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1 Introduction

The supply chain is a system comprising organizations,
decision makers, and technology decision policies that is
responsible for transforming raw materials into finished
products that are delivered to end customers. As expanded
upon later in the paper, the supply chain is traditionally
characterized by counter-current flows of information and
material. Material flows from the raw material suppliers
through the production and distribution facilities to the
end customers, while information, in the form of demands
and orders, flows from the end customers upstream to the
suppliers [5, 9].

The decisions for supply chain management can be
broadly classified into three categories: strategic, tacti-
cal and operational. The strategic decisions are the long
term planning decisions that may include, among others,
where to locate production facilities and warehouses, and
in which technologies to invest. On a medium time range,
tactical decisions include selecting supply chain partners
such as raw material suppliers, transportation companies,
etc. The operational decisions are the short term deci-
sions, which are related to optimally operating the supply
chain. These decisions include planning and scheduling in
the production facilities, and distribution decisions such
as inventory management, ordering and shipping policies,
etc. [79, 34].

Shapiro [82] lists the challenges in enlarging the scope of
strategic planning in supply chains. Among the listed chal-
lenges are integrating manufacturing, purchase and sales
decisions, multiperiod analysis and optimizing the overall
supply chain profits. Stadtler [85] is an excellent overview
paper about advanced planning in supply chains. The au-
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thors emphasize linking organizational units to improve
competitiveness of the supply chain. However, from an
operational viewpoint, they focus on advanced planning
systems (APS) that uses information and communication
technology to coordinate all the flows (material, informa-
tion, financial) in the supply chain to best improve cus-
tomer satisfaction.

The combined strategic and operational planning is a
challenging optimization problem, but researchers have
made efforts to solve it; see, for instance, [74, 91, 97]. The
optimization problems formulated for combined strategic
and operational planning typically involve selecting a sup-
ply chain network from a family of networks or a network
superstructure. Recent developments in combined strate-
gic and operational planning, including handling of uncer-
tainties and multi-objective formulations, are described in
the review paper [63].

At the operational level of the supply chain, the need
for simultaneous decision making at the manufacturing and
the distribution sites to operate a coordinated supply chain
has been recognized. The focus of this paper is on methods
to achieve such simultaneous decisions. This simultaneous
decision making is also known as enterprise wide optimiza-
tion [36].

Modern supply chains operate over multiple locations
and products, and are highly interconnected. In a com-
petitive economy, neglecting these interactions may result
in lower profits. A central coordinator who controls the
supply chain can account for these interactions and pro-
vide optimal operation. However, centralized coordination
may not always be practical for a supply chain as (i) dif-
ferent nodes may belong to different firms, (ii) there may
be a conflict of objectives among nodes (iii) information
sharing may not be perfect and (iv) a centralized decision
maker is the most vital cog in a supply chain, and its fail-
ure may be catastrophic for the supply chain. Therefore,
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distributed coordination structures for supply chain oper-
ation is needed.

We focus here on tailoring model predictive control
(MPC) as a general purpose method for optimal supply
chain operation. Model predictive control uses a dynamic
model of the system to predict future outcomes and solves
a constrained optimization problem over the predicted out-
comes to find the best operational decisions. Therefore, it
is well suited as a basis for supply chain operation because
it makes full use of the dynamic model and knowledge of
the interactions between the various nodes to predict and
optimize an overall supply chain objective function.

We propose cooperative MPC as a tool for coordinat-
ing supply chains as it retains the same structure as tra-
ditional supply chains wherein each node makes its own
local decisions, but instead of optimizing the local objec-
tive functions, the nodes optimize the overall supply chain
objective function. It has been shown that cooperative
MPC can perform as well as centralized MPC under cer-
tain assumptions. Closely related to cooperative MPC,
is noncooperative MPC, in which the nodes have global
knowledge, via information sharing with the other nodes,
but they continue to do local optimizations. It has been
shown that noncooperative MPC can destabilize a stable
system [71, Chapter 6].

In Section 2, we provide a brief review of the differ-
ent control theory based and distributed decision making
approaches to supply chain optimization and operation.
In section 3, we describe the dynamic modeling of sup-
ply chains. In Section 4, we show an example of a two-
tank system which is closed-loop unstable with noncoop-
erative MPC but closed-loop stable using the algorithms
for cooperative MPC presented in Section 5. In section 6.
we implement cooperative MPC on a single-product, two-
echelon supply chain. Finally, we summarize our results
and present future directions of research in Section 7.

2 Literature survey

A well defined supply chain optimization model requires a
detailed dynamic description of the supply chain and an
objective function that captures all the essential costs and
trade-offs in the supply chain. Beamon [9] classifies sup-
ply chain modeling in four broad categories: Determinis-
tic models where all the parameters are known, stochastic
models with at least one unknown parameter (typically de-
mands) that follows a known probability distribution, eco-
nomic game theory based models, and simulation based
models. As pointed out in [75], a majority of these mod-
els are steady-state models based on average performance,

and hence are unsuitable for dynamic analysis. In the re-
view of dynamic models for supply chains, Riddalls et al.
[73] classify the models as continuous time models, discrete
time models, discrete event simulations, and operations re-
search (OR) based models.

The pioneering work of “industrial dynamics” awakened
the control community’s interest in supply chain optimiza-
tion. The industrial dynamics models are the continu-
ous (and discrete) time dynamic models mentioned in [2].
Industrial dynamics captures the dynamics of the sup-
ply chains using differential (or difference) equations, and
therefore, control theory is a natural choice to study sup-
ply chain dynamics. In their simplest form, these models
capture inventory dynamics based on the shipments and
orders leaving the node

Ivi(k) = Ivi(k − 1)−
∑

j∈Dn(i)

Sij(k) +
∑

j∈Up(i)

Sji(k − τji)

in which Ivi(k) is the inventory in node i ∈ I at discrete
time k, Dn(i) is the set of nodes to which node i ships
material and Up(i) is the set of nodes from which node
i receives material. The shipment delay between nodes i
and j is denoted τij , and Sij is the amount shipped by
node i to node j.

In order to compare different methods of supply chain
operation, supply chain performance has to be quantified.
Beamon [8, 9] classify the performance measures in a sup-
ply chain as quantitative measures like cost minimization,
profit maximization, customer response time minimization
and, qualitative measures like customer satisfaction, flex-
ibility etc. An important performance measure that sup-
ply chain operation strives to reduce is the bullwhip ef-
fect, which is defined as the amplification of demand fluc-
tuations as one moves upstream in the supply chain. It
has been observed that the orders placed by a node to
its upstream nodes amplify (with respect to the customer
demand) as one moves towards the supplier in a supply
chain. This effect increases the cost of operating the sup-
ply chain. It has been estimated that a potential 30 billion
dollar opportunity exists in streamlining the inefficiencies
of the grocery supply chain, which has more than 100 days
of inventory supply at various nodes in its supply chain
[44, 43]. Among the reasons cited for the bullwhip effect is
information distortion as one moves upstream in the sup-
ply chain. Information sharing has been shown to alleviate
the bullwhip effect and is part of industrial practice such
as vendor managed inventory (VMI), etc. The other rea-
sons often cited for the bullwhip effect are: (i) the misun-
derstanding of feedback, which occurs because the nodes
do not understand the dynamics of the supply chain, and
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(ii) the use of local optimization without global vision, in
which each node tries to maximize its local profit with-
out accounting for the effects of its decisions on the other
nodes in the supply chain [57]. Centralized operation of
supply chains is best suited to mitigate bullwhip effect,
as it has exact knowledge of the dynamics and complete
information.

Classical control theory

The earliest applications of control theory to supply chains
involved studying the transfer functions and developing
single input single output (SISO) controllers for tracking
inventory to its targets. Frequency domain analysis was
used to analyze and evaluate alternative supply chain de-
signs. In classical control approaches to controlling sup-
ply chain, the nodes were analyzed as linear systems using
Laplace and Z-transforms. In the work of Towill [90], a
block diagram based approach to modeling a node was pro-
posed. The single product node consisted of two integra-
tors to capture the dynamics of inventory and backorders,
while the order rate was the manipulated variable. The
disturbance to the system, market demand, was incorpo-
rated in a feed-forward manner in the model. Time delays
were also incorporated in the model. A feedback control
law was proposed for controlling the inventory deviations
from a target inventory. By varying some of these param-
eters like delay, controller gain etc., a family of models for
a single node called as the input-output based production
control system (IOBPCS) can be studied [42]. The feed-
back law, in its simplest form, takes the form of an order-
up-to policy, that is order up-to the inventory target, if
the current inventory is below its target. This policy can
be viewed as a saturated proportional controller, although
other forms of the controller can also be studied. Upon
having a control policy and after defining other system de-
tails like delays, forecast smoothing etc, the transfer func-
tion of the node can be derived and analyzed [24]. White
[94], Wikner et al. [96] developed a PID controller without
feed-forward forecasting for the node. A review of stability
analysis for the IOBPCS family of models is presented in
Disney et al. [26].

Classical control theory has also been studied for con-
trolling the dynamics of the entire supply chain as well.
Grubbström and Tang [37] provides a review of the input-
output modeling of supply chains and its analysis using
Laplace transforms. Input-output modeling is the ma-
trix form description of the supply chain dynamics. Burns
and Sivazlian [16], Wikner et al. [95] analyzed multieche-
lon supply chains using the block diagram based approach.

They analyzed the effect of ordering policies, delays and in-
formation availability at the nodes to analyze the supply
chain response and bullwhip effect. Burns and Sivazlian
[16] used Z-transforms in their approach and found that
information distortion led to bullwhip effect. Wikner et al.
[95] found out that information sharing and echelon inven-
tory policies (in which each echelon considers inventory in
all the nodes downstream to it) can mitigate bullwhip ef-
fect. Perea López et al. [67], Perea López et al. [66] have
developed a continuous time model to describe a supply
chain. The model is similar to deterministic supply chain
models but uses differential equations to track dynamics.
They simulated the model using a heuristic shipping pol-
icy and studied the closed-loop supply chain under three
different proportional controllers for placing orders. They
developed controllers to track inventory, backorder or a
combination of both. The objective of the paper was to
demonstrate that the model was capable of capturing the
dynamics. Hence, they did not suggest any tuning methods
for the controllers. Lin et al. [51] presented an approach to
analyze the closed-loop stability of a supply chain and an
approach for controller synthesis using a transfer function
approach. The controller policy and shipping policy were
similar to the Perea López et al. [67] paper. They ana-
lyzed stability considering three extreme closed-loop sce-
narios: (i) high inventories and infinite replenishment from
upstream nodes (infinite production),(ii) a low inventory
and infinite replenishment from upstream nodes and (iii)
limited production/supply. The effect of controller gains
on the bullwhip effect was also analyzed. The authors pro-
posed a controller tuning criterion based on frequency do-
main analysis of the Z-transfer functions. Venkateswaran
and Son [93] also studied the supply chain response using
Z-transform and derived stability conditions for the supply
chain. Hoberg et al. [38] applied linear control theory on a
two-echelon supply chain and concluded that order-up-to
policy based on inventory on hand can lead to instabilities.
They found that the use of an echelon policy provides the
best performance. Dejonckheere et al. [25] studied infor-
mation enrichment where in, each node receives the final
customer demand as well as the orders placed by its down-
stream nodes, using a linear control theory based approach
and concluded that information enrichment is beneficial to
the supply chain. Papanagnou and Halikias [64] used a
proportional controller to place orders and analyzed the
bullwhip effect by estimating the state covariance matrix,
for a supply chain responding to a random demand (mod-
eled as a white noise) at the retailer node.

Sarimveis et al. [75], Ortega and Lin [60] provide exten-
sive reviews of classical control approaches to supply chain
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design and operation.

Stochastic optimal control

Stochastic optimal control has been used to obtain order-
ing policies that minimize the expected costs of a node
responding to random demands. We assume that the prob-
ability distribution of the demand is given. In its simplest
form, the inventory control problem can be formulated as
a dynamic optimization problem. The order-up-to policy
is one such policy that is obtained by solving the dynamic
optimization problem. The single node inventory control
problem can be cast as a Markov decision problem. See
Puterman [69] for details on setting up the problem and
algorithms. The order-up-to policy is optimal for indepen-
dent and identically distributed demands as shown in the
seminal paper by Clark and Scarf [23]. By considering set-
up costs, it can be shown that the (s, S), s < S policy,
in which the node orders S − Iv whenever the inventory
Iv falls below s, is the optimal policy for an infinite hori-
zon problem; see for instance [92, 39, 30]. Optimality of
similar policies have been shown for Markovian demands
[84, 78], compound Poisson and diffusion demands [12],
etc. These results, derived for a single inventory hold-
ing facility, have been extended to multiechelon systems,
[29, 81, 27, 33, 20]and capacitated systems; [47, 31, 32],
to better capture the dynamics of modern supply chains.
Chen et al. [21, 22] quantify the bullwhip effect for order-
up-to policy under exponential smoothing and moving av-
erage forecasts. We refer the readers to the books by Zipkin
[98] and Axsäter [4] for more details.

Distributed decision making in supply
chains

Supply chain decisions have traditionally been made by
managers at each node. From a decentralized operation
perspective, supply chains can be analyzed using the tools
of game theory. In decentralized decision making, the pay-
off (profits) for each node depends not only on its decisions,
but also on the decisions made by the other nodes. There-
fore, supply chain operations can be viewed as a strate-
gic game between the various nodes. Game theory based
analysis can be further classified into noncooperative and
cooperative game theory.

In noncooperative game theory, each node simultane-
ously makes decisions and then the payoff is obtained.
Such games are characterized by the Nash equilibrium that
is the set of game outcomes for which no node has a unilat-
eral incentive to move away from the outcome. At the Nash

Equilibrium, no node can increase its payoff by changing its
decision while the choices made by the other nodes remain
the same. This result is attributed to Nash in his seminal
paper [59]. Related to Nash equilibrium is the Stackelberg
equilibrium attributed to the mathematician von Stackel-
berg. In a Stackelberg game the nodes make their decisions
sequentially. We refer the reader to the excellent text by
Başar and Olsder [7] for detailed analysis into game the-
ory tools and methods. Leng and Parlar [45], Cachon and
Netessine [18] provide excellent reviews of game theoretic
methods applied to supply chains.

If the nodes make the supply chain optimal decision
in a noncooperative game, then the supply chain is said
to be coordinated [19]. One of the methods to coordi-
nate supply chains is to modify the interactions between
the nodes of the supply chain (for example, by adjusting
contracts) so that each node, optimizing its local objec-
tive, makes the globally optimal decision. For example,
a two node newsvendor type supply chain can be coordi-
nated using buy-back contracts. A two node newsvendor
supply chain consists of a retailer and a supplier. The
retailer faces a random demand with a known probabil-
ity distribution at each period. In order to respond to
this demand, the retailer buys product from the supplier
at the beginning of the period. The supplier is assumed
to ship products instantaneously. In the buy-back con-
tract, the supplier agrees to buy back unsold stock at the
end of the season from the retailer. The buy-back con-
tract transfers some of the risk of maintaining inventory
to the supplier and divides the supply chain optimal profit
(the centralized profit) among the partners. In contrast,
the performance of the wholesale (price only) contract, in
which the supplier supplies product at a wholesale price
to the retailer, can be arbitrarily poor. Under wholesale
contract, the retailer takes all the risk of excess inventory
and orders safely[17, 19]. Perakis and Roels [65] quanti-
fied the inefficiencies in the supply chain (the ratio of the
decentralized supply chain profits to that of the central-
ized supply chain profits) for the price only or wholesale
contracts. Moses and Seshadri [56] showed that a two-
echelon supply chain can be coordinated only if the man-
ufacturer agrees to share a fraction of the holding costs of
the retailer’s safety stock. Golany and Rothblum [35] also
studied linear reward/penalty as a contract modification
to induce coordination in the supply chain. Li and Wang
[49] provide a survey of the various coordinating mecha-
nisms. Axsäter [3] studied the Stackelberg game in the
supply chain. Axsäter [3] assumed that the manufacturer
is the leader in the Stackelberg game. The manufacturer
minimized the system-wide costs and declared its policies
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to the retailers. The retailers then optimized a modified
cost function that considers the policies of the manufac-
turer. They implemented an iterative optimization algo-
rithm such that the policies at every iterate was better
than the initial policy. The authors also noted that the
iterations may not converge to the centralized solution.

On the other hand, cooperative game theory is a branch
of game theory that studies the benefits of coalitions. A
coalition between nodes is formed when the nodes coop-
erate. These studies allocate payoffs to various coalitions
and these payoffs are analyzed via different techniques like
Shapley value [83] or nucleolus [76]. Raghunathan [70]
studied incentives for nodes to form information sharing
partnerships. Leng and Parlar [46] studied different coali-
tions in a three-echelon supply chain. For example, if the
manufacturer and distribution center form a coalition, then
it is assumed that the orders placed by the retailer are
known to both the nodes. Under the grand coalition, the
final customer demand is shared among all the three nodes.
Leng and Parlar [46] defined the payoff of a coalition as the
cost savings obtained when extra information due to the
coalition is available to the nodes. Using the payoff of all
the possible coalitions, they studied the stability of dif-
ferent coalitions. The authors noticed that the bullwhip
effect is reduced when the manufacturer and distribution
center formed a coalition. Bartholdi and Kemahlioğlu-Ziya
[6] studied a two-echelon supply chain in which a manufac-
turer supplies to multiple retailers. They used the concepts
of cooperative game theory to find profit allocation rules
after cooperation. Since the value allocation was in the
core of the cooperative game, it ensured that none of the
participants in the coalition have incentive to leave. Na-
garajan and Sošić [58] provide a comprehensive survey of
cooperative game theory applications to supply chains.

MPC for supply chains

Perea López et al. [68] developed a detailed multi-product
model including time delays and a mixed integer model for
the manufacturing facility. They modeled the shipment
rates with a “best I can do” policy that satisfies all the
accumulated orders at a given time if stocks are available;
otherwise it ships all of its available stock. This model was
used for supply chain control using MPC maximize profit.
They considered three cases in their implementation: a
centralized case, and two other cases that they termed “de-
centralized” control. In one decentralized control scheme,
they optimized the mixed integer production facility while
operating the supply chain under a nominal control pol-
icy (like a proportional controller for the orders). In the

other decentralized control scheme, they optimized only
the orders in the supply chain subject to a nominal pro-
duction schedule. The authors advocated the use of “cen-
tralized MPC”. Mestan et al. [55] developed a supply chain
model using a hybrid systems approach and implemented
centralized, decentralized, and noncooperative MPC as de-
scribed in [72]. They compared customer satisfaction and
supply chain profit for the centralized and decentralized
MPC. The objective functions were chosen such that the
retailer objective of maximizing customer satisfaction was
in conflict with the objective of other nodes. Decentralized
MPC had the highest customer satisfaction metric but the
supply chain operated at a loss. The bullwhip effect was
high in the decentralized approach. In centralized MPC,
the supply chain found the trade-off between maximizing
customer satisfaction and minimizing overall supply chain
costs. The centralized approach showed a small bullwhip
effect because all the shipment and order rates were de-
termined by a central policy. The authors also noted that
the performance of noncooperative MPC was much better
than the performance of decentralized MPC. Dunbar and
Desa [28] solved a three-echelon, one-product supply chain
using a noncooperative MPC. They developed a bidirec-
tionally coupled model, by considering two types of delay:
pipeline delay or the transportation delay and a first or-
der material delay to quantify delays in clearing backlogs.
The algorithm was found to be better than a nominal con-
trol policy. They also observed that the ordering policy
was not very aggressive, indicating that the bullwhip effect
may be mitigated by distributed MPC. Seferlis and Gian-
nelos [77] presented a two-layer MPC strategy for multi-
echelon supply chains. They used MPC to find shipments
and orders placed to other nodes, subject to a total order
constraint. The total orders placed was the manipulated
variable of a PID controller to track inventory. The authors
suggest that the performance can be improved by better
tuning the PID controller and suggest a bi-level optimiza-
tion problem in which the PID controller is replaced with
an optimization-based controller. Kempf [40] and Braun
et al. [15] developed a model predictive control framework
for the supply chain in the semiconductor industry. They
developed models that are specific to the semiconductor in-
dustry. Braun et al. [15] implemented decentralized MPC
and studied the control performance under plant model
mismatch. Kempf [40] described a two-loop optimization
technique for the supply chain optimization problem. The
coarse first loop optimizer is used to generate the inventory
and order setpoints (reference trajectories), while the fine
inner loop MPC is used to track these setpoints. Bose and
Penky [14] also used an MPC framework. They focused on
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forecasting the demand signal and studied the sensitivity of
the MPC framework to fluctuations in the demand signal.
Maestre et al. [52] proposed a cooperative MPC algorithm
for a two-layer supply chain. In their formulation, each
node minimized its local objective function, not only over
its own decision space, but also over the decision spaces of
the other nodes. Based on the multiple optimal objective
function values (one for each node), the algorithm deter-
mined a consensus input. The drawback of the approach
is that it is not scalable for large supply chains with mul-
tiple nodes. Bemporad et al. [11] showed the applications
of hybrid MPC [10] on a centralized supply chain man-
agement problem. Li and Marlin [48] implemented robust
MPC using an economic objective function on a multiech-
elon supply chain.

While it has been established that supply chain opera-
tions can benefit from a rolling horizon optimization ap-
proach, the closed-loop properties of the supply chain un-
der this operations policy have not been studied. As shown
in Section 4, the rolling horizon approach, while being fea-
sible and optimal at each sample time, can lead to arbitrar-
ily poor closed-loop operation (instability). On the other
hand, closed-loop properties of the rolling horizon imple-
mentation of optimal control policies have been studied
intensely in the control community during the last twenty
years, and a wealth of results and design guidelines are
available. See [54, 71] for comprehensive reviews of these
results. In this paper, we extend the recent closed-loop
stability results on distributed, cooperative MPC [71, Ch.
6], [86], and establish that any dynamic system that can
be stabilized by centralized MPC can be stabilized by co-
operative MPC. We show in Section 4, that while non-
cooperative MPC can render a simple system of integra-
tors closed-loop unstable, we can easily design cooperative
MPC schemes for the same system that have guaranteed
stability and robustness properties. In the following sec-
tion, we show that the supply chain can be modeled as a
system of integrators.

3 Dynamic modeling of the supply
chain

A dynamic model is the heart of any feedback control al-
gorithm. While developing a dynamic model of a supply
chain, the components of a supply chain (like the produc-
tion facility, distributor, retailer etc.) are called as nodes.
The supply chain network is the vertices or arcs, which
depict the connections between the various nodes. We as-
sume that the network is fixed and given to us. We denote

the set of nodes by I. The nodes to which a particular
node supplies material are called its downstream nodes,
while the nodes from which a particular node obtains ma-
terial are called its upstream nodes. For each node i ∈ I,
we define the set Up(i) as the set of all nodes j ∈ I that
are connected by an arc with i and are upstream to node
i. Similarly, we define the set of downstream nodes to i as
Dn(i). For each arc in the the supply chain, material flows
downstream and orders (or information) flows upstream.
The supply chain in the form of nodes and arcs is shown
in Figure 1.

Suppliers Distibution
Centers

Production

Facility

Retailers

Information Flow

Product Flow

C
U

S
T

O
M

E
R

S

Figure 1: Supply chain as nodes and arcs.

From a classical chemical engineering perspective, each
node can be modeled as two tanks, the inventory tank and
the backorder tank. The flows out of the inventory tank
are the shipments to the downstream nodes and the ship-
ments from the upstream nodes make up the flow into the
inventory tank. The flows out of the backorder tank are
the shipments to the downstream nodes, which alterna-
tively can be viewed as the orders that have been met;
the flows into the backorder tank are the orders arriving
at the node. For nodes that handle multiple products, we
have as many inventory and backorder tanks as the number
of product handled by the node. We develop the supply
chain model for a single product, but the model can be
easily generalized for multiple-products. Figure 2 depicts
the ‘tanks’ model of a node in the supply chain handling
a single product.

Each node i has two states: the inventory in the node,
Ivi, and the backorders in the node, BOi; two input
vectors: the shipments made to each downstream node
j ∈ Dn(i), Sij , and the orders placed to each upstream
node j ∈ Up(i), Oij . The shipments coming from the up-
stream nodes Sji, j ∈ Up(i) and the orders arriving from
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Orders
Back-

Decision Maker
(policy implementer/ optimizer)

(placed to

upstream nodes)

(from upstream nodes)

(placed by
downstream nodes)

(to downstream nodes)

(Demands satisfied)

Information sharing

Inventory

Orders Orders

Shipments

Shipments

Figure 2: Tank analogy for modeling a node.

the downstream nodes Oji, j ∈ Dn(i) are the disturbances
arriving to the node. Denoting discrete sample time by
integer k, the dynamic equations for node i can be written
as

Ivi(k + 1) = Ivi(k) +
∑

j∈Up(i)

Sji(k − τji)−
∑

j∈Dn(i)

Sij(k)

(1)

BOi(k + 1) = BOi(k) +
∑

j∈Dn(i)

Oji(k)−
∑

j∈Dn(i)

Sij(k)

(2)

in which τji is the transportation delay. We assume
that there are no delays for order transfers between the
nodes. Denoting xi(k) =

[
Ivi(k) BOi(k)

]′, ui(k) =[
Sij Oij′

]′
, j ∈ Dn(i), j′ ∈ Up(i), the previous dynamic

equations for the nodes can be written in the familiar state-
space form for MPC applications

xi(k + 1) = Aiixi(k) +Biiui(k)

+
∑

j∈Up(i)

B
τji

ji uj(k − τji) +
∑

j∈Dn(i)

Bjiuj(k)

The decision maker shown in Figure 2 can take several
different forms:

• Each decision maker can implement a simple order-
ing policy that depends only on the incoming ship-
ments and orders. Such an ordering policy could be a
PI controller to control the inventory levels, or (s, S)
policies that are obtained from stochastic inventory

control optimization. Such decision makers are imple-
mentations of classical control theory approaches to
supply chain control.

• Each decision maker can implement an MPC con-
troller to regulate its local states by optimizing a local
objective function (for example, the profit function for
the node). The nodes can share information regarding
upstream shipments, downstream orders, etc. This
form of control is termed noncooperative MPC.

• Each decision maker can implement an MPC con-
troller that considers the effect of the nodes’ decision
on the entire supply chain (for example, each node op-
timizes the supply chain profit function). The nodes
still share information. This form of control is termed
cooperative MPC.

• We can replace all the decision makers at the nodes
with a single decision maker at the supply chain level.
This single decision maker makes decisions for all the
nodes. This form of control is termed centralized
MPC.

The overall supply chain dynamic model is the individual
node dynamic equations collected for all nodes i ∈ I. The
only required change in the node dynamic equation is for
the retailer and the production facility nodes.

Retailer models

For the retailer nodes i ∈ R, the dynamic equations are
modified as,

Ivi(k + 1) = Ivi(k) +
∑

j∈Up(i)

Sji(k − τji)− Sic(k)

BOi(k + 1) = BOi(k) + Dmic(k)− Sic(k)

in which Sic is the shipment made by the retailer, and Dmic

is the customer orders (demands). The only disturbances
in the overall supply chain model are the customer demands
d =

[
Dmic

]′
, i ∈ R, which drive all the flows (shipments

and orders) in the supply chain.

Production facility models

The production facility needs to be modeled separately be-
cause material conversion takes place in this node. In mul-
tiple product supply chains, the same production facility
handles multiple products. Thus a model for the produc-
tion facility needs to incorporate a scheduling model to
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optimize the sequence of production. In this paper, we as-
sume that the production facilities belong to the first ech-
elon. We further assume an ideal supplier of raw materials
to the production facilities, implying that we have infinite
supply of raw materials without transportation delay.

Planning models. In this paper, we shall use an “ap-
proximate production model” to model the production fa-
cility. In the approximate production model, we replace
the detailed scheduling model with convex constraints that
represent the feasible region of production. This idea is
similar to the process attainable region [89]-a convex region
of production quantities for which there exists some feasi-
ble schedule. The process attainable region can be com-
puted by using computational geometry tools [89, 53, 88]
or parametric programming tools [50]. Let M be the set
of production facility nodes. Then, for each i ∈ M, the
modified dynamic equations for the final products are

Ivi(k + 1) = Ivi(k) + Sip(k)−
∑

j∈Dn(i)

Sij(k)

BOi(k + 1) = BOi(k) +
∑

j∈Dn(i)

Oji(k)−
∑

j∈Dn(i)

Sij(k)

f(Sip(k)) ≤ 0

in which Sip are the manipulated inputs denoting produc-
tion during the period. Note that, for multiproduct pro-
duction facilities, each of the inputs Slip for products l ∈ L
are coupled by the convex production feasibility constraint.
The set L represents the set of products.

f(S1ip(k), S2ip(k), . . . , Slip(k), . . .) ≤ 0

Scheduling models. The state task network (STN) ap-
proach is probably the most popular method to model
a production facility in which multiple products are pro-
duced using shared resources [41, 80]. In STN modeling,
the final products, intermediates and raw materials are
states that are processed using tasks like reactions, sepa-
ration, etc. These tasks can be carried out in units capable
of handling multiple tasks. A detailed schedule is the se-
quence of operation of the tasks in the units so that a
production objective can be met at minimal cost without
violating the scheduling constraints.

Detailed scheduling models are formulated as mixed in-
teger linear programs (MILPs) or mixed integer nonlinear
programs (MINLPs). If we chose to model the produc-
tion facility using a detailed scheduling model, then the
resulting supply chain MPC problems become mixed inte-
ger programs. Although, research progress has been made

in the theory of MIQP and hybrid MPC (see [10]), in this
paper, we do not consider detailed scheduling models in
the formulation of the supply chain model.

Summary

In this section, we wish to bring to the readers’ attention,
three salient features of the supply chain dynamic model
presented in this section.

Uncontrollable local models. Controllability implies
that there exist inputs that can move the state of the sys-
tem from any initial state to any final state in finite time.
Examining (1) and (2) for the inventory and backorder
balance for node i, we observe that while nodes j ∈ Up(i)
respond to orders Oij placed by node i, node i has no
knowledge of the subsequent dynamics of its own orders.
Therefore, we need to provide the node some model of how
its orders affect the later shipments coming into the node.
To do so in a noncooperative or decentralized control ar-
rangement, we track another state (or output) Ipi termed
the inventory position. The dependence of orders on in-
coming shipments is modeled through the function g(·).

Ipi(k+ 1) = Ipi(k) +
∑

j∈Up(i)

g(Oij(k− τji))−
∑

j∈Dn(i)

Sij(k)

In the centralized control framework, the actual dynamics
of the entire supply chain is available to the decision maker,
and the relationship of the orders at node i to its sub-
sequent incoming shipments is captured by the upstream
nodes backorder balance equations and the supply chain
performance metric. As we show later in the paper, the
same argument also holds for cooperative MPC.

Unstable models. The supply chain is modeled as a
system of integrators whose response to an input step
change is a ramp. Such systems need to be stabilized in the
closed loop, otherwise the states can keep growing (think
of it as backorders keep rising as time increases). There-
fore, we emphasize establishing closed-loop properties of
the algorithms that we propose for supply chain optimiza-
tion.

Stabilizable centralized model. We notice that all the
nodes belonging to the manufacturing facilities are control-
lable because we manipulate the production rates. There-
fore, the manufacturing nodes do not require an inventory
position model. Since the manufacturing facility model has
this property, the overall supply chain model is also con-
trollable. The controllability of the centralized model is an
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important feature that we use to design closed-loop stable
centralized and cooperative MPC frameworks for supply
chain optimization.

4 Two-tank example

In this section, we introduce centralized, cooperative and
noncooperative MPC using the two-tank system shown in
Figure 3. We choose the two-tank system because its
model is a system of integrators like the supply chain
model.

As noted previously, in model predictive control, at each
time a constrained optimization problem is solved with a
future trajectory of control inputs as decision variables.
The control objective is based on a forecast of the system
behavior coming from the dynamic system model. Only
the first input of the optimal input sequence is injected
into the system. The system then evolves from its current
state given the applied optimal input, and the procedure is
repeated at the next sample time. Although this procedure
is reasonable and has been used in many situations, there
is no a priori guarantee that the trajectory of the closed-
loop system remains close to the forecast made during each
of the open-loop optimizations. Indeed, keeping the actual
closed-loop trajectory close to the optimal open-loop fore-
cast is the focus of stability theory. With careful design
of the online optimization problems, we can ensure that
the closed-loop system trajectory is also optimal given the
control objective [71, Chapter 2].

In this section, we introduce the cooperative and nonco-
operative distributed MPC algorithms and show that we
can stabilize the system using cooperative MPC (see Fig-
ure 4). The theory to ensure stability of cooperative MPC
is presented in the next section.

Models and objective functions

The system, shown in Figure 3, consists of two tanks
with levels x1 and x2. The two tanks are considered
as two separate subsystems for implementing distributed
MPC. Subsystem-1 controls the level x1 and has the in-
puts u11, u12, u13 at its disposal. The input u12 drains
water from the first tank into the second tank. Input u13

directly drains water from the first tank, but it is assumed
that manipulating input u13 is more expensive than ma-
nipulating input u12. Subsystem-2 controls the level x2

and has the inputs u21 and u22 at its disposal. The input
u21 recycles a fraction of the water back into the first tank
according to the recycle ratio r. Similar to subsystem-1,

u11

(1 + r)u21 ru21

x2

x1

u12

u13
u22

u21

Figure 3: The two-tank system.

input u22, which directly drains water out from subsystem-
2, is assumed to be more expensive to operate compared
to input u21. To add some complexity, we assume that the
recycle flow from subsystem-2 to subsystem-1 introduces a
further disturbance in the system,which is perfectly mod-
eled. This disturbance introduces water into the first tank
at a rate proportional to the flow out of the second tank
through u21. Such interactions can arise when there is
tight heat and mass integration in chemical plants.

The subsystem-1 model for the two-tank system is

x+
1 = 1︸︷︷︸

A1

x1+
[
1 −1 −1

]︸ ︷︷ ︸
B11

u11

u12

u13


︸ ︷︷ ︸
u1

+
[
1 + r 0

]︸ ︷︷ ︸
B12

[
u21

u22

]
︸ ︷︷ ︸
u2

The subsystem-2 model for the two-tank system is

x+
2 = 1︸︷︷︸

A2

x2 +
[
0 1 0

]︸ ︷︷ ︸
B21

u11

u12

u13


︸ ︷︷ ︸
u1

+
[
−1 −1

]︸ ︷︷ ︸
B22

[
u21

u22

]
︸ ︷︷ ︸
u2

The overall (centralized) model of the two-tank system is
the minimum realization of

x+ =
[
A1 0
0 A2

]
︸ ︷︷ ︸

A

x+
[
B11 B12

B21 B22

]
︸ ︷︷ ︸

B

u

in which x = (x1, x2) and u = (u11, u12, u13, u21, u22).
Each input is constrained to lie between [0, ū] in which
0 corresponds to the valve completely closed and ū corre-
sponds to the valve completely open.
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We define stage costs `1(·) and `2(·):

`1(x1, u1) = x2
1 + u2

11 + u2
12 + 100u2

13

`2(x2, u2) = x2
2 + u2

21 + 100u2
22

To demonstrate cooperative MPC, we follow the steps
outlined in Section 5 and design the terminal penalty Vf (·)
as the solution to the Riccati equation using the stage costs
above. The terminal penalty is:

Vf (x1, x2) =
[
x1

x2

]′ [1.76 0.44
0.44 1.51

] [
x1

x2

]
The feedback controller corresponding to the terminal
penalty is κ(x) = Kx.

For noncooperative MPC, we use the following terminal
penalties:

V 1
f (x) = 1.76x2

1 V 2
f (x) = 1.51x2

2

We define the cost function for each subsystem as

V 1,β
N (x1,u1,u2) =

N−1∑
i=0

`1(x1(i), u1(i))

+ βV 1
f (x1(N))

V 2,β
N (x2,u1,u2) =

N−1∑
i=0

`2(x2(i), u2(i))

+ βV 2
f (x2(N))

The overall cost function is:

V βN (x,u) =
N−1∑
i=0

`1(x1(i), u1(i))

+
N−1∑
i=0

`2(x2(i), u2(i)) + βVf (x(N))

The centralized MPC problem can now be defined as

P(x) : min
u
V βN (x,u)

s.t. x+ = Ax+Bu (3)

u = (u1,u2) ∈ UN1 × UN2

in which ui = (ui(0), ui(1), . . . , ui(N − 1)), u =
(u1,u2), x = (x1, x2), and N is the length of the
horizon. The input constraint set for subsystem-1
is U = {u | ui ∈ [0, ū], i ∈ {11, 12, 13}}. Similarly, U2

is the input constraint set for subsystem-2, U2 =
{u | ui ∈ [0, ū], i ∈ {21, 22}}.

Distributed MPC algorithms

In this section, we present the distributed MPC algorithms
[71, Chapter 6]. It is interesting to note that the two-
tank system presented in this section does not satisfy the
assumptions presented in Chapter 6 of [71] for stabilizing,
cooperative MPC. We shall use the new theory developed
in Section 5 to establish stability.

Parallel optimization algorithm. Consider the opti-
mization problems in variables y1, y2:

J1(v2) : min
y1

V1(y1, v2), s.t y1 ∈ Ω1

and
J2(v1) : min

y2
V2(v1, y2), s.t y2 ∈ Ω2

We now present the parallel optimization algorithm, which
is a Gauss-Jacobi type of algorithm discussed in Bertsekas
and Tsitsiklis [13], Chapter 3. We assume that the con-
straint sets Ω1, Ω2 and the objective function V1(·), V2(·)
are convex.

Algorithm 1 (Parallel optimization).

Data: Initial values y(0)
1 , y

(0)
2 , pm ≥ 0, ω ∈ (0, 1),

Problems J1(v2), J2(v1)
Result: Iterates y1, y2

Set p = 0
while p < pm do

Subsystems share y(p)
i , i ∈ {1, 2} with each-other.

Solve J1(y(p)
2 ) to obtain yo1(y(p)

2 ).
Solve J2(y(p)

1 ) to obtain yo2(y(p)
1 ).

Set (y(p+1)
1 , y

(p+1)
2 ) =

ω(yo1(y(p)
2 ), y(p)

2 ) + (1− ω)(y(p)
1 , yo2(y(p)

1 )).
Set p = p+ 1.

end

Set yi = y
(pm)
i , i ∈ {1, 2}.

Noncooperative MPC. The local subsystem MPC op-
timization problems for noncooperative MPC is defined as
(for i ∈ {1, 2}):

Pnci (xi,vj) : min
u
V i,βN (xi,u1,u2)

s.t. x+
i = Aixi +

∑
l∈{1,2}

Bilul (4)

ui ∈ Ui, uj = vj , j 6= i

Algorithm 2 is the noncooperative MPC algorithm.
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Algorithm 2 (Noncooperative MPC).
Data: Starting state x1(0), x2(0), initial guess

ũ1(0), ũ2(0), pm ≥ 0, ω ∈ (0, 1)
Result: Closed loop x(k), u(k), k ∈ I≥0

Set k = 0
while k ≥ 0 do

Implement Algorithm 1 for problems
Pnc1 (x1(k), ũ2(k))) and Pnc2 (x2(k), ũ1(k)) with
initial values (ũ1(k), ũ2(k), pm, ω).
Obtain input ui(k) = ui(0;xi(k)), i ∈ {1, 2}.
Set
xi(k + 1) = Aixi(k) +

∑
l∈{1,2}Bilul(k), i ∈ {1, 2}.

Obtain the warm start as:
ũi(k + 1) = (ui(1;xi(k)),ui(2;xi(k)), . . . ,
ui(N − 1;xi(k)), 0), i ∈ {1, 2}.
Set k = k + 1.

end

Cooperative MPC. The local subsystem MPC opti-
mization problems for cooperative MPC are defined as (for
i ∈ {1, 2}):

Pci (x,vj) : min
u
V βN (x,u1,u2)

s.t. x+ = Ax+Bu (5)
u = (u1, u2), ui ∈ Ui, uj = vj , j 6= i

Algorithm 3 is the cooperative MPC algorithm.

Algorithm 3 (Cooperative MPC).
Data: Starting state x(0), initial guess ũ1(0), ũ2(0),

such that VN (x,u) ≤ V̄ , pm ≥ 0, ω ∈ (0, 1)
Result: Closed loop x(k), u(k), k ∈ I≥0

Set k = 0
while k ≥ 0 do

Implement Algorithm 1 for problems
Pc1(x(k), ũ2(k)) and Pc2(x(k), ũ1(k)) with initial
values (ũ1(k), ũ2(k), pm, ω).
Obtain input sequence ui and input
ui(k) = ui(0;x(k)), i ∈ {1, 2}.
Set
x(k + 1) = Ax(k) +Bu(k), u(k) = (u1(k), u2(k))
Obtain the warm start as:
ũi(k + 1) = (ui(1;x(k)),ui(2;x(k)), . . . ,
Kiφ(N, x, (u1,u2))), i = {1, 2}
Set k = k + 1.

end

In Algorithms 2 and 3, ui is the output of the opti-
mizations obtained by implementing Algorithm 1. The
first input in the sequence ui is denoted by ui(0;x), in

which x denotes the state for which we have calculated
the input. We denote the state at the lth time instance
evolving from x at time 0 under the input sequence u with
φ(l;x,u). We introduce parameters V̄ > 0, and the linear

gain K =
[
K1

K2

]
in Algorithm 3. These two parameters

along with the parameter β multiplying the terminal cost
functions are used to design closed-loop stable cooperative
MPC in Section 5.

Notice that we use the same parallel optimization algo-
rithm in both noncooperative and cooperative MPC. The
attractive closed-loop properties of cooperative MPC is by
the design of the subsystem optimization problems. In
noncooperative MPC, each subsystem minimizes its local
control objective function V i,βN (xi,ui). This control objec-
tive function depends on the shared input sequence of the
other subsystem (via the system dynamics). In cooperative
MPC, each subsystem still solves for its local decision vari-
ables (that is, the size of the optimization problem solved
by each subsystem in cooperative as well as noncoopera-
tive MPC remains the same), but the subsystems minimize
the overall objective function V βN (x,u).

Example

We now revisit the two-tank example and implement coop-
erative, noncooperative and centralized MPC. The system
starts at steady state with tank levels (7, 7) and all valves
closed. At time t = 0, we change the setpoint of the two
tanks to level (3, 3) and all valves closed.

The responses are shown in Figure 4. In noncoopera-
tive MPC, each subsystem uses the cheap input u12, u21

to change the tank levels; unaware that this choice of in-
puts leads to instability by introducing more water into the
system. The subsystems manipulate the cheap inputs be-
cause the influence of their inputs on the other subsystem
is not captured in the noncooperative MPC optimization
problem. At each iteration, the two subsystems, optimiz-
ing independently, harm each other because they do not
want to operate the expensive valves u13 and u22. In co-
operative MPC, subsystem-2 realizes that operating valve
u21 is not desirable, because it optimizes the overall ob-
jective function. The subsystems now judiciously use the
expensive valves to maintain stability.

5 Cooperative MPC

Stewart et al. [86] present a cooperative MPC algorithm
that is stabilizing for only a subset of models that can be
stabilized by centralized MPC. Unfortunately, the supply
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chain model cannot be stabilized using the methods pro-
vided in [86]. In this section, we propose a new formulation
of cooperative MPC that can stabilize any centralized sys-
tem.

We first introduce some preliminaries and notation, fol-
lowed by a short description of suboptimal MPC without a
terminal region constraint[62, 87]. We then show that co-
operative MPC presented in Algorithm 3 is an implementa-
tion of centralized, suboptimal MPC, under Assumptions
1– 6.

Optimal MPC

We consider the system:

x+ = f(x, u) (6)

in which x ∈ Rn, u ∈ Rm are the state and input
while x+ is the successor state. The system is con-
strained by the input constraints u ∈ U ⊂ Rm. For a
given finite horizon N , we define the input sequence as
u = (u(0), u(1), . . . , u(N − 1)) ∈ UN . The state at time
i ≥ 0 for a system starting at state x at time i = 0, under
control u is given by φ(i;x,u).

The MPC cost function is defined as:

V βN (x,u) :=
N−1∑
i=0

`(φ(i;x,u), u(i)) + βVf (φ(N ;x,u))

in which `(x, u) is the stage cost and βVf (x) is the terminal
cost with β ≥ 1. The set of feasible state-input sequence
pairs is given by:

ZβN := {(x,u) | u ∈ UN , V βN (x,u) ≤ V̄ ,

V βN (x,u) ≤ βVf (x), if x ∈ Br} (7)

in which V̄ > 0 is an arbitrary large number and r > 0
is an arbitrarily small number. The set of feasible initial
states X βN is:

X βN :=
{
x | ∃u ∈ UN s.t. (x,u) ∈ ZN

}
For a given x ∈ X βN , the set of feasible inputs is:

UβN (x) :=
{

u | (x,u) ∈ ZβN
}

We now define the MPC problem as:

PβN (x) : min
u
V βN (x,u) s.t. u ∈ UβN (x) (8)

We make the following assumptions:

Assumption 1. The functions ` : Rn × Rm → R≥0 and
Vf : Rn → R≥0 are continuous and f(0, 0) = 0, `(0, 0) = 0,
and Vf (0) = 0.

Assumption 2. The set Xf is closed and contain the ori-
gin in its interior. The set U is compact and contains the
origin.

Assumption 3 (Basic stability assumption). For each x ∈
Xf , there exists u ∈ U such that f(x, u) ∈ Xf and

βVf (f(x, u)) ≤ βVf (x)− `(x, u), β ≥ 1

Assumption 3 implies that we can define a terminal re-
gion control law u = κf (x) such that for all x ∈ Xf ,
κf (x) ∈ U, f(x, κf (x)) ∈ Xf , and βVf (f(x, κf (x))) ≤
βVf (x)− `(x, κf (x)).

Assumption 4. There exist positive constants a, a′1, a
′
2, af

and r, such that the cost function VN (x,u) satisfies:

`(x, u) ≥ a′1|(x, u)|a (x, u) ∈ X× U
VN (x,u) ≤ a′2|(x,u)|a (x, u) ∈ Br

Vf (x) ≤ af |x|a x ∈ X

in which Br is the ball of radius r.

Assumption 5. The set Xf is a sublevel set of the termi-
nal cost.

Xf := {x | Vf (x) ≤ a} , a > 0

Proposition 1. Let Assumption 1 – 5 hold. Let the cost
function be given by V βN (x,u). For V̄ > 0, define β̄ :=
max (1, V̄ /a). Then, for any β ≥ β̄ and (x,u) ∈ ZβN , we
have that φ(N ;x,u) ∈ Xf .

Proof. For sake of contradiction, assume that (x,u) ∈ ZβN ,
β ≥ β̄, but φ(N ;x,u) /∈ Xf , that is Vf (φ(N ;x,u)) >

a. Since (x,u) ∈ ZβN , we know that V βN (x,u) =∑N−1
i=0 `(φ(i;x,u), u(i)) + βVf (φ(N ;x,u)) ≤ V̄ . From

Assumption 4, we know that `(·) ≥ 0, which im-
plies that V̄

a Vf (φ(N ;x,u)) ≤ V̄ , which implies that
Vf (φ(N ;x,u)) ≤ a, which is a contradiction. Therefore,
for β ≥ β̄, if (x,u) ∈ ZβN , then φ(N ;x,u) ∈ Xf .

Let V 0
N (x) and u0(x) denote the optimal value and

the optimal solution of PβN (x) in which β ≥ β̄ given
by Proposition 1. We denote the MPC control law as
κ0
N (x) := u0(0;x), i.e., the control law is the first move

of the optimal sequence. Under Assumptions 1–5, the op-
timal value function V 0

N (·) can be shown to be a Lyapunov
function for the closed-loop system x+ = f(x, κ0

N (x)) and
the origin is therefore asymptotically stable with X βN as its
region of attraction [71, Theorem 2.24].
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Suboptimal MPC

In suboptimal MPC, we do not solve PβN (x) to optimality.
Instead, we inject a suboptimal input to the system. As
the name suggests, the suboptimal input may not be the
solution to the MPC optimization problem. We now define
the warm start and successor input set that describes the
closed-loop evolution of suboptimal MPC.

We denote the control action, , the first input in the
input sequence u for state x as κ(x) = u(0;x).

Definition 1 (Warm Start). Let (x,u) be a state-input
vector pair such that (x,u) ∈ ZβN . Then the warm start
for the successor initial state x+ = f(x, κ(x)) is defined
as:

ũ = (u(1;x),u(2;x), . . . ,u(N ;x), u+)

in which u+ = κf (φ(N ;x,u)).

Definition 2 (Successor input set). Consider (x,u) ∈ ZβN .
For the successor state x+ = f(x, κ(x)), we define the set
G(x,u)

G(x,u) =
{

u+ | u+ ∈ UN (x+), V βN (x+,u+) ≤ V βN (x, ũ)
}

in which ũ is the warm start given by Definition 1.

We now present the closed-loop stability theorem for
suboptimal MPC.

Theorem 1. Let Assumptions 1–5 hold. Choose V̄ > 0
and β = β̄. For state x ∈ X βN , choose input sequence
u ∈ UβN (x). Then, the origin of the closed-loop system

x+ = f(x, κ(x))

u+ ∈ G(x,u)

is asymptotically stable on (arbitrarily large) compact sub-
sets of X βN .

The proof of Theorem 1 is presented in [61].

Definition 3. The optimization algorithm O applied to
PβN (x) has the following properties:

1. It is an iterative algorithm starting from a feasible
point (x, ũ).

2. Every iteration u decreases the objective function.
This property ensures V βN (x,u) ≤ V βN (x, ũ).

3. Every iteration is feasible. This property ensures u ∈
UβN (x).

We now present the suboptimal MPC algorithm which
uses an given optimization routine O satisfying properties
given in Definition 3. Any optimization algorithm O to
solve PβN (x) that satisfies the requirements mentioned in
Definition 3 has the property that any iterate generated
by O is a valid input to the system.

Algorithm 4 (Suboptimal MPC algorithm).
Data: System x+ = f(x, u) and constraints Xf ,U and

constants a > 0, V̄ > 0 and β = max(1, V̄ /a)
satisfying Assumptions 1–5. Initial state x(0),
feasible input ũ(0) ∈ UβN (x(0)), optimizer O
satisfying Definition 3 and p > 0.

Result: Asymptotically stable closed loop.
Set k ← 0; while k > 0 do

Do p iterations using optimizer O on the
suboptimal MPC problem PβN (x(k)) starting from
(x(k), ũ(k)) to obtain u(k) as the “suboptimal”
input sequence.
Implement the first input, κ(x(k)) to move to
x(k + 1) = f(x(k), κ(x(k)))
Set “warm start” ũ(k + 1) =
(u(1;x(k)),u(2;x(k)), . . . , κf (x(k +N))). Set
k ← k + 1

end

In Algorithm 4, x(k +N) = φ(k +N ;x(k); u(k)).
Since optimizer O satisfies the requirements in Defini-

tion 3, we know that u(0) ∈ UβN (x(0)) and therefore,
φ(N ;x(0),u(0)) ∈ Xf as β = β̄. Since we choose ter-
minal function Vf (·) and terminal controller κf (·) satisfy-
ing Assumption 3 and, we know that warm start ũ(1) ∈
UβN (x(1)). Since every iterate generated by the optimiza-
tion algorithm O is feasible and decreases the objective
function value, we conclude that u(1) ∈ G(x(0),u(0)). By
induction, we conclude that u(k + 1) ∈ G(x(k),u(k)). We
now satisfy all the requirements of Theorem 1 to estab-
lish that the origin of the closed loop system generated by
Algorithm 4 is asymptotically stable.

Cooperative MPC

Consider the system

x+ = Ax+B1u1 +B2u2 (9)

subject to the constraint u1 ∈ U1, u2 ∈ U2. We make the
following assumption on the sets U1 and U2.

Assumption 6. The sets U1 and U2 are compact, convex
and contain the origin in their interiors.
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Assumption 6 implies that the input constraint sets for
u1 and u2 are uncoupled. Note that the constraint set U for
the combined input u = (u1, u2) ∈ U with U := U1×U2 is
also convex, compact and contains the origin in its interior
as required by Assumption 2.

We choose positive definite matrices Q,R1, R2, P and
terminal region Xf so that the stage cost `(x, u) = x′Qx+
u′1R1u1 + u′2R2u2, and the terminal cost Vf (x) = x′Px
satisfy Assumptions 1–5.

We modify the MPC problem P in(3) and the corre-
sponding subsystem problem Pci in (5) by adding the con-
straint that ui ≤ di|x|, if x ∈ Br, i = {1, 2}, in which
d1, d2, r are chosen according to Proposition 3.

Proposition 2. For Q,R1, R2, P > 0, there exists positive
constants a′1, a

′
2, af , a

′
3, a such that:

(x, u1, u2) ≥ a′1|(x, u1, u2)|a, (x, u1, u2) ∈ X× U1 × U2

V βN (x,u1,u2) ≤ a′2|(x,u1,u2)|a, (x,u1,u2) ∈ X× UN1 × UN2

and
a′3|x|a ≤ Vf (x) ≤ af |x|a, x ∈ X

Proof. Since Q,R1, R2 > 0, the eigenvalues of Q,R1, R2

are real and positive. Let λ(Q) = min(eig(Q)) > 0. Then,
we have that x′Qx ≥ λ(Q)|x|2. Therefore, `(x, u1, u2) ≥
(1/2)(λ(Q)|x|2 + λ(R1)|u1|2 + λ(R2)|u2|2). Choose a′1 =
(1/2)min(λ(Q), λ(R1), λ(R2)) and a = 2. Denoting u =
(u1, u2), B =

[
B1 B2

]
and R = diag(R1, R2), the MPC

cost function can be written as

V βN (x,u) =
1
2

[
x
u

]′
H
[
x
u

]
H =

[
A′QA A′QB
B′QA BQB +R

]
(10)

in which
x(0)
x(1)

...
x(N)

 =


I
A
...

AN−1


︸ ︷︷ ︸

A

x+


0 0 . . . 0
B 0 . . . 0
AB B . . . 0

...
...

. . . . . .
AN−1B AN−2B . . . B


︸ ︷︷ ︸

B

u

and Q = diag(Q,Q, . . . , Q︸ ︷︷ ︸
N−1 times

, βP ) and R =

diag(R,R, . . . , R︸ ︷︷ ︸
N times

). Note that H is a positive definite

matrix. Hence, we obtain VN (x,u) ≤ λ(H)|(x,u)|2 in
which λ(H) = max(eig(H)). Choose a′2 = λ(H). Since
P > 0, we can write (1/2)λ(P )|x|2 ≤ Vf (x) ≤ λ(P )|x|2,
We choose a′3 = (1/2)λ(P ) and af = λ(P ).

Proposition 3. For positive definite Q,R1, R2, P , choose
a′2, a

′
3, a according to Proposition 2. Then for any r > 0

and β ≥ 1, there exist positive constants d1, d2 such that

u1 ≤ d1|x|,u2 ≤ d2|x| x ∈ Br

implies that:

V βN (x,u1,u2) ≤ βVf (x) x ∈ Br

Proof. In the region x ∈ Br, notice that u1 ≤ d1|x| and
u2 ≤ d2|x|, implies |(x,u1,u2)| ≤ |x| + |u1| + |u2| ≤ (1 +
d1 +d2)|x|. Therefore from Proposition 2, V βN (x,u1,u2) ≤
a′2|(x,u1,u2)|a ≤ a′2(1 + d1 + d2)a|x|a. Choose d1, d2 > 0
such that

a′2(1 + d1 + d2)a ≤ βa′3 (11)

From Proposition 2, we know a′3|x|a ≤ Vf (x). Hence, for
choices of d1, d2 satisfying (11), we conclude that for x ∈
Br,

V βN (x,u1,u2) ≤ a′2(1 + d1 + d2)|x|a ≤ βa′3|x|a ≤ βVf (x)

Proposition 4. Choose set Xf , positive definite
Q,R1, R2, P > 0 and a > 0 such that Assumptions 3 –
5 hold. Let (x,u) satisfy V βN (x,u) ≤ V̄ in which β ≥
max (1, V̄ /a), V̄ > 0. Then, for the warm start ũ given in
Definition 1 and the successor state x+ = Ax+Bκ(x), we
have that

VN (x+, ũ) ≤ V̄

Proof. Observe that

VN (x+, ũ) = VN (x,u)− `(x, u(0;x))− βVf (x(N)
+ βVf (φ(1;x(N), κ(x(N)))) + `(x(N), κ(x(N))))

Since β ≥ β̄, from Proposition 1 we know that x(N) =
φ(N ;x,u) ∈ Xf . Therefore, from Assumptions 3 and 4,
we conclude

VN (x+, ũ) ≤ VN (x,u)

and the result is established.

Proposition 5. Let V (·, ·) be a convex function and sets
Ω1 and Ω2 be convex, compact sets containing the origin
in their interiors. Consider the optimization problem J

J : min
y1,y2

V (y1, y2), s.t y1 ∈ Ω1, y2 ∈ Ω2

and its corresponding “cooperative” subsystem problems:

Jc1(v2) : min
y1

V (y1, v2), s.t y1 ∈ Ω1
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and
Jc2(v1) : min

y2
V (v1, y2), s.t y2 ∈ Ω2

Algorithm 1 to problems Jc1 and Jc2 starting from a fea-
sible initial point (y(0)

1 , y
(0)
2 ) generates iterates y(p)

i , p > 0
satisfying V (y(p)

1 , y
(p)
2 ) ≤ V (y(0)

1 , y
(0)
2 ), y(p)

i ∈ Ωi.

Proof. Notice that problems Jc1(y(0)
2 ) and Jc2(y(0)

1 ) are
feasible. Therefore, solutions yo1(y(0)

2 ) and yo2(y(0)
1 ) ex-

ist and satisfy V (yo1(y(0)
2 ), y(0)

2 ) ≤ V (y(0)
1 , y

(0)
2 ) and

V (y(0)
1 , yo2(y(0)

1 )) ≤ V (y(0)
1 , y

(0)
2 )

By convexity of V (·, ·),

V (y(1)
1 , y

(1)
2 ) = V (ω(yo1(y(0)

2 ), y(0)
2 ) + (1− ω)(y(0)

1 , yo2(y(0)
1 )))

≤ ωV (yo1(y(0)
2 ), y(0)

2 ) + (1− ω)V (y(0)
1 , yo2(y(0)

1 ))

≤ V (y(0)
1 , y

(0)
2 )

Since y(0)
1 , yo1(y(0)

2 ) ∈ Ω1, by convexity of Ω1,

y
(1)
1 = ωyo1(y(0)

2 ) + (1− ω)y(0)
1 ∈ Ω1

Similarly, y(1)
2 ∈ Ω2.

By induction, we can extend the result to any p ≥ 1.

Theorem 2. Consider the linear system (9), and MPC
cost function V βN (x,u1,u2) with `(x, u) = x′Qx+u′1R1u1+
u′2R2u2, Vf (x) = x′Px, with Q,R1, R2, P > 0. Let As-
sumptions 1–6 hold. Choose V̄ > 0 and β = β̄. For an
initial state x(0) ∈ X βN , choose input sequence (ũ1, ũ2) ∈
UβN (x) and implement cooperative MPC algorithm 3 for the
centralized MPC problem (3) using the subsystem MPC
problems PCi (5). The origin of the resulting closed-loop
system is asymptotically stable on (arbitrarily large) com-
pact subsets of X βN .

Proof. From 10, we know that V βN is a convex function
since H is positive definite. Therefore, problem P(x) is a
convex optimization problem with uncoupled constraints
for u1 and u2. Hence from Proposition 5, we know that
Algorithm 1 satisfies all the requirements of Definition 3.
Since (ũ1(0), ũ2(0)) ∈ UβN (x(0)), we use Propositions 5 and
3 to establish that (u1(0),u2(0)) ∈ UβN (x(0)). From Propo-
sition 4, we conclude that the warm start (ũ1(1), ũ2(1)) im-
plies V βN (x(1), ũ1(1), ũ2(1)) ≤ V̄ . Hence (ũ1(1), ũ2(1)) ∈
UβN (x(1)). Therefore, Proposition 5 implies

(u1(1),u2(2)) ∈ G(x(0),u1(0),u2(0))

dem1c(k)

S2p(k − τM)

Manufacturer Retailer

τT = 1

τM = 2

Node 1

S1c(k)

O12(k)

S21(k)

Node 2

S2p(k)

Figure 5: Two-stage supply chain.

By induction, we can extend the result to any k ≥ 0,
that is

(u1(k + 1),u2(k + 1)) ∈ G(x(k),u1(k),u2(k))

and we have established closed loop asymptotic stability
using Theorem 1.

For a stabilizable pair (A,B), in which B =
[
B1 B2

]
,

stage cost `(x, u) = x′Qx + u′Ru,Q,R > 0 and controller
gain K such that AK = (A+BK) is stable, we know that
a solution P > 0 to the Lyapunov equation

A′KPAK + (Q+K ′RK) = P

exists. Such a (P,K) is a convenient choice for terminal
penalty and terminal controller in MPC. Therefore, we can
implement cooperative MPC for any system that can be
stabilized by centralized MPC.

6 Supply chain example

We simulate the supply chain shown in Figure 5 in this
section. The plant has production delay of 2 time units
and a transportation delay of 1 time unit. We assume
that the manufacturer can start a batch of the product
at every time instant. We label the retailer node 1, with
the states Iv1 and BO1, the inventory and backorder at
the retailer. The retailer inputs u1 consist of orders placed
and the shipments made by the retailer, S1c and O12. We
label the manufacturer node 2, with states x2 consisting
of inventory Iv2 and backorder BO2. The manufacturer
inputs are the shipments made to the retailer S21 and the
production S2p. The demand d(k) = Dm1c.

Models. We write a time invariant model for the supply
chain that is also the process model (because we assume
that a batch may start at every time) by writing the in-
ventory and backorder balance equation. These models
are

x1(k + 1) = A1x1(k) + B11u1(k) + B
(1)
12 u2(k − 1) + Bdd(k)

x2(k + 1) = A2x2(k) + B22u2(k) + B
(2)
22 u1(k − 2) + B21u1(k)
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Stage cost. Each node (subsystem) has a local stage
cost, given by

`1(x1, u1) = |x1|2Q1
+ |u1|2R1

, `2(x2, u2) = |x2|2Q2
+ |u2|2R2

The overall stage cost is `(x, u) = `1(x1, u1) + `2(x2, u2).

Terminal cost. For centralized and cooperative MPC,
following the theory outlined in Section 5, we chose the
P > 0, a > 0 such that there exists a stabilizing control
law κf (x) in the terminal region given by:

Xf = {x | x′Px ≤ a}

We also choose a V̄ > 0 and fix β = max (1, V̄ /a). The
positive definite matrix P is of the form

[
P11 P12
P ′

12 P22

]
. We

choose the local terminal cost functions and the centralized
terminal cost function as

V 1
f (x1) = |x1|2P11

V 2
f (x2) = |x2|2P22

Vf (x) = |x|2P

We now define the MPC cost functions. The subsystem
cost functions are for i ∈ {1, 2}

V i,βN (xi(0),ui) =
N−1∑
j=0

`i(xi(j), ui(j)) + βV if (xi(N))

while the overall cost function is:

V βN (x,u) =
N−1∑
j=0

`(x(j), u(j)) + βVf (x(N))

Note that since we defined the terminal costs differently for
the subsystems, the overall cost function is not the sum of
the subsystem cost functions. Associated with each input,
we also have the input constraint set U1 and U2, which
contain the minimum and maximum shipments and orders
that can flow through the supply chain.

MPC implementation

Ordering policies. As mentioned in Section 3, the local
retailer model does not have knowledge of how the orders
placed by the retailer affects the supply chain. Therefore,
in the implementation of noncooperative and decentralized
MPC, we need to incorporate an ordering policy for the
retailer. Since the manufacturer reacts to the orders placed
by the retailer, the closed-loop performance of the supply
chain is intimately connected to the ordering policy. We
study two ordering policies in this paper:

1. Order-up-to policy: The order-up-to policy can be
viewed as a saturated proportional controller.

O12(k) =

{
Ivt − Iv1(k) if Iv1 ≤ Ivt
0 otherwise

in which Ivt is the inventory target.

2. Inventory position control: In inventory position con-
trol, the retailer, instead of controlling the inventory,
controls the inventory position, which is a controlled
output defined as:

Ip(k) = Iv1(k)− S1c(k) +O12(k)

Inventory position control introduces a new controlled
output that is a function of the state and input. We
penalize the deviations of Ip from the inventory target
Ivt in the optimizations.

Distributed MPC. In decentralized and noncoopera-
tive MPC with order-up-to policy, we modify the retailer
subproblem, subsystem-1 in (4), by adding a constraint
that enforces the order-up-to policy. Similarly, for decen-
tralized and noncooperative MPC with inventory position
control, we modify the retailer objective function in the
subsystem-1 problem in (4) by modifying the stage cost to
penalize inventory position Ip.

Decentralized and noncooperative MPC are imple-
mented using Algorithm 2. In decentralized MPC, the
subsystems do not share information.

We design the subproblems for cooperative MPC (5) us-
ing the methodology outlined in Section 5 for closed-loop
stability. Cooperative MPC is implemented using Algo-
rithm 3. In centralized MPC, we solve the overall problem
P(x) given in (3).

Results and Discussion

We present the results of the different MPC implementa-
tions for a nominal demand of d = 8. In each of the simu-
lations, the retailer starts with inventory I1 = 45 and the
manufacturer starts with inventory I2 = 30. The control
objective is to keep the inventories in the nodes as close to
the starting inventory as possible while maintaining mini-
mum backorder.

Figure 6 compares the results of centralized, cooperative,
noncooperative and decentralized MPC in which we used
the order-up-to ordering policy. Figure 7 compares the
results of same controllers, but using the inventory control
policy.
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Figure 6: Inventories and orders placed in the supply chain: Order-up-to policy (dec: decentralized, ncoop: noncoop-
erative, coop: cooperative, cent: centralized).
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Figure 7: Inventories and orders placed in the supply chain: Inventory position control (dec: decentralized, ncoop:
noncooperative, coop: cooperative, cent: centralized).
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Value of information. We observe that, for both order-
up-to and inventory position control, decentralized MPC
produces large variations in the inventory and orders.
These variations indicate a large bullwhip effect, and hap-
pen because the nodes have incomplete current informa-
tion and no knowledge of the dynamics of the other nodes.
At each time step, the retailer assumes some flow of mate-
rials from the manufacturer to make inventory predictions.
Based on these predictions, the retailer places orders with
the manufacturer. Similarly, the manufacturer knows only
the current order quantity and makes some assumptions
about the future orders from the retailer and makes pro-
duction decisions. When the actual orders and shipments
arrive at the nodes, their decisions are suboptimal.

In noncooperative MPC with the order-up-to policy, we
see that the magnitude of inventory, order quantity and
production quantity has drastically reduced. Since, each
node now has more information about the ordering and
production plans of the other node, both are able to make
better forecasts and therefore, better decisions. In fact,
with this extra information, noncooperative MPC based on
inventory position control is able to reach a steady state.

Impact of Ordering policy. In noncooperative MPC
with inventory position control, we observe that there are
no inventory variations and the system reaches a steady
state. All flows through the system settle at the nominal
demand, which is the input steady state. The inventories,
however, show offset from the target. In order-up-to policy,
irrespective of the cost of placing large orders, the retailer
is constrained to make orders if the inventory at any pe-
riod falls below the target. In inventory position control,
the orders placed are penalized, and therefore the retailer
tends to order less, because the optimizer tries to balance
ordering costs and inventory deviation costs.

Plant-Model mismatch. If we compare results for co-
operative and centralized MPC with noncooperative MPC,
we see that, cooperative and centralized MPC reach steady
state more quickly. They achieve steady state because
there is no information distortion in the system. Each node
in cooperative control, optimizes not only the system-wide
objective, it also accounts for the dynamics of the entire
supply chain. In noncooperative MPC with inventory po-
sition control, since the retailer does not know the actual
supply chain dynamics, it settles at a steady state that
depends on the inventory position model. Therefore, we
see the value of optimizing the actual dynamics instead of
introducing a mismatch between the models used by the

controller and the actual dynamics by using inventory po-
sition models.

Guaranteed stability. The third important result of
the analysis is that cooperative and centralized MPC
have been designed to guarantee closed-loop stability. Al-
though, we see that noncooperative MPC using inventory
position control has not made the supply chain unstable,
we have no stability guarantees. On the other hand, us-
ing the theory developed in Section 5, we can guarantee
closed-loop stability for cooperative MPC.

7 Conclusions

Although rolling horizon optimization for supply chains
has been proposed many times, the closed loop perfor-
mance of such implementations has not been previously
discussed. Supply chain problems are natural problems for
distributed implementations because various nodes may be
owned by different companies or may be spread geographi-
cally across various locations. To our knowledge, although
different distributed approaches to supply chain decision
making have been proposed, no distributed MPC approach
with guaranteed closed-loop nominal stability properties
has been previously proposed. In this paper, we developed
new theory for closed-loop stable cooperative MPC. With
this new theory, we can ensure that cooperative MPC can
stabilize any system which can be stabilized by centralized
MPC. We used this new theory to implement closed-loop,
stabilizing cooperative MPC for supply chains.

Future avenues for research in this area include the fol-
lowing:

• Integration of scheduling with control. We considered
here an approximate model of the production facil-
ity. In the future, we would like to solve hybrid MPC
problems with an exact production scheduling model
included as one of the nodes. We are presently study-
ing terminal constraints in rolling-horizon scheduling
models. We plan to obtain these constraints by solv-
ing scheduling problems with cyclic or periodic con-
straints. Establishing closed-loop stability of sched-
ules implemented in a rolling horizon framework, its
integration with the supply chain and cooperative
MPC are avenues for future research work.

• Economic distributed MPC. The control objective in
this paper was to minimize deviations from a target in-
ventory level. In practice, supply chain managers seek
to optimize economic benefits or performance. We
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would like to implement economic MPC [1] for supply
chains. Developing suboptimal and cooperative eco-
nomic MPC controllers with guaranteed closed-loop
properties is an motivating and open research prob-
lem.

• Robust distributed MPC. Another extension of MPC
for supply chains would be to implement robust MPC.
Theoretically, to implement robust distributed MPC,
we need to find a cooperative “restart” point if the
warm start becomes infeasible. To be robust to cus-
tomer demands, we need to incorporate prior knowl-
edge of the demands like seasonal variability, etc. into
our problem formulation to ensure stability.

• Cooperative game theory. Much of our work on coop-
erative MPC has been developed for the process indus-
tries, in which we wish to coordinate different MPC’s
for the different units inside a single plant. There-
fore, we avoid analyzing the stability of cooperative
control from a cooperative game theory perspective.
In a modern supply chain, however, often the differ-
ent nodes are owned by different companies, and we
need to study the incentives for cooperation among
the nodes. Studying the stability of cooperative MPC
from a cooperative game theory perspective is another
avenue of future research.
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[6] J. Bartholdi and E. Kemahlioğlu-Ziya. Using shapley value to allo-
cate savings in a supply chain. Supply Chain Optim., 98:169–208,
2005.

[7] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory.
SIAM, Philadelphia, 1999.

[8] B. Beamon. Measuring supply chain performance. Int. J. Oper.
Prod. Manage., 19(3):275–292, 1999.

[9] B. M. Beamon. Supply chain design and analysis: Models and meth-
ods. Int. J. Prod. Econ., 55(3):281–294, 1998.

[10] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35:407–427, 1999.

[11] A. Bemporad, S. Di Cairano, and N. Giorgetti. Model predictive
control of hybrid systems with applications to supply chain man-
agement. In Congresso ANIPLA (Associazione Nazionale Per
L’Automazione), 2005.

[12] A. Bensoussan, R. Liu, and S. Sethi. Optimality of an (s, S) policy
with compound poisson and diffusion demands: A quasi-variational
inequalities approach. SIAM J. Cont. Opt., 44(5):1650–1676, 2006.

[13] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Com-
putation. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1989.

[14] S. Bose and J. F. Penky. A model predictive framework for planning
and scheduling problems: A case study of consumer goods supply
chain. Comput. Chem. Eng., 24:329–335, 2000.

[15] M. W. Braun, D. E. Rivera, W. M. Carlyle, and K. G. Kempf. A
model predictive control framework for robust management of multi-
product, multiechelon demand networks. In IFAC, 15th Triennial
World Congress, 2002.

[16] J. Burns and B. Sivazlian. Dynamic analysis of multiechelon supply
systems. Comput. Ind. Eng., 2(4):181–193, 1978.

[17] G. Cachon. Supply chain coordination with contracts. Handbooks
Oper. Res. Manage. Sci., 11:229–340, 2003.

[18] G. Cachon and S. Netessine. Game theory in supply chain analysis.
Tutorials in Operations Research: Models, Methods, and Applica-
tions for Innovative Decision Making, 2006.

[19] G. Cachon and P. Zipkin. Competitive and cooperative inventory
polices in a two stage supply chain. Manage Sci., 45:936–953, 1999.

[20] F. Chen and J. Song. Optimal policies for multiechelon inventory
problems with Markov-modulated demand. Oper. Res., 49(2):226–
234, 2001.

[21] F. Chen, Z. Drezner, J. Ryan, and D. Simchi-Levi. Quantifying the
bullwhip effect in a simple supply chain: The impact of forecasting,
lead times, and information. Manage Sci., 46:436–443, 2000.

[22] F. Chen, J. Ryan, and D. Simchi-Levi. The impact of exponential
smoothing forecasts on the bullwhip effect. Naval Res. Logist., 47
(4):269–286, 2000.

[23] A. J. Clark and H. Scarf. Optimal policies for a multiechelon inven-
tory problem. Manage Sci., 6:475–490, 1960.

[24] J. Dejonckheere, S. Disney, M. Lambrecht, and D. Towill. Measuring
and avoiding the bullwhip effect: A control theoretic approach. Eur.
J. Oper. Res., 147(3):567–590, 2003.

[25] J. Dejonckheere, S. Disney, M. Lambrecht, and D. Towill. The
impact of information enrichment on the bullwhip effect in supply
chains: A control engineering perspective. Eur. J. Oper. Res., 153
(3):727–750, 2004.

[26] S. M. Disney, D. R. Towill, and R. D. Warburton. On the equivalence
of control theoretic, differential, and difference equation approaches
to modeling supply chains. Int. J. Prod. Econ., 101(1):194 – 208,
2006.

[27] L. Dong and H. Lee. Optimal policies and approximations for a
serial multiechelon inventory system with time-correlated demand.
Oper. Res., 51:969–980, 2003.

[28] W. B. Dunbar and S. Desa. Distributed model predictive control
for dynamic supply chain management. In Assessment and Future
Directions of Nonlinear Model Predictive Control. Springer, 2007.

21



[29] A. Federgruen. Centralized planning models for multiechelon inven-
tory systems under uncertainty. Handbooks Oper. Res. Manage.
Sci., 4:133–173, 1993.

[30] A. Federgruen and P. Zipkin. Computational issues in an infinite-
horizon, multiechelon inventory model. Oper. Res., 32:818–836,
1984.

[31] A. Federgruen and P. Zipkin. An inventory model with limited pro-
duction capacity and uncertain demands II. The discounted-cost cri-
terion. Math. Oper. Res., 11(2):208–215, 1986.

[32] A. Federgruen and P. Zipkin. An inventory model with limited pro-
duction capacity and uncertain demands I. The average-cost crite-
rion. Math. Oper. Res., 11(2):193–207, 1986.
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[58] M. Nagarajan and G. Sošić. Game-theoretic analysis of cooperation
among supply chain agents: Review and extensions. Eur. J. Oper.
Res., 187(3):719–745, 2008.

[59] J. Nash. Noncooperative games. Ann. Math., 54:286–295, 1951.

[60] M. Ortega and L. Lin. Control theory applications to the
production–inventory problem: A review. Int. J. Prod. Res., 42:
2303–2322, 2004.

[61] G. Pannocchia, J. B. Rawlings, and S. J. Wright. Conditions under
which suboptimal nonlinear MPC is inherently robust. Sys. Cont.
Let., 60:747–755, 2011.

[62] G. Pannocchia, J. B. Rawlings, and S. J. Wright. Conditions under
which suboptimal nonlinear MPC is inherently robust. In 18th IFAC
World Congress, Milan, Italy, Sep. 2011.

[63] L. G. Papageorgiou. Supply chain optisation for the proces indus-
tries: Advances and opportunities. Comput. Chem. Eng., 33:1931–
1938, 2009.

[64] C. Papanagnou and G. Halikias. Supply-chain modelling and control
under proportional inventory-replenishment policies. Int. J. Sys.
Sci., 39(7):699–711, 2008.

[65] G. Perakis and G. Roels. The price of anarchy in supply chains:
Quantifying the efficiency of price-only contracts. Manage Sci., 53
(8):1249–1268, 2007.
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