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Abstract
In this paper, we consider the problem of parameter identification and state estimation of a continuous-time nonlinear
system subject to exogenous disturbance. Using a set-based adaptive estimation, the parameters are updated only when
an improvement in the precision of the parameter estimates can be guaranteed. The formulation provides robustness
to parameter estimation error and bounded disturbance. The parameter uncertainty set and the uncertainty associated
with an auxiliary variable is updated such that the set is guaranteed to contain the unknown true values. Two simulation
examples are used to illustrate the effectiveness of the developed procedure and ascertain the theoretical results.
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Introduction Parameter identification is an important prob-
lem in the theory of control systems. The exact of knowledge
of process parameters can greatly influence the performance
and robustness of control systems. In some case, the value of
a process parameter can be associated with a particular mode
of the process dynamics. In some cases, the value of the un-
known parameters can be used to detect faulty operation in a
process. The ability to estimate such parameters is therefore
crucial for safe and productive operation of systems.
In almost all process applications, it is impossible to rely on a
reliable measurement of all process variables. Some form of
observer must be used to estimate the unmeasured variables.
With respect to the parameter estimation problem, the knowl-
edge of the unknown states may be necessary to provide pre-
cise estimates of the unknown parameters. In such cases, it is
therefore necessary to consider the problem of simultaneous
parameter identification and state estimation often referred
to as adaptive observer design. Such observers are generally
recognized to be useful in treating many practical problems
such as fault detection, signal transmission or control, and,
more recently, for synchronization of chaotic systems.
Several approaches have been proposed to simultane-
ously estimate the state and identify the parameters
[Kreisselmeier, 1977] and [Zhu and Pagilla, 2003]. The ba-
sic idea in these approaches is to use a Luenberger ob-
server [Luenberger, 1964] designed to operator in concert
with a continuous parameter update law such that state ob-
servation error dynamics asymptotically approaches the ori-

gin. For both linear and nonlinear systems, one can show
asymptotic and exponential convergence of the parameters
to their true value subject to a persistency of excitation con-
ditions. Some lower bounds of the rate of convergence,
depending on the adaption gain and the level of excita-
tion in the system, have been provided for specific con-
trol and estimation algorithms(e.g., [Kreisselmeier, 1977],
[Sastry and Bodson, 1989] and [Marino and Tomei, 1995]).
The derivation of parameter convergence rates remains an
open area of investigation in adaptive systems design.
The present paper is inspired by the parameter identifi-
cation scheme presented in [Adetola and Guay, 2010] and
[Adetola, 2008]. The main contribution of this paper is
to generalize this class of set-based parameter estimation
scheme for the design of adaptive observers. The de-
sign technique consists of two parts. The first past is a
set-based adaptive identifier for parameters (as proposed
in [Adetola and Guay, 2009] and [Adetola and Guay, 2010])
that is suitable for estimation for a class of uncertain
nonlinear systems. The method ensures convergence of
the parameter to its true value provided the true parame-
ters fall within an initial uncertainty set. In the second
part, a Luenberger-like observer is chosen to ensure sta-
bility of the continuous-time error dynamics at the ori-
gin. Assuming that the initial conditions of state variables
are contained in a known uncertainty set, a new set-based
state estimation scheme is designed that ensures the non-
exclusion of the true state from the uncertainty set. The
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proposed set-based estimation routine can be related to the
class of interval observers proposed in [Gouzé et al., 2000]
and more recently in [Mazenc and Bernard, 2011] and
[Mazenc and Bernard, 2010]. The approach proposed in this
paper leads to interval observers that take into account the
impact of both disturbances and parameter estimation error.
In this paper, we demonstrate how the set-based adaptive esti-
mation technique leads to simple strategies for fault detection
problems when faults can be associated with the value of the
parameters.
This paper is organized as follows. The problem descrip-
tion is first given. State estimation and the corresponding
uncertainty set adaptation are then described. The param-
eter estimation routine with uncertainty set update is pre-
sented. A brief description of the use the set-based technique
to detect faults is discussed. This is followed by a simula-
tion example and brief conclusions. The notation adopted in
[Adetola, 2008] is used throughout this paper.

Problem Description
Consider a nonlinear system of the form

ẋ =Ax+b(y)θ+ω(t)
y = Hx

(1)

where x ∈ Rn is the vector state variables, y ∈ Rr is the vec-
tor output variables, θ ∈ Rp is vector of unknown parame-
ter.The vector-valued function b(y) is assumed to be suffi-
ciently smooth. The following assumptions are made about
the nonlinear system (1):

Assumption 1 The state variables x(t)∈X evolve on a com-
pact subset of Rn.

Assumption 2 The system is observable.

Assumption 3 It is assumed that θ to be uniquely identifi-
able lies within a known compact set Θ0 = B(θ0,zθ), the ball
centered at θ0 is a nominal parameter value, with radius zθ.

Assumption 4 The exogenous variable ω(t) is a bounded
time-varying uncertainty disturbance that belongs to L2 ( the
space of square integrable functions). It is also assumed that
|ω(t)|< ω̄, a strictly positive constant.

The objective of this work is to provide the true estimates
of the plant parameters and estimate the state variables of the
dynamical system in the presence of unknown bounded dis-
turbances.

State and uncertainty set estimation
Let the estimator model for (1) be chosen as

˙̂x = Ax̂+b(y)θ̂+KHe+ cT ˙̂
θ, K > 0, (2)

ċT = (A−KH)cT +b(y), c(t0) = 0. (3)

Define the state prediction error as e = x− x̂ and the auxiliary
variable as η = e− cT θ̃. The error dynamics are given by:

ė =(A−KH)e+b(y)θ̃− cT ˙̂
θ+ω(t). (4)

where e(t0) = x(t0)− x̂(t0). The η dynamics are given by:

η̇ = (A−KH)η+ω(t), η(t0) = e(t0) (5)

As exogeneous disturbance ω(t) is not known, an estimate of
η is generated by the system of differential equations

˙̂η = (A−KH)η̂, η̂(t0) = x̄(t0)− x̂(t0) = ē(t0). (6)

where x̄(t0) can be any initial state at a distance zη (defined
below) of the state estimates x̂(t0). In general, x̄(t0) can be
taken as a worst case estimate of the initial conditions x(t0).

The resulting estimation error η̃ = η− η̂ dynamics are
given by

˙̃η = (A−KH)η̃+ω(t), η̃(t0) = e(t0)− ē(t0). (7)

We will need the following assumption concerning the
initial error estimation error for η.

Assumption 5 It is assumed that the initial estimation error
η̃ is such that ‖η̃(t0)‖ ≤ zη where zη is a known positive con-
stant.

Remark 1 Since by construction c(t0) = 0 then η(0) = e(t0).
Since η̂(t0) = ē(t0), one can interpret assumption 5 as a
bound on the initial estimation error x̄(t0)− x(t0) consid-
ering the worst case estimate x̄(t0). In general, one only
needs to consider the case x̄(t0) = 0 and pick x̂(t0) such that
‖x̂(t0)‖ ≥ ‖x(t0)‖.

As w(t) is not known, an estimate of η is generated from
(6) with resulting estimation error η̃ = η− η̂ dynamics given
by (7), η̃(t0) = η̃0 ∈ χ0, where χ , B(0,zη). In the following,
the value of zη is estimated using a set update algorithm. The
next lemma is required to claim boundedness of the estima-
tion error η̃(t).

Lemma 1 [Desoer and Vidyasagar, 1975] Consider the sys-
tem

ẋ(t) = Ax(t)+u(t)

Suppose the equilibrium state xe = 0 of the homogeneous
equation is exponentially stable. Then,

1. if u ∈ Lp for 1 < p < ∞, then x ∈ Lp

2. if u ∈ Lp for p= 1 or 2, then x→ 0 as t→ ∞.

Consider Lyapunov function

Vη =
1
2

η̃
T Pη̃. (8)

It follows from (7) that

V̇η =
1
2

η̃
T P((A−KH)η̃+ω(t))+

1
2
((A−KH)η̃+ω(t))T Pη̃

(9)

Using the following Ricatti equation

P(A−KH)+(A−KH)T P =−Q, (10)



one obtains,

V̇η =−1
2

η̃
T Qη̃+ η̃

T Pω(t). (11)

Note that one can always write:

η̃
T Qη̃≥ λmin(Q)η̃T

η̃≥ 2
λmin(Q)
λmax(P)

Vη. (12)

By Young’s Inequality

η̃
T Pω(t) =

k1

2
η̃

T Pη̃+
1

2k1
ω(t)T Pω(t)

≤ k1λmax(P)Vη +
λmax(P)

2k1
ω̄ (13)

where k1 > 0 is a positive constant to be assigned.
From (11), (12) and (13), the following inequality results:

V̇η ≤−
(

λmin(Q)
λmax(P)

− k1λmax(P)
)

Vη +
λmax(P)

2k1
ω̄ (14)

Letting k1 = λmin(Q)
2λmax(P)2 yields:

V̇η ≤−
λmin(Q)

2λmax(P)
Vη +

λmax(P)3

λmin(Q)
ω̄ (15)

This inequality will play an important role in the design of
a set-based estimator for η. Considering (7), if ω(t) ∈ L2,
then η̃ ∈ L2 (Lemma 1). Hence, the right hand side of (15) is
finite.
Set adaptation for η An update law for the worst-case
progress of the state in the presence of disturbance is given
by

zη =

√
2Vzη

λmin(P)
(16)

Vzη(t0) =
1
2

λmax

(
P(t0)

)
(z0

η)2 (17)

V̇zη =− λmin(Q)
2λmax(P)

Vzη +
λmax(P)3

λmin(Q)
ω̄ (18)

where Vzη(t) represents the solution of the ordinary differ-
ential equation (18) with initial condition (17). The state
uncertainty set, defined by the ball χ(0,zη) is updated using
(7) and the error bound (16) according to the following algo-
rithm:

Algorithm 1 Error bound zη, the uncertain ball χ , B(0,zη)
is adapted on-line with algorithm:

1. Initialize zη(ti−1) = z0
η,

2. At time ti, update

χ =


(

0,χ(ti)
)

, if zη(ti)≤ zη(ti−1)(
0,χ(ti−1)

)
, otherwise

3. Iterate back to step 2, incrementing i = i+1.

Algorithm 1 ensures that χ is only updated when zη value
has decreased by an amount which guarantees a contraction
of the set. Moreover zη evolution given as in (16) ensures
non-exclusion of η̃ as given below.

Lemma 2 The evolution of χ = B(0,zη) under (6),(16) and
Algorithm 1 is such that

1. η̃ ∈ χ(t0) =⇒ η̃ ∈ χ(t) ∀t ≥ t0

2. χ(t2)⊆ χ(t1), t0 ≤ t1 ≤ t2

Proof:

1. We know Vη(t0)≤Vzη(t0) (by definition) and it follows
from (15) and (18) that V̇η(t)≤ V̇zη(t). Hence, we have

Vη(t)≤Vzη(t) ∀t ≥ t0 (19)

and since Vη = 1
2 η̃T Pη̃, it follows that

η̃(t)T
η̃(t)≤

2Vzη(t)
λmin(P)

= z2
η(t) ∀t ≥ t0. (20)

Hence, if η ∈ χ(t0), then η ∈ B(η̂(t),zη(t)),∀t ≥ t0.

2. If χ(ti+1) * χ(ti), then

sup
η̃∈χ(ti+1)

‖ η̃(ti) ‖≥ zη(ti) (21)

Let λ = λmin(Q)
2λmax(P) . From the differential equation (18),

it follows that at the time of the update one has:

Vzη(ti+1)−Vzη(ti) =
(
−1+ e−λ(ti+1−ti)

)
Vzη(ti)

+
(
−1+ e−λ(ti+1−ti)

)
λmax(P)3

λmin(Q)
ω̄

which indicates that

Vzη(ti+1)−Vzη(ti)≤ 0,

whenever

Vzη(ti)≥
λmax(P)3

λmin(Q)
ω̄.

As a result, it follows that at the time of the update, it
is guaranteed that:

Vzη(ti+1)≤max
[
Vzη(ti),

λmax(P)3

λmin(Q)
ω̄

]
or

zη(ti+1)≤max

[
zη(ti),

√
2λmax(P)3

λmin(P)λmin(Q)
ω̄

]
.

Since the algorithm 1 allows an update of the uncer-
tainty set only when zη(ti+1)≤ zη(ti), it follows that

sup
η̃∈χ(ti+1)

‖ η̃(ti) ‖≤ zη(ti+1)≤ zη(ti).

This proves that by construction one gets χ(ti+1) ⊆
χ(ti). Hence, χ update guarantees χ(ti+1) ⊆ χ(ti) and
the strict contraction claim follows from the fact that χ

is held constant over the update intervals τ ∈ (ti, ti+1).



Parameter and uncertainty set estimation
Following [Adetola, 2008], the parameter estimation

scheme has been generated for the above mentioned system.
Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = cHT HcT , Σ(t0) = αI � 0, (22)

The preferred parameter update law, based on Equations
(2),(3) and (6), as proposed in [Adetola and Guay, 2009] is
given by

Σ̇
−1 =−Σ

−1cHT HcT
Σ
−1, Σ

−1(t0) =
1
α

I, (23)

˙̂
θ =proj

{
Σ
−1cHT H(e− η̂), θ̂

}
, θ̂(t0) = θ

0 ∈Θ
0, (24)

where Proj{φ, θ̂} denotes a Lipschitz projection operator
[M. Krstic and Kokotovic, 1995] such that

−Proj{φ, θ̂}T
θ̃≤−φ

T
θ̃, (25)

θ̂(t0) ∈Θ
0 =⇒ θ̂(t) ∈Θ,∀t ≥ t0 (26)

where Θ0 is initial uncertainty set. Θ , B(θ̂,zθ), where θ̂

and zθ are the parameter estimate and set radius found at
the latest set update respectively. The following Lemma will
prove useful in the analysis of the estimation scheme pro-
posed above. Note that the following notation is used:

‖ η̃ ‖2
HT H= η̃

T HT Hη̃, ‖ e− η̂ ‖2
HT H= (e− η̂)T HT H(e− η̂).

Lemma 3 [Adetola and Guay, 2009] The identifier law (23)
and parameter update law (24) is such that the estimation
error θ̃ = θ− θ̂ is bounded. Moreover, ifZ

∞

t0

[
‖ η̃ ‖2

HT H − ‖ e− η̂ ‖2
HT H

]
dτ < +∞ (27)

and

lim
t→∞

λmin(Σ) = ∞ (28)

are satisfied, then θ̃ converges to zero asymptotically.

Proof: Let V
θ̃
= 1

2 θ̃T Σθ̃, it follows from (23), (24) that

V̇
θ̃
= θ̃

T cHT H(e− η̂)+
1
2

θ̃
T cHT HcT

θ̃ (29)

Using the fact that wT θ̃ = e− η̃− η̂, one obtains:

V̇
θ̃
≤−(e− η̂)T HT H(e− η̂)+ η̃

T HT H(e− η̂)

+
1
2
(e− η̂− η̃)T HT H(e− η̂− η̃)

which is simply written as:

V̇
θ̃
≤−1

2
(e− η̂)T HT H(e− η̂)+

1
2

η̃
T HT Hη̃ (30)

Since the estimation error η̃ is bounded, the last inequality
implies that θ̃ is bounded. Moreover, it follows from (30)
that

Vθ(t) = V
θ̃
(t0)+

Z t

t0
V̇

θ̃
(τ)dτ (31)

≤V
θ̃
(t0)−

1
2

Z t

t0
‖ e− η̂ ‖2

HT H dτ+
1
2

Z t

t0
‖ η̃ ‖2

HT H dτ (32)

Considering the dynamics of (7), if ω(t) ∈ L2, then η̃ ∈ L2
(Lemma 1). Hence, the right hand side of (32) is finite in
view of (27), and by (28) we have limt→∞ θ̃(t) = 0.

An update law that measures the worst-case progress of
the parameter identifier in the presence of a disturbance is
given by

zθ =

√
Vzθ

2λmin(Σ)
(33)

Vzθ(t0) = 2λmax

(
Σ(t0)

)
(z0

θ)
2 (34)

V̇zθ =−1
2
(e− η̂)T HT H(e− η̂)+

1
2

λmax(HT H)z2
η (35)

where Vzθ(t) represents the solution of the ordinary differen-
tial equation (35) with the initial condition (34). The param-
eter uncertainty set, defined by the ball B(θ̂c,zc) is updated
using the parameter update law (24) and the error bound (33)
according to the following algorithm:

Algorithm 2 1. Initialize zθ(ti−1) = z0
θ
, θ̂(ti−1) = θ̂0

2. At time ti, update

(
θ̂,Θ

)
=


(

θ̂(ti),Θ(ti)
)

,
if zθ(ti) ≤ zθ(ti−1)
− ‖ θ̂i− θ̂(ti−1) ‖(

θ̂(ti−1),Θ(ti−1)
)

, otherwise

3. Iterate back to step 2, incrementing i = i+1.

Algorithm 2 ensures that Θ is only updated when the
value of zθ has decreased by an amount which guarantees a
contraction of the set. Moreover zθ evolution as given in (33)
ensures non-exclusion of θ as given below.

Lemma 4 The evolution of Θ = B(θ̂,zθ) under (23), (33)
and Algorithm 2 is such that

1. Θ(t2)⊆Θ(t1), t0 ≤ t1 ≤ t2

2. θ ∈Θ(t0) =⇒ θ ∈Θ(t) ∀t ≥ t0

Proof:

1. If Θ(ti+1) * Θ(ti), then

sup
s∈Θ(ti+1)

‖ s−θ(ti) ‖≥ zθ(ti) (36)

However, it follows from triangle inequality and Algo-
rithm 3.1 that Θ, at the time of update, obeys

sup
s∈Θ(ti+1)

‖ s− θ̂(ti) ‖≤ sup
s∈Θ(ti+1)

‖ s− θ̂(ti+1) ‖

+ ‖ θ̂(ti+1)− θ̂(ti) ‖
≤ zθ(ti+1)+ ‖ θ̂(ti+1)− θ̂(ti) ‖
≤ zθ(ti),

which contradicts (36). Hence, Θ update guarantees
Θ(ti+1) ⊆ Θ(ti). And Θ is held constant over update
intervals τ ∈ (ti, ti+1).



2. We know that V
θ̃
(t0) ≤ Vzθ(t0) (by definition) and it

follows from (30) and (35) that V̇
θ̃
(t)≤ V̇zθ(t). Hence,

by the comparison lemma, we have

V
θ̃
(t)≤Vzθ(t) ∀t ≥ t0 (37)

and since V
θ̃
= 1

2 θ̃T Σθ̃, it follows that

θ̃(t)T
θ̃(t)≤ 2Vzθ(t)

λmin(Σ(t))
= 4z2

θ(t) ∀t ≥ t0. (38)

Hence, if θ ∈Θ(t0), then θ ∈ B(θ̂(t),zθ(t)),∀t ≥ t0.

Application for fault detection
One of the properties of parameter update laws of the

form proposed in this work is that one can extract from the
bounds zη and zθ a bound on the estimation error ‖e‖. By
definition, one can write:

(y− ŷ) = He = Hη+HcT
δ̃.

Thus, the error e is bounded as follows:

‖He‖ ≤ ‖Hη‖+‖Hc‖δ̃≤ ‖Hη̃‖+‖Hη̂‖+2‖Hc‖zθ0

≤ ‖H‖zη +‖Hη̂‖+2‖Hc‖zθ0. (39)

The bound (39) is computable. It can be used to detect
abnormal conditions. Since it is guaranteed by (39) that the
true state value must within a ball of radius ze = ‖H‖zη +
‖Hη̂‖+ 2‖Hc‖zθ0 centered at the origin, any change in the
process conditions such as sudden changes in the parameter
values will cause a violation the inequality (39).

The strategy used for the detection and isolation is pri-
marily on a generalization of algorithm 2. The main differ-
ence is that one checks if the inequality (39) is fulfilled. If
it is not then one resets the algorithm to the initial condi-
tions (θ0, zθ0, zη0). Re-initiation of the algorithm allows one
to re-estimate the states and the parameters corresponding to
the new conditions. The value of zθ0 must be chosen large
enough to ensure that the new value of the parameter is con-
tained inside the new uncertainty set. The value of zη0 must
also be reset to a large value. In the present work, we simply
set the value of zη to the original value.

In summary, the set-based update algorithm with fault de-
tection and estimation can be stated as follows.

Algorithm 3 1. Intialize zθ(ti−1) = z0
θ
, θ̂(ti−1) = θ̂0

2. If ‖e(ti)‖> zη(ti)+‖η̂(ti)‖+2‖c(ti)‖zθ(ti−1), increase
zθ to arbitrarily large value to keep the true parameter
inside the uncertainty set.

3. At time ti, update

(
θ̂,Θ

)
=



(
θ̂(ti),Θ(ti)

)
, if zθ(ti)≤ zθ(ti−1)

− ‖ θ̂i− θ̂(ti−1) ‖(
θ̂(ti−1),Θ(ti−1)

)
, otherwise

4. Iterate back to step 2, incrementing i = i+1.

Simulation Example
We consider the population model presented in

[Gouzé et al., 2000]. The dynamics are given by:

ẋ1 =−β1x1 +
θ1x3

b+ x3
+ν1

ẋ2 = α1x1−β2x2 +ν2

ẋ3 = α2x2−β3x3 +ν3

y = x3

where ν = [ν1, ν2, ν3]
T with ν1 = 0.001sin(0.01t), ν2 =

0.001sin(0.005t) and ν3 = 0.001sin(0.1t)]T .
It is assumed that α1, α2, β1, β2, β3 and b are known con-

stants where α1 = α2 = 0.8, β1 = β2 = 1, β3 = 0.5 and b = 1.
The nominal value of θ1 = 1.

Remark 2 Note that the estimation of the constant b appear-
ing in the nonlinear term can also be estimated using similar
techniques. However the treatment of nonlinear parameteri-
zation is outside the scope of this manuscript.

Following the theory, we identify the matrix

A =

 −β1 0 0
α1 −β2 0
0 α2 −β3


and the output injection nonlinearity as b(y) =

[
x3

b+x3
, 0, 0

]T
.

We consider the following observer gain K = [5, 5, 5].
We consider a matrix Q = 1I3×3 where I3×3 represents the
3×3 identity matrix. These design choices yield the matrix

P =

 0.625 0.3125 0.15625
0.3125 0.9375 0.54688

0.15625 0.54688 1.1719

 .

The initial conditions for the systems are x(0) =
[0.1, 0.5, 1.0]T . The estimator initial conditions are x̂(0) =
[1, 0, 0]T . The initial parameter estimate is θ̂(0) = 0.6 with
an uncertainty radius of zθ0 = 0.5. The initial uncertainty ra-
dius zη0 is set to 4. The upper bound on the uncertainty is
ω̄ = 0.005.

Figure 1 shows the performance of the estimation of θ1.
The parameter is shown to converge to the true value. A sud-
den change is introduced in the parameter value from 1 to 3
at t=50000. Figure 2 shows the upper bound on the observe
error ‖He‖ along with the upper bound as given in (39). As
expected, inequality (39) accurately detect to the new condi-
tions at time t=50000. As a result, the set update algorithms
are reset starting at the current condition but with zθ = 4 and
zη = 4.

The radius of the parameter estimation error is compared
to the norm of the parameter estimation error ‖θ̃‖ in Figure
3. The results confirm that zθ ≥ ‖θ̃‖, as expected. Figure 4
compares ‖η̃‖ with the bound zη. As expected, zη provides
an upper bound on the estimation error for η.
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FIGURE 1. Time course plot of the parameter
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FIGURE 2. Comparison of the estimation error ‖e‖
and the upper bound based on (39)
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FIGURE 3. Radius of the uncertainty set zθ and true
estimation error ‖θ̃‖.
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FIGURE 4. Radius of uncertainty zη and the true
estimation error ‖η̃‖.

Conclusions
A set-based adaptive estimation technique is proposed for

simultaneous state estimation and parameter identification of
a class of continuous-time nonlinear systems subject to time-
varying disturbances. The set-based adaptive identifier for
parameters is used to estimate the parameters and along with
an uncertainty that is guaranteed to contain the true value of
the parameters. Simultaneously an auxiliary variable is used
to estimate the unmeasured state variables. Sufficient condi-
tions are given that guarantee the convergence of the adap-
tive observer. The proposed technique updates the estimates
only when estimation improvement is guaranteed. The pro-
posed uncertainty set update for parameter identification and
state estimation, guarantees to contain the true values at all
time instants. The method guarantees convergence of the pa-
rameter estimation error to zero and significantly determines
the unknown state of the system with unknown bounded dis-
turbance. The estimation and identification algorithms have
been implemented to a simulation example to demonstrate its
effectiveness.
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