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Abstract 

Though scheduling and control are traditionally considered separately due to the different operational 
levels and time scales, research on the integration of the two problems becomes attractive recently. It 
has been demonstrated that the integration can result in a collaborative operation with higher economic 
profits, which is crucial for the fierce competitions in current process industries. In this paper, we 
present a novel integration approach, which simultaneously determines the PI controller design and 
production scheduling decisions. The integrated problem is solved to update the controller parameters 
in each time slot and the control variable is then determined by the feedback of the process 
measurement according to the updated controller parameters. This feature is different from the 
previous integration strategies which determine the control variable directly from the solution of the 
integrated problem. The advantage of the proposed strategy is that the integrated problem can be solved 
in a large time scale while the controller works in real time. The two layer framework facilitates the 
online implementation of the integration of scheduling and control. The proposed approach is 
illustrated through an example of a multiproduct CSTR. 
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Introduction

Manufactures in the current process industry confront 
rapid market changes, stringent environmental policies, 
and aggressive rival competitions. In order to overcome 
the dwindling profit margins, it becomes increasingly 
important to optimize the global objectives by integrating 
the information and the decision-making among different 
operational levels (Grossmann 2004; 2005). Though 
scheduling and control are transitionally considered 
separately, a more economical operation can be achieved 
by taking them into account simultaneously (Flores-
Tlacuahuac and Grossmann 2006; Harjunkoski et al. 
2009; Munoz et al. 2011).  

The process scheduling problem comprises the 
organization of human and technological resources, the 
determination of production sequence and production 

times. The process control problem aims to regulate the 
process variables and ensure the dynamic trajectories 
tracks the ones set to meet the operational criteria. In a 
multi-product manufacturing line, the transition period 
between two products is determined by the control system. 
Different designs of control systems will result in different 
values of process variables in the transition period, e.g. 
the transition material consumption and the transition 
time. These variables may significantly influence the 
scheduling decisions. On the other hand, to design a 
control system, the transition sequence and the set points 
are required to be determined from the scheduling 
problem. Besides, the economic objective function for 
used to design the control system design should be derived 
from the scheduling problem. The coupling of the 



  
 

 

scheduling problem and the control problem necessitates 
their integration. 

The integrated problem of scheduling and control is 
frequently formulated as a mixed integer dynamic 
optimization (MIDO) (Barton et al. 1998; Allgor and 
Barton 1999). One solution approach is to transform the 
MIDO problem into a mixed integer nonlinear 
programming (MINLP) by using the collocation method 
(Cuthrell and Biegler 1987; Kameswaran and Biegler 
2006). In this approach, the state trajectories and the 
input trajectories are discretized simultaneously and the 
differential equations describing the dynamic behavior of 
the process are transformed into a large set of nonlinear 
algebraic equations. This approach has been applied to the 
cyclic production in a single CSTR (Flores-Tlacuahuac 
and Grossmann 2006) and following extensions 
(Terrazas-Moreno et al. 2007; Flores-Tlacuahuac and 
Grossmann 2010). 

An alternative to solving the MIDO problem is to use 
decomposition method (Nystrom et al. 2005; Prata et al. 
2008). The scheduling problem is modeled as the master 
problem of MINLP while the control problem is 
formulated as the primal problem of dynamic 
optimization (DO). The MIDO problem is solved by 
iterations between the MINLP problem and the DO 
problem. 

A challenge in most integration approaches is that 
the resulting control system from solving the MIDO 
problem is open loop, because the value of the control 
variable or the process input is determined by the 
optimization algorithm once and for all while the current 
measurement of the process variables are not taken into 
account. Due to the inevitable uncertainties and 
disturbances in the real process, an open loop control is 
scarcely applicable in practice. A new integration strategy 
which generates a closed-loop control system is proposed 
recently (Zhuge and Ierapetritou, 2011). The closed-loop 
control is realized by solving the integrated problem 
between the sampling duration of the measurement. This 
strategy is similar to the one adopted in model predictive 
control (MPC). However, solving the MIDO in real time 
is still formidable for most current solvers. 

The challenge in the integration of scheduling and 
control arises from the different scales of the two 
problems in the time domain. The controller needs to 
work in real time to deal with the disturbance in the 
process immediately while the scheduling decisions have 
to be determined in a much larger time scale due to the 
complexity of the optimization problem involving discrete 
decision variables. Therefore, implementation of the 
integrated problem in the large time scale results in an 
open loop control problem while the implementation in 
real time makes the optimization problem formidable. 

In this paper, we propose a novel integration 
approach to address these challenges. The main difference 
between the proposed strategy from the existing ones is 
that there is a closed loop controller for the process and 

the integrated problem is solved to determine the 
parameters of the controller instead of the direct value of 
the control variable. The value of the control variable is 
determined by the controller according to the measured 
process variables along with the controller parameters 
calculated from the integrated problem. This strategy 
employs the feature of different time scales for the 
scheduling and the control. The closed-loop controller 
works in real time while its parameters are updated by 
solving the integrated problem during the production 
period. 

 To solve the formulated MIDO, we propose a 
decomposition method. The MIDO is decomposed into a 
scheduling problem of MINLP and a series of control 
problems of DO in the transition periods. The proposed 
approach is illustrated through an example of a 
multiproduct CSTR. 

 
Formulation of scheduling and control problems 

This section presents the formulation of the 
scheduling problem and the control problem. The 
formulation varies according to different types of the 
production recipe and different dynamic behaviors of the 
process. A production model which is widely studied in 
the literature is the manufacture of multiple products in 
CSTRs (Nystrom et al. 2005; Flores-Tlacuahuac and 
Grossmann 2006; Mitra et al. 2011). Due to its popularity, 
the focus of this paper is placed on this type of model, 
which is, specifically, the cyclic production in a 
multiproduct CSTR (Pinto and Grossmann 1994; Flores-
Tlacuahuac and Grossmann 2006). 

In the production cycle displayed in Figure 1, a 
number of products are cyclically manufactured in a 
single CSTR. The cycle time is partitioned into slots and 
only one product is produced in one slot. Each slot is 
composed of two periods: the transition period and the 
production period. The product is produced only in the 
production period when the CSTR runs in the steady state. 
The transition period represents the changeover between 
different products in which the output of the CSTR varies 
with time. 

 
 

…
Slot 1 Slot 2 Slot N

Production cycle

Transition period Production period

Output

Time  
Figure 1: Cyclic production of a multiproduct CSTR 



  

 

The scheduling problem aims to maximize the 
production profit by determining the sequence in which 
the products are manufactured as well as the production 
rate and the duration of each period in a time slot. Since 
the transition period is also dependent on the control 
system of the CSTR, it can achieve a better overall 
performance by integrating control problem into the 
scheduling problem than solving the two problems 
separately because tradeoffs can be made for conflicting 
objectives. The detailed formulations of the scheduling 
problem and the control problem are presented as follows. 

Scheduling of cyclic production 

Objective Function 

1 2 3max  ϕ ϕ ϕ ϕ= − −  (1) 

where φ1 is the product revenue rate, φ2 is the inventory 
cost rate, and φ3 is the raw material cost rate. They are 
defined as 
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Since the cyclic production is assumed to be carried out 
repeatedly, each term in the objective function is 
calculated as the averaged value in a production cycle. 
The cost of control in the transition periods is not 
formulated explicitly in the objective function, but 
considered implicitly in the cost of raw materials, which  
depends on the control system and  tradeoffs other costs. 

The objective function can include  some penalty 
terms for the difference between the process variables and 
the set points (Flores-Tlacuahuac and Grossmann 2006).  
Though it is widely used in control system design, the 
objective function is difficult to be qualified economically 
and incorporated in the scheduling problem (Zhuge and 
Ierapetritou, 2011). Thus, we do not include it in the 
proposed model. 

Product Assignment Constraints 
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The binary variable ξik denotes if the product i is assigned 
to the slot k. The number of slots is assumed to be equal to 
the number of products, denoted by N. Constraint (5) 
indicates that each product can be manufactured only once 
within a production cycle while  constraint (6) implies 
that only one product is manufactured in each slot. The 
binary variable βijk denotes if product i is preceded by 
product j in slot k. The sequence variable βijk is related to 
the assignment variable ξik according to constraints (7) 
and (8). Since the products are manufactured cyclically, 
the product manufactured in the first slot of a production 
cycle follows the one in the last slot, which is reflected by 
the equality of 11

N
ij jNi

β ξ
=

=∑  in constraint (7). As 

suggested in Wolsey (1997), the sequence variables can be 
replaced by continuous variables between 0 and 1, instead 
of binary variables. This significantly reduces the number 
of discrete variables and improves the computational 
efficiency. 

Demand Constraints 

,  i c iW T D i≥ ∀  (9) 
,  i i iW G i= Θ ∀  (10) 

The variable Wi denotes the total amount of the product i 
produced in each production cycle and its averaged value 
needs to meet the demand rate Di, which is assumed to be 
constant. The production amount is determined by the 
multiplication of production rate Gi and production time 
Θi, according to the equation (10). 

Timing Relation 
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The slot k starts from time s
kt  to time e

kt . The starting 
time of the first slot is set as zero while the end time of 
the last slot is bounded by the cyclic time Tc from above. 
Each slot consists of the transition period and the 
production period. The durations of the two periods are 



  
 

 

denoted by t
kθ  and p

kθ  respectively. The duration of the 
production period is related to the production time of the 
product i in the slot k in equation (15) and the equation 
(16) sets the upper bound for the production time. The 
duration of the transition period is dependent on the 
transition time from the product j to the product i, denoted 
by τij, which is determined by the subsequent control 
problem. The equation (18) calculates the total production 
time of the product i, which is used to calculate the 
produced amount Wi in the equation (10) and the objective 
function φ2 in the equation (3). 

Control System in Transition Period 

The product is manufactured only in the production 
period when the CSTR stays in the steady state. However, 
the transition between different products is dependent on 
the dynamic behavior of the CSTR. Information in the 
transition period, e.g. the transition time and the flow rate 
of the raw material, is required in the scheduling problem. 
To retrieve the information, the control system design for 
the CSTR is taken into account. 

Suppose the dynamic behavior of the CSTR is 
described by a set of ordinary differential equations 
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where x(t) contains the state variables, y(t) denotes the 
process output, and u(t) is the process input (the control 
variable). 

The goal of control system design is to determine the 
value of u(t) such that the output y(t) has the desired 
properties. An objective function can be introduced to 
quantify the performance of an input profile and the 
optimal input can be calculated by minimizing this 
objective function 
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( )

* arg max  , ,c spu t
u t y y t u t u tϕ= −  (20) 

where φc is the objective function. In an output feedback 
control system, u(t) is dependent on the control error 
which is the difference between the process output y(t) 
and the set point ysp. The dependence of the output y(t) on 
the input u(t) is determined by the system of equations 
(19). 

It should be noted that the control system is designed 
on behalf of the scheduling problem in the upper level. So 
the objective function should be derived from the 
scheduling problem. Besides the objective function, the 
design procedure also requires other information from the 
scheduling problem, e.g. the production sequence and the 
set point of the output. 

Since the control problem is coupled with the 
scheduling problem, the two problems can be solved 
simultaneously. Integration of scheduling and control 
results in an MIDO problem. A common solution is to 
discretize the differential equations by the method of 
simultaneous collocation (Flores-Tlacuahuac and 
Grossmann 2006; Nie and Biegler 2011). 

The time domain is first discretized by a set of grid 
points { }0 1, , ,

tNt t t . Then, in each interval of 

[ ]1, ,  0, , 1k k tt t k N+ = − , the solution to the differential 
equation is approximated by a n-th order polynomial and 
the values of the state variables at the grid points are 
expressed by 
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where h = tk+1 - tk is the interval length, bi is the 
coefficient which is dependent on the type of polynomial 
used to approximate the solution, and fi is the right hand 
side of the differential equation evaluated at the roots of 
the polynomial (collocation points). 

Applying the collocation method, the differential 
equations (19) are transformed into a set of nonlinear 
algebraic equations (21) and the MIDO problem is 
reformulated as an MINLP problem. 

Integration of PI Controller  Design with Scheduling 

The previous section presents the framework of 
formulating the scheduling and control problems. 
However, the strategy for integrating the two problems is 
not unique. This section starts from investigating some 
existing strategies presented in the literature and then 
proposes a new strategy which circumvents difficulties in 
the existing strategies. The resulted integration model is 
still an MIDO. Instead of the collocation method which 
solves the scheduling problem and the discretized control 
problem simultaneously, we propose a decomposition 
method, which separates the dynamic optimization in the 
control problem from the MINLP in the scheduling 
problem. The decomposition makes it possible to use 
different solvers for each problem and also provides an 
insight into the tradeoff between the two problems. The 
integrated problem is finally solved by iterations between 
the dynamic optimization and the MINLP.  

Strategy for integrating scheduling and control 

The first strategy for the integration is to 
simultaneously solve the two problems together (Flores-
Tlacuahuac and Grossmann 2006) and then apply the 
calculated input to control the dynamic system in the 
transition period. The main deficiency of this integration 
strategy is that the control system is open-loop. Since the 



  

 

uncertainties and disturbances are inevitable in a control 
system, an open loop controller is scarcely applied in 
practice. Without the feedback, the control variable can 
only follow the specified value no matter what the output 
is. 

To improve the deficiency, a closed-loop strategy is 
proposed (Zhuge and Ierapetritou, 2011). Instead of 
solving the integrated problem once, the problem is solved 
repeatedly between two sampling points of the process 
output. The real time information of the output can be 
taken into account to calculate the new input value. This 
strategy is similar to the one used in model predictive 
control (MPC) and it can significantly improve the 
performance of the control system since the uncertainties 
and disturbances are dealt with by the feedback. However, 
the main drawback of this strategy is the expensive 
computational efforts since the MIDO problem has to be 
solved on line.  

To cope with the difficulty in the existing strategy, a 
new strategy is proposed in Figure 2. 

 

controller processu(t) y(t)

schedule

controller parametersprocess variables

 
Figure 2: Strategy for integrating scheduling and 

control 
 

The main difference between the proposed strategy from 
the existing ones is that there is a closed loop controller 
for the process and the integrated problem is solved to 
determine the parameters of the controller instead of the 
direct input value. The input value is determined by the 
controller according to the measured process variables 
along with the controller parameters determined in the 
integrated problem. 

The advantage of this strategy includes: 
(1) Fitting the practical implementation structure: 

Due to different time scales, scheduling and control are 
usually implemented at different levels. The real time 
controller is implemented at the lower level in a PLC 
while the scheduling algorithm is implemented at the 
higher level in a PC. The existing strategies for 
integrating scheduling and control break the common 
structure and a new system is required to build for the 
implementation. However, the proposed strategy can still 
work in the current structure. What needs to do is to 
transfer information about controller parameters and 
process variables between the two levels and this is easy to 
achieve by modern hierarchical control systems. 

(2) Balancing the control system performance with 
the computational efforts: Since the integrated problem 
only determines the controller parameters, there is no 
need to solve the problem in real time. Communication 

between the scheduling algorithm and the controller can 
be done in a large time scale. For example, the control 
system can provide information of the current process 
variables at the end of the transition period and the 
integrated problem can be solved based on the current 
information during the production period. The new 
calculated controller parameters are then sent back to the 
controller at the beginning of the next transition period. 
Since the controller exists all the time, the control system 
is in the closed loop even if there is no communication 
between the upper level scheduling and the lower level 
controller. 

The proposed integration strategy can be applied to 
any parameterized controller and the most widely used 
one is the traditional PID controller. The structure of the 
PID controller is shown in Figure 3. The controller is 
composed of three terms which are the proportional term, 
the integral term, and the derivative term of the control 
error. The input of the process system is the sum of the 
three terms. Since the derivative term will amplify the 
high frequency noise due to the differentiation operation, 
it is often omitted in practice and a PI controller is usually 
implemented. 

e(t) = ysp - y(t) + u(t)

KD de(t)/dt

KI ∫e(t)

KP e(t)

 
Figure 3: Structure of PID controller 

 
The differential equation of a PI controller is 
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The controller has two parameters: the proportional gain 
KP and the integral gain KI. Though many methods exist 
to tune the two parameters, none of them take into 
account the objective function of the scheduling problem. 
Thus, we propose to determine these two parameters by 
solving the integrated problem of scheduling and control. 

Algorithm for the integrated problem 

Simultaneous discretization presented in the previous 
section is an alternative to solving the integration strategy 
proposed above. However, after discretization a large 
scale of nonlinear algebraic equations are derived. 
Suppose the number of grid points to discretize the time 
domain is Nt, and Nc collocation points are selected in 
each time segment between two adjunct grid points. There 
are totally Nt•Nc equations and variables derived by the 
collocation method. Moreover, this number is only for one 



  
 

 

state variable in one transition period. Considering the 
number of transition periods N and the number of states 
Nx, the total number of equations and variables generated 
by the discretization method is N•Nx •Nt•Nc. 

Furthermore, the collocation method is intrinsically 
an approximation method by polynomial and it is non-
trivial to determine the grid points and the collocation. In 
the integrated scheduling and control problem, 
discretization points are probably required to be 
determined for each transition period. For a production 
cycle manufacturing N products, the number of possible 
transition periods is N•N-N and the case-by-case 
investigation of each one is difficult. 

Last, in the dynamic optimization problem for the 
proposed strategy, the controller parameters are calculated 
instead of the time function of the input. There is no need 
to discretize the decision variables. 

Therefore, another alternative is adopted and a 
decomposition algorithm is proposed. To decompose the 
integrated problem, it is first required to analyze how the 
control problem entering the scheduling problem. The 
analysis can also provide an insight into the tradeoff 
between the two problems. 

The control system only affects the variables in the 
transition periods, specifically the transition time t

kθ  and 
the transition flow rate of the material, defined as ( )t

kF t . 
The transition time is highly coupled with other variables 
in the scheduling problem while the transition flow rate 
only affects the objective function of the raw material cost. 
To separate the transition flow rate from other variables, 
the objective function (1) can be expressed as 
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where z is defined to include all decision variables except 
( ) ( )1 , ,t t

NF t F t . For the short notation, define  
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By separating the transition flow rates, the objective 
function can be maximized by two steps, since 
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By expanding the expression of φ, the right side in the 
equivalence (25) turns out to be 
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By substituting the expression of φ3, the inner 
minimization problem is 
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where the transition flow rate and the production flow rate 
are defined as 
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The equivalence of the two problems in the expression 
(28) is due to the fact that in the inner minimization of φ3 
the variables except ( ){ }*t

kF t  are all regarded as 

parameters. 
Therefore, the integrated problem can be solved by 

iterations between the scheduling problem and a series of 
control problems (Figure 4). 
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Figure 4: Decomposition of scheduling problem and 

control problem 
 
The scheduling problem is formulated in the previous 

section, which can be summarized as 

      max  Eq. (1 4)
s.t.

          Assignment constraints Eq. (5 8)
      Demand requirements Eq. (9 10)
      Timing relation Eq. (11 18)
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The closed-loop control problem including the process 
dynamic system and the controller is formulated as 
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( )min max       ,   t
ke e t e t θ≤ ≤ ≥  (34) 

( )min max       t
kF F t F≤ ≤  (35) 

The information which the control problem requires 
is the value of the transition time t

kθ  and the transition 
sequence j→i. Having the information, each control 
problem is a dynamic optimization and can be solved 
independently. 

The dynamic optimization of the control system aims 
to minimize the integral transition flow rate. To evaluate 
the integral, a new variable of xF(t) is introduced, which 
denotes the integral of the transition flow rate from 0 to t. 
Consequently, a new differential equation of xF(t) is 
inserted. Besides this equation, the set of the differential 
equations (33) is derived by combining the system 
equations (19) and the equations describing the PI 
controller (22). The control variable u(t) is substituted by 
the feed flow rate ( )t

kF t . 
Under the PI controller, the process output will reach 

the set point after the transition period. The end of the 
transition period is indicated by the fact that the process 
output y(t) constantly stays in a bound around the set 
point of ysp, or equivalently the control error e(t) falls into 
the interval bounded by emin and emax in the inequalities 
(34).  The bounds of the control error are frequently set as 
±2% of the set point. The dynamic model is simulated 
beyond the transition time t

kθ  while objective function of 
the control problem is only calculated up to the transition 
time. The last two inequalities (35) are set on the control 
variable, which is usually bounded due to the limited 
power of the practical instrument (saturation of the 
actuator). 

Case Study 

To illustrate the presented integration strategy of 
scheduling and control, the cyclic production in a multi-
product CSTR is studied. The recipe and data of the 
model are given in Flores-Tlacuahuac and Grossmann 
(2006). The following reaction 

33 ,  k
R RR P r kC→ − =  (36) 

takes place in an isothermal CSTR for manufacturing five 
products, A, B, C, D, and E. The dynamic model of the 
CSTR is described by 

( ) ( ) ( )( )R
in R R

dC t F t
C C t r

dt V
= − +  (37) 

where Cin is the concentration in the feed flow and CR(t) 
is the concentration in the outflow. The flow rate F(t) is 
the control variable. The design and kinetic parameters 
are Cin = 1 mol/L, V = 5000 L, k = 2 L2/(mol2h). Other 
data for the process are listed in Table 1. 
 

Table 1. Process data for the case study 

Type 
F 

(L/hour) 

CR 

(mol/L) 

G 
(kg/h) 

Demand 

(kg/h) 

Price 

($/kg) 

Inventory 

cost ($/kg) 

A 10 0.097 9.03 3 200 1 

B 100 0.200 80 8 150 1.5 

C 400 0.303 278.7 10 130 1.8 

D 1000 0.393 607 10 125 2 

E 2500 0.500 1250 10 120 1.7 

 
The objective is to maximize the product profit per 

hour. Decision variables include the production sequence, 
the production time and the transition time in each slot, 
and the controller parameters in each transition period. 
The MIDO of the integrated problem is formulated and 
solved by the decomposition method. 

Table 2 lists the scheduling results obtained from the 
optimal solution to the integrated problem. 

 
Table 2. Optimal scheduling result 

Slot Product 
Production 

time (h) 
Transition 
time (h) 

Produced 
amount (kg/h) 

1 A 31.27 1.00 3.00 
2 E 22.54 0.80 300.27 
3 D 1.55 1.08 10.00 
4 C 3.36 3.32 10.00 
5 B 9.38 19.52 8.00 

 
The optimal production sequence is A→E→D→C→B. 
The produced amount of each product meets the demand. 
The cyclic time is 93.4 hour and the objective function is 

40382.7 20531.7 6910.5 12940.5ϕ = − − =  $/h. 
 

Table 3. Controller parameters 
Transition KP KI 

A→E 5.0 14.9 
E→D 5.4 19.9 
D→C 4.1 19.0 
C→B 4.5 18.0 
B→A 2.5 1.7 

 
The PI controller parameters in each transition period 

are determined from the integrated problem and listed in 
Table 3. It is seen that the controller parameters are set 
differently for different transition periods. This is an 
indicator that the control problem is dependent on the 
scheduling results. The dynamic profiles of the process 



  
 

 

input and the output for the closed-loop control system in 
each transition period are displayed in Figure 5.  

The transition period starts at 0 and ends at the time 
marked by the vertical dash line. Due to the integral term 
in the PI controller, the control error will ultimately tend 
to zero and the process output can reach the set point in 
the steady state. To determine the transition time or the 
time the system enters into the steady state, two horizontal 
dash lines around the steady state are plotted. They are set 
as, respectively, ±2% of the steady state value. After the 
transition time, the process output stays between the two 
dash lines, indicating the end of the transition period. 
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Figure 5. Optimal dynamic profiles of the concentration 
in the outflow (the process output in the left panel) and 

the feed flow rate (the control variable in the right panel) 
for each transition period 

 
To compare the scheduling result, the production 

sequence is generated by a rule of thumb, i.e.  
A→B→C→D→E. The transition is made gradually from 
the product with the lowest concentration to the product 

with the highest concentration The scheduling results of 
the production sequence are calculated and listed in Table 
4.  

 
Table 4. Scheduling result of rule-of-thumb sequence 

Slot Product 
Production 

time (h) 
Transition 
time (h) 

Produced 
amount (kg/h) 

1 A 32.54 1.00 3.00 
2 B 9.76 1.00 8.00 
3 C 3.50 1.00 10.00 
4 D 1.61 1.00 10.00 
5 E 21.51 24.70 275.43 

 
The cyclic time is 97.6 hour and the objective function is 

37401.1 20249.5 6504.1=10647.5ϕ = − − $/h. The profit is 
much less than the one produced by the optimal solution. 

Whenever a disturbance occurs in the process, the 
disturbance can be attenuated by the PI controller which 
works in real time. So there is no need to re-solve the 
whole integrated problem immediately. The policy 
adopted in the case study is that the integrated problem is 
re-solved at the beginning of each production period and 
the scheduling results as well as the controller parameters 
are returned to the controller before the start of the 
subsequent transition period. This means the integrated 
problem is only solved once in each production period and 
the requirement on the computational time is that the 
integrated problem can be solved within each production 
period, which is often large enough to do so. 

To demonstrate this on-line rescheduling policy, a 
numerical experiment is conducted. The optimal solution 
to the integrated problem is applied and a disturbance is 
introduced in the transition period of A→E. The dynamic 
profiles of the process output and input are displayed in 
Figure 6.  
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Figure 6. Dynamic profiles under the disturbance. 
 
The disturbance occurs at the time of 0.5 hour and it 

is finally eliminated by the PI controller. The system 
enters into the steady state at the time of 1.26 hour which 
is larger than that without the disturbance. Though the 
transition time in this period is enlarged by the 
disturbance, the process can still successfully transfer to 
the production period. This is a significant difference 
from the open loop control where a slight disturbance can 
cause a failure in the production transition. This is also 
different from the real time rescheduling strategy since 
the controller parameters are still the ones calculated from 



  

 

the initial integrated problem and the integrated problem 
is not solved at this moment. 

 
 

Table 5. Scheduling result under disturbances 

Slot Product 
Production 

time (h) 
Transition 
time (h) 

Produced 
amount (kg/h) 

1 A 31.44 1.26 3.00 
2 E 22.54 0.80 298.68 
3 D 1.55 1.08 10.00 
4 C 3.38 3.32 10.00 
5 B 9.43 19.52 8.00 

 
The integrated problem is re-solved with the updated 

information from the controller from the beginning of the 
production period in which the product E is 
manufactured. The re-scheduling results are listed in 
Table 5. 

It is seen that the production sequence is not affected 
by the disturbance. However the production time and the 
transition time are changed. The product profit is changed 
to 40192.1 20577.2 6979.1 12635.8ϕ = − − =  $/h, which is 
only a slightly lower than the optimal result without the 
disturbance.  

Conclusion 

A new strategy for integrating scheduling and control 
is presented for a multi-product CSTR. A PI controller is 
set to control the dynamic behavior of the process in the 
transition period between two products. The controller 
parameters are optimized simultaneously with the product 
scheduling problem. The controller works in real time 
while the integrated problem can be solved in a large time 
scale, e.g. within each production period. The presented 
integration strategy overcomes the difficulties in previous 
strategies in the literature. A tradeoff is made between the 
performance of the closed loop control system and the 
computational efforts for solving the integrated problem. 
The presented strategy is illustrated by a case study of a 
CSTR producing five products. 

Nomenclature 

Decision Variables 
e(t)  control error 
emax upper bound on control error 
emin lower bound on control error 
F material flow rate (kg/h) 

( )p
kF t  flow rate in production period in slot k 
( )t

kF t  flow rate in transition period in slot k 
Fmax upper bound on transition flow rate 
Fmin lower bound on transition flow rate  
Gi production rate of production i (kg/h) 
KP proportional gain of PID controller 
KI integral gain of PID controller 
KD derivative gain of PID controller 

s
kt  start time of slot k (h) 
e
kt  end time of slot k (h) 

Tc cycle time (h) 
u(t) control variable/process input 
Wi produced amount of product i (kg) 
x(t) state variable in process dynamic system 
xe(t) integral of control error 
xF(t) integral of transition flow rate 
y(t) process output 
ysp set point of the output 
z all decision variables except the transition flow 

rate 
 
Greek Letter 
βijk 0-1 variable to denote if product i is preceded by 

product j in slot k 
φ objective function ($/h) 
τij transition time from product j to product i (h) 
θik processing time of product i in slot k (h) 
θmax upper bound on processing time (h) 

p
kθ  processing time in slot k (h) 
t
kθ  transition time in slot k (h) 

iΘ  total processing time of product i (h) 
ξik 0-1 variable to denote if product i is assigned to 

slot k 
 
Parameters 

p
iC   price of product i ($/kg) 
s
iC  inventory cost of product i [$/(kg•h)] 
rC  raw material cost ($/kg) 

Di demand rate of product i (kg/h) 
N number of products/slots 
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