 
tools such as the variable contribution plots are 
implemented in MADCABS (Perk et al., 2011). For 
example, a PLSDA agent collects data from the unit for 
specific fault types, builds a model relating the type of 
fault to the values of process variables, and uses this model 

to classify the type of fault for new data after the FDO 
declares the consensus fault decision. DO gathers the 
classification results from all fault discrimination agents 
for the unit and forms a consensus classification decision 
on the basis of the agents’ historical performances. If a 
classification agent has a higher misclassification rate for a 
certain fault (lower performance), it is assigned lower 
confidence in the consensus and the agent re-trains its 
model by including the new observation to become more 
reliable for that type of fault in time via adaptation. 
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Figure 2: Fault detection and diagnosis agents 
 
The diagnosis training agent contains process data for 

each known fault type in the process (Figure 2). All of the 
fault discrimination agents require historical data of all 
possible faults. The diagnosis training agent is responsible 
for collecting process data under each fault and building a 
fault data matrix in the training phase. MADCABS also 
allows human operator intervention when unknown faults 
occur in the system and the agents re-train their models in 
real-time by incorporating the process data for newly 
defined fault. For example, PLSDA agent uses the fault 
data matrix and builds another binary matrix to represent 
the fault type. PLSDA relates the fault data to the 
respective fault under which the fault data has been 
collected. FDA uses the same fault data from the training 
agent as PLSDA to create different clusters of faults. The 
multivariate observations are transformed to another 
coordinate system that enhances the separation of the 
samples belonging to each class.  

Contribution plots identify the process variables that 
have contributed significantly to the inflation of T2 and 
SPE statistics. In practice, it is necessary to relate these 
process variables to various faults. Automation of this 
process has been proposed in the literature using 
knowledge-based systems (Tatara and Cinar, 2002). In 
MADCABS fault diagnosis module, the contribution 



  

 

values are used to list the process variables with large 
contributions to the inflation of the statistic that exceed the 
3-standard-deviation confidence limits of NO contribution 
values for each statistic. Since six different monitoring 
statistics are used for fault detection, six different sets of 
variable contributions are available. Only the variables that 
have been listed in the majority of the sets are kept as a 
mapping of the fault signature on process variables to the 
fault type. In the training phase, variable contributions are 
calculated and fault signature is extracted for each known 
fault and a mapping is created. The lists of fault signature 
variables are mapped against the respective fault under 
which the data has been collected. This contribution-plot-
based classification map is used by the variable 
contribution map estimator.  The reason to use the variable 
contribution plots in this closed set scheme without 
incorporating human expert knowledge is to provide 
automation to the classification and diagnosis without a 
KBS.  
 
Fault-tolerant Control 
 

Fault-tolerant control (FTC) aims to prevent 
catastrophic consequences of faults by retuning or 
restructuring the control system to maintain acceptable 
process operation in spite of drastic faults.  Control actions 
are generated to satisfy the process objectives using the 
process information from functional sensors and 
manipulating the available actuators. Based on failures 
diagnosed, the control system is retuned or reconfigured to 
achieve FTC. Early methods for FTC relied on hardware 
redundancies.  As industry transitioned digital control and 
computer control, software redundancies and soft sensors 
gained popularity for FTC.  Use of robust control 
framework and its integration with knowledge-based 
systems was also proposed for FTC (Kendra et al., 1997). 

 FTC begins with the detection of a fault and its 
nature. Depending on the fault, the models used as 
reference for monitoring and control may be updated, soft 
sensors may be introduced and an alternative controller is 
developed and implemented (Maciejowski, 1999, Wang et 
al., 2007, Zmoffen and Basualdo, 2008).  Some FTC 
approaches design a priori the controllers that are 
appropriate for specific modes of process operation and 
switch to that specific controller once it is determined that 
the process has drifted to the corresponding mode (Du et 
al., 2011, Mhaskar et al., 2006, Mhaskar et al. 2007, El-
Farra et al., 2005). Other FTC techniques, such as the 
MADCABS framework, conduct on-demand model 
identification and controller design once an abnormality is 
detected and a fault is diagnosed. The first approach 
enables the development of controllers for a closed set of 
process variations while the latter approach can 
accommodate unknown faults as well. The tradeoff is the 
ability to conduct extensive stability assessment a priori.  
Several methodologies for control retuning and 
reconfiguration are proposed in the literature (Christofides 

and El-Farra, 2005). 
Decentralized supervision and control systems 

became a powerful alternative to traditional centralized 
supervision and control (Rawlings and Stewart, 2008). 
Distributed intelligence and decision-making provide local 
actions that can take into account global priorities and 
constraints. Distributed control systems can prevent the 
spread of disturbances in the process, reduce the smearing 
of failure signature patterns, and deliver nonlinear 
intervention strategies that can be hard or impossible to 
achieve with centralized techniques. 

MADCABS provides a platform for the integration of 
FDD and distributed control to provide FTC. In 
MADCABS (Figure 1), monitoring and diagnosis module, 
controller performance evaluation module, and system 
identification module communicate and coordinate their 
activities with the MPC module. Each module may contain 
a single agent or multiple competing agents that 
communicate with other agents while they perform their 
tasks and learn from the effects of their actions. Controller 
performance is affected when faults occur, and the 
controller performance evaluation agent informs the fault-
tolerant MPC agent when such degradation is detected. 
Next, the controller agent communicates with monitoring 
and diagnosis agents to acquire fault information. Then the 
FTC generates new actions on the actuators and the 
controller performance is assessed.  MADCABS control 
agents utilize a state-space model of the process developed 
by using data-based subspace algorithms. These agents 
learn the best control strategies for different fault types and 
develop preferences on the available inputs. This agent-
based supervision and FTC framework enables dynamic 
evaluation of the performances of agents under changing 
operating conditions, learning and adaptation based on 
historical actions, performances and experience, on-
demand process model identification, controller retuning 
and restructuring, and the improvement of the overall 
performance of the combined framework for FDD and 
control during process operation with performance-based 
consensus building and adaptation. 

Controller performance monitoring determines if the 
control system is working satisfactorily (Huang and Shah, 
1999, Kendra and Cinar, 1997, Schaefer and Cinar, 2004). 
For MPC performance evaluation, in MADCABS a 
historical performance index λhist(k) = Jhist(k)/Jach(k) is used 
where Jhist(k) and Jach(k) are the values of the historical and 
achieved cost function at time k, respectively. Then the 
historical performance index can be fitted into an auto-
regressive (AR) model and its residual e = A(q−1)λhist(k) 
can be monitored. If controller performance degradation is 
detected, then the controller will communicate with the 
diagnosis agent and check the diagnosis message for 
possible faults, and then execute the FTC actions 
according to the faults diagnosed.  Controller performance 
information is also used by the agent-performance-
manager agents to compare the performances of different 
control strategies for each fault. 
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Figure 3. FTC of process with multiple controlled variables. 
(a) strategy 1, (b) strategy 2. 
 

 The agent-based FTC can implement different 
strategies to handle different types of faults. The strategies 
are prioritized such that the control strategy that utilizes 
more prior information has higher priority. The control 
strategies are not guaranteed to work under all possible 
operating conditions. Therefore, the controller 
performance evaluation agents monitor the controllers and 
if a selected strategy is not successful, the FTC would 
switch back to original settings and try the next control 
strategy. For actuator faults, the performance of two 
strategies in decreasing priority  

a. Treat actuator faults as unmeasured disturbance, 
b. Update system model by system identification 

are illustrated for regulating the concentration of a product 
in one reactor that is part of a network of 20 reactors  
(Figure 3).  Both strategies are successful for the test case 
where the system operates at NO until time = 200, when 
the actuator of the interaction flowrate from Reactor 11 to 
Reactor 10 is stuck at a fixed value which is 27% larger 
than the nominal value until the end of the simulation. The 
objective of the fault-tolerant MPC is to recover and 
maintain the dominant species concentration in Reactor 10 

despite the failing flowrate actuator while maintaining 
acceptable operation in all neighboring reactors. If a 
similar faults occurs again in the future, MADCAB will 
recall these performances and will execute the first 
strategy which necessitates less design effort. 
 
Optimization in the Latent Variable Space 
 

In this section we discuss the use of models built from 
historical plant data for optimization and control. This is a 
topic of increasing interest since it is becoming ever more 
difficult in industry to justify the use of designed 
experiments on production scale plants in order to generate 
the causal models needed for conventional optimization. 
As discussed in the introduction section, data from 
historical plant operation do not contain causal information 
on all the manipulated variables as these are rarely all 
varied independently of one another.  This becomes quite 
clear when building latent variable (PLS) models on 
historical operating data.  The effective number of 
independent dimensions in the process is the number of 
latent variables uncovered in the analysis of the data and 
this dimension is usually substantially less than the 
number of process variables.  

However, what one does have is a causal model in the 
reduced dimensional space defined by the new latent 
variables.  The Y data are related to the latent variables (T) 
via equation (2), and so if the latent variables (t1, t2, …) 
can be moved, then the Y variables will be changed 
according. However, the latent variables are not physical 
variables that can be moved directly.  To move these latent 
variables one must move the combinations of the process 
variables that define the latent variables (T=XW*).  Hence 
by manipulating this reduced combination of X variables 
that define the latent variables (T) one can affect changes 
in the Y variables. Some of these X variables are 
manipulated variables that can be changed, others are 
observed disturbances (e.g. raw material properties, 
ambient temperature, etc.) that are to be held at their 
current measured values, and others are measured 
responses (states) that result from these disturbances and 
manipulated variables.  New values of all the individual 
variables in X that can achieve desired new settings of the 
latent variables can be obtained from the X-space latent 
variable model (1). 

Therefore an optimization with the latent variable 
model consists of solving for those values of the latent 
variables (using the Y-space model) that will achieve the 
desired y values, and at the same time for those values of 
the x variables that satisfy the X-space latent variable 
model together with any constraints on the x variables. 
The optimizations are carried out in the low dimensional 
LV space, and yet they effectively provide an optimization 
in the high dimensional process variable space. The 
concepts are best illustrated by a few examples. 

 
Optimization of an over-injection molding process 

Yacoub and MacGregor (2004) developed and 



  

 

implemented a periodic re-optimization scheme on an 
industrial over-molding injection process.  The problem 
was that periodic changes in raw material lots and 
changing ambient temperature and humidity conditions 
(disturbance X variables) in the plant had significant 
effects on the levels and standard deviations of 10 quality 
variables.  To counter this plant operators periodically 
altered the operating conditions of the process (e.g. 
injection velocity profiles, timing sequences, etc.) by 
injecting a number of parts, sending the parts to the QC lab 
for analysis and iterating until the quality was back into an 
acceptable region. 

A nonlinear PLS model was built using the data 
accumulated from these correction periods (8-20 raw 
material properties, 26 process variables, 10 quality 
variables and their std. deviations over multiple 
injections).  Four latent variables were sufficient to 
provide a very predictive model of the process (QY

2 = 
0.88).  A multivariate SPC scheme was set up using T2 and 
SPE statistics.  Every time the T2 went outside its control 
limits, an optimization was then initiated that moved the 
latent variables back to the origin of the latent variable 
space (centre of the control region).  The re-optimization 
was performed in the 4 dimensional LV space using a 
quadratic objective function in the quality variables and 
their standard deviations: 
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subject to constraints that: (i) the raw material properties 
and the ambient temperature and humidity be those present 
at the time, (ii) the SPE be close to zero (ensuring the 
validity of the model); (iii) the T2 lie within the 99% 
control limit (to avoid extrapolation).  The resulting latent 
variable optimization/control scheme has allowed the 
process to be periodically brought back into its control 
region within one injection period by sending down a 
complete set of new process conditions to be 
simultaneously implemented. The scheme has been in 
operation for many years and has resulted in greatly 
improved quality, reduced variation and reduced scrap 
rates. 
 
Optimization of batch operating policies. 

Consider the batch trajectory histories from a large 
pilot plant batch polymerization process shown in Fig. 3 
(Garcia-Munoz et al, 2008). These batch operating 
trajectories (X) together with corresponding chemical 
recipes (Z) and final polymer quality (Y) data were 
collected for all the batch runs on the reactor.  The 
optimization problem is to solve for the complete 9 new 
process variable trajectories (Xnew) and new recipes (znew) 
that will meet desired specifications on 13 quality 
variables (ynew).  In traditional terms this represents a large 
optimization problem involving a very large number of 
variables.  With latent variable models it represents an 

optimization in a 3 dimensional LV space (the dimension 
of the PLS model summarizing all the data): 
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Fig. 4. Process operating trajectories for all runs in a pilot 
plant batch polymerization process 
 
The specifications on the product quality were quite loose 
(mainly upper and lower constraints) except for certain y’s 
with specified values.  As a result there were multiple 
solutions for znew, and xnew, five of which are shown in Fig. 
5 for increasing penalty on time usage.  All of these 
satisfied the specification on the desired quality ydes. The 
case 5 trajectory set (bold curves) were used as they 
provided the minimum batch time solution. 
 

 
Fig. 5.  Product quality 



  
 
Discussion 

The above examples were meant to illustrate how 
models built from historical plant data can be used directly 
to optimize and control processes.  Additional published 
examples include the use of joint PLS models built from 
data on more than one plant to provide optimal scale-up or 
transfer of production between manufacturing sites 
[Garcia-Munoz et. al., 2005, Liu et. al., 2011), and the use 
of multi-block LV models on product development data 
for rapidly developing new products (Muteki et. al., 
2006). 

A limitation of using these models built from 
historical data is that they are limited to the latent variable 
space that defines the data on which they were built.  
Clearly one cannot use them to extrapolate to modes of 
operation that the plant has never used before.  
Mechanistic models are needed for that.  However, as long 
as one is content with finding optimal solutions within the 
space spanned by the plant history, these LV approaches 
allow one to do this with readily available plant data.  In 
some cases it is necessary to augment this data or to 
extrapolate in certain directions.  In those cases very 
powerful multivariate DOE methods can be used in the 
low dimensional LV space to effectively provide powerful 
designs in the high dimensional process space [Muteki and 
MacGregor, 2007]. 
 
Supervisory Model Predictive Control of Batch 
Processes 
  

Although MPC has seen widespread utilization for the 
control of continuous processes, there has been little 
application of any advanced control over the final quality 
of products from batch processes.  An obvious reason for 
this is that the large number of different batch processes 
and the small volume of specialized products produced in 
them could not initially justify the application of advanced 
control.  However, many of these batch products are high 
value added and improving quality and productivity can 
have a major impact on profitability. 

 Control of batch processes is also very different in 
that the quality is only available after the completion of the 
batch and so the main issue is the effective use of batch 
recipe and process variable trajectory information to 
predict the final product quality attributes as the batch 
progresses and then make mid-course corrections at 
various decision points.  Multivariate PLS models have 
been shown to be ideal for extracting such information 
from the time varying process variable trajectories and for 
predicting the end product quality [Nomikos et, al., 2004, 
2005].  Advanced supervisory model predictive control of 
batch processes has been proposed in a number of papers 
[Yabuki & MacGregor, 1995, Flores-Cerillo and 
MacGregor, 2003] and has been commercialized by 
ProSensus (www.prosensus.ca).  The PLS models are built 
from historical batch data and from some limited DOE’s at 
the decision points and QP optimizations are performed to 
provide mid-course corrections in certain variables and 

trajectories.  Different objective functions are often used at 
each decision point.  Again a potentially high dimensional 
control problem is reduced to manageable dimensionss by 
using low dimensional LV models. Recent installations of 
the commercial Advanced Batch Control (ABC) system, 
based on latent variable models, has achieved excellent 
results. Over 80,000 batches have now been controlled 
with the system while running 24/7 and at over 99% up 
time.The standard deviations of all quality attributes on the 
final food product have been reduced by greater than 50% 
and the productivity of the batches has been increased by 
nearly 40%.  The ABC includes all relevant constraints on 
the manipulated variables as well as constraints to ensure 
that all the process variables at the end of the batch are in 
an acceptable region to enable the immediate start of the 
next batch.  
 
Conclusions 
 

This paper provides an overview of recent 
advancements in the use of data-driven methods for the 
monitoring, fault diagnosis, fault-tolerance, control and 
optimization of processes.  Discussion has been limited to 
the use of latent variable models as these are the only data-
driven models that allow for uniquely modeling the 
reduced dimensional spaces in which the process moves, 
and that provide unique, interpretable and causal models 
when built from historical process data. 

Multivariate methods for the monitoring and diagnosis 
are reviewed and contrasted with classical fault detection 
and diagnosis approaches.  The integration of monitoring 
and diagnosis techniques by using an adaptive agent-based 
framework is outlined and its use for fault-tolerant control 
is compared with alternative fault-tolerant control 
frameworks. 

The uniqueness of latent variable models built from 
high dimensional process data and the concept of causality 
in the latent variable space are used to show that these 
models can be used to optimize and control the high 
dimensional processes by optimizing in the low 
dimensional latent variable space.  These concepts are 
illustrated with several industrial examples: the periodic 
optimization of an over-injection molding process to 
counteract raw material and environment changes; finding 
optimal recipes and operating trajectories for an industrial 
batch polymerization process that will meet specifications 
on all final product quality variables in minimum batch 
time; and supervisory MPC of industrial batch processes 
for controlling all the final quality attributes. 
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